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Abstract: X-ray footprinting coupled with mass spectrometry (XFMS) presents a novel approach in
structural biology, offering insights into protein conformation and dynamics in the solution state. The
interaction of the cancer-immunotherapy monoclonal antibody nivolumab with its antigen target
PD-1 was used to showcase the utility of XFMS against the previously published crystal structure of
the complex. Changes in side-chain solvent accessibility, as determined by the oxidative footprint of
free PD-1 versus PD-1 bound to nivolumab, agree with the binding interface side-chain interactions
reported from the crystal structure of the complex. The N-linked glycosylation sites of PD-1 were
confirmed through an LC-MS/MS-based deglycosylation analysis of asparagine deamidation. In
addition, subtle changes in side-chain solvent accessibility were observed in the C’D loop region of
PD-1 upon complex formation with nivolumab.

Keywords: hydroxyl radical footprinting; X-ray footprinting mass spectrometry (XFMS); epitope
mapping; programmed cell death protein 1; PD-1; nivolumab; ICI

1. Introduction

Programmed cell death protein 1 (PD-1) and its natural ligand PD-L1 have become
potent targets for cancer immunotherapy [1–4]. PD-1 is a 288 amino acid transmembrane
glycoprotein that belongs to the immunoglobulin superfamily, as evidenced by its char-
acteristic IgV domain. The PD-1 receptor is expressed on activated T cells, B cells, and
myeloid cells and functions as an immune checkpoint, modulated by the interaction with
PD-L1. Tumor cells expressing PD-L1 inhibit T-cell activation, which enables tumor cells to
evade the antitumor immune response [1,5–8].

Nivolumab received FDA approval in 2014 as an anti-PD-1 monoclonal antibody for
the treatment of melanoma [9] and, since then, has been used to treat a variety of cancers.
Nivolumab binds PD-1 with an affinity of Kd = 2.6 nM [9,10] and blocks the PD-1/PD-L1
interaction which impedes T-cell inhibition and reactivates the immune response toward
tumor cells.

The NMR structure of PD-1 (P34-E150) revealed considerable flexibility in the BC
loop, the C’D loop, and the FG loop [11]. The two reported crystal structures of the PD-
1/nivolumab complex show residues of the BC and FG loops of the IgV domain and
residues of the N-terminal loop (N-loop) involved in binding. However, the earlier crystal
structure of the complex (PDB: 5GGR) [12] is missing two important N-loop residues [13]
while the later crystal structure (PDB: 5WT9) [14] contains the entire N-loop of the mature
protein, starting at L25. The highly flexible N-loop of PD-1 is required for binding and
dominates the interaction with nivolumab despite the N-loop not being involved in the
PD-1/PD-L1 interaction [14]. Molecular dynamics simulations of the PD-1/nivolumab
interaction suggest a dynamic, two-step process in which the N-loop binding to nivolumab
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stabilizes the interface between the IgV domain and the antibody and also facilitates the re-
binding of the IgV domain with nivolumab [13]. Unlike PD-1/PD-L1, the PD-1/nivolumab
interaction takes place independent of glycosylation [14].

Here, we used the method of X-ray hydroxyl radical footprinting combined with mass
spectrometry (XFMS) to investigate the PD-1/nivolumab interaction in solution. XFMS
relies on the X-ray-mediated radiolysis of water to generate hydroxyl radicals which can
covalently label solvent accessible protein side-chains [15,16] (Figure 1A). The extent of
the oxidative labeling of amino acid side-chains is determined by solvent accessibility
to both bulk and bound water and the side-chain’s intrinsic reactivity toward hydroxyl
radicals. Under controlled irradiation conditions, the direct effect of sample irradiation is
the interaction of ionizing radiation with water, while any direct impact of radiation on
protein molecules is negligible at micromolar protein concentrations [16,17]. Following the
labeling reaction, bottom-up LC-MS/MS is employed to identify and quantify the covalent
modifications, resulting in information about the relative change in solvent accessibility at
the residue level between two or more states of the protein (Figure 1B,C). Modifications are
commonly observed for 16 of the 20 naturally occurring amino acids, and under aerobic
conditions, hydroxyl radical labeling results in side-chain mass shifts of primarily +16, +14,
+32, and +48 Da [16]. Because XFMS is complementary to other more well-known structural
biology methods [15,17–23], we sought to both compare XFMS structural information with
previous protein crystal structures, and to gain new insight into the PD-1/nivolumab
interaction under solution state conditions.
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Figure 1. Schematic representation of the X-ray hydroxyl radical footprinting mass spectrometry 
workflow. (A) Synchrotron irradiation of a dilute protein sample in an aqueous, buffered solution 
produces hydroxyl radicals as a result of radiolysis of water, and hydroxyl radicals covalently label 
solvent-exposed side-chains if they are produced in proximity to the side-chain. The interface be-
tween antigen and antibody provides protection from labeling which leads to a different oxidative 
footprint from that of the free antigen. (B) Bottom-up LC-MS/MS analysis of protease-digested sam-
ples produces chromatograms of modified and unmodified peptides for each exposure time. (C) 
Fraction unmodified, calculated on the basis of the peak areas under the curve (AUC), is plotted as 
a function of exposure time. The dose response plot is fitted to a first-order exponential equation 
which generates the hydroxyl radical reactivity rate constant, k(s−1). The ratio of hydroxyl radical 
reactivity rate constants is independent of the intrinsic reactivity of the residue and the ratio there-
fore represents the relative change in solvent accessibility of a particular residue. 

  

Figure 1. Schematic representation of the X-ray hydroxyl radical footprinting mass spectrometry
workflow. (A) Synchrotron irradiation of a dilute protein sample in an aqueous, buffered solution
produces hydroxyl radicals as a result of radiolysis of water, and hydroxyl radicals covalently label
solvent-exposed side-chains if they are produced in proximity to the side-chain. The interface
between antigen and antibody provides protection from labeling which leads to a different oxidative
footprint from that of the free antigen. (B) Bottom-up LC-MS/MS analysis of protease-digested
samples produces chromatograms of modified and unmodified peptides for each exposure time.
(C) Fraction unmodified, calculated on the basis of the peak areas under the curve (AUC), is plotted
as a function of exposure time. The dose response plot is fitted to a first-order exponential equation
which generates the hydroxyl radical reactivity rate constant, k(s−1). The ratio of hydroxyl radical
reactivity rate constants is independent of the intrinsic reactivity of the residue and the ratio therefore
represents the relative change in solvent accessibility of a particular residue.
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2. Materials and Methods
2.1. X-ray Footprinting of Protein Samples

Lyophilized human PD-1 ectodomain (L25-Q167, GenScript, Piscataway, NJ, USA,
Z03424) was reconstituted in PBS pH 7.4 (Gibco, Thermo Fisher Scientific, Waltham, MA,
USA, 10010-023) to a concentration of 100 µg/mL. Full-length nivolumab at 5 mg/mL
(Selleckchem, Houston, TX, USA, A2002) and reconstituted PD-1 were dialyzed against
PBS to remove hydroxyl radical scavenging compounds prior to footprinting. Protein
concentration after dialysis was confirmed by A280. Free PD-1 was prepared at 5.5 µM
for footprinting while the complex mixture was prepared as a 1:1 ratio of 2.8 µM PD-1 to
2.8 µM full-length nivolumab. The complex mixture was incubated at room temperature
with gentle orbital shaking for 30 min. All samples were held on ice for a few hours
prior to footprinting. The samples were irradiated at the Advanced Light Source (ALS)
beamline 3.3.1 using a syringe pump and capillary sample delivery method, as previously
described [24]. A 5 µM Alexa 488 dose response in the presence of protein was carried
out to ensure that the two samples with the same total protein concentration produced a
similar Alexa dose response, as measured using the Alexa 488 rate constant [25]. The Alexa
488 rate constant for free PD-1 in PBS was 1600 s−1 while the Alexa 488 rate constant for
the complex in PBS was 1300 s−1. The X-ray exposure time ranged from 250 to 1000 µs
and exposed samples were collected in tubes containing methionine amide to immediately
quench any secondary radical reactions. Samples were stored at −80 ◦C.

2.2. Sample Prep for LC-MS/MS Analysis

Irradiated samples and non-irradiated control samples were desalted and buffer
exchanged into 50 mM ammonium bicarbonate using 0.5 mL 3K MWCO Amicon Ultra spin
filters. A starting volume of 100 µL was spun down to approximately 20 µL followed by
the addition of 480 µL 50 mM ammonium bicarbonate which was spun down to deadstop.
The recovered concentrated sample was adjusted to a volume of 50 µL. Dithiothreitol was
added to a final concentration of 5 mM and the sample was incubated at 65 ◦C for 30 min.
The cooled sample was alkylated with iodoacetamide at a final concentration of 15 mM for
30 min at room temperature in the dark. Following reduction and alkylation, each sample
was split into two 26 µL aliquots to which either trypsin/Lys–C (Promega, Madison, WI,
USA) or chymotrypsin (Promega, Madison, WI, USA) was added at a 1:20 enzyme–protein
ratio (w/w). Two protease digests were employed to obtain full sequence coverage. Samples
were incubated overnight at 37 ◦C, 200 rpm for 14–16 h, after which the digestion was
terminated by heating the samples to 95 ◦C for 10 min followed by cooling to room
temperature. A total of 500 units (1 µL) of glycerol-free PNGase F (New England Biolabs,
Ipswich, MA, USA) was added per sample and the mixture was incubated at 37 ◦C for 16 h.
The reaction was terminated by adding 2% formic acid for a final concentration of 0.1%.

2.3. Mass Spectrometry

An Orbitrap Exploris 480 mass spectrometer (Thermo Fisher Scientific, Waltham, MA,
USA) coupled to an Agilent 1290 UHPLC system (Agilent Technologies, Santa Clara, CA,
USA) was used for the LC-MS/MS analysis of peptides. An InfinityLab Poroshell 120
EC-C18 column (2.1 × 100 mm, 1.9 µm particle size, 60 ◦C) with an initial 0.400 mL/min
flow rate was used for the separation of peptides, which eluted with the following gradient:
98% solvent A (0.1% formic acid) and 2% solvent B (99.9% acetonitrile, 0.1% formic acid)
initially, followed by increasing solvent B to 10% over 1.5 min, then increasing to 35%
over 10 min, then increasing to 80% over 0.5 min, holding for 1.5 min at a flow rate of
0.6 mL/min, followed by a ramp back down to 2% over 0.5 min, where it was held for
re-equilibrating the column to the original conditions. The mass spectrometer settings
were as follows: full scan Orbitrap resolution at 60,000; AGC Target at 3.0 × 106 maximum
injection time after 60 ms; the top 10 intense ions were isolated for HCD fragmentation per
MS scan with collision energy set to 30% and an intensity threshold at 5.0 × 103; dynamic
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exclusion duration set at 2 s; data-dependent MS2 scan Orbitrap resolution at 15,000; AGC
target at 1.0 × 105; a maximum injection time after 50 ms.

2.4. Analysis of LC-MS/MS Data

Data analysis was performed using PMI Byos® v.5.3.44 (Protein Metrics, Boston,
MA, USA). Commonly observed +14, +16, +32, and +48 Da oxidation products [16] were
specified as variable modifications in the database search. Carbamidomethylation was set
as a fixed modification for Cys, and Asn deamidation was set as a fixed modification for
peptides containing Asn residues showing >90% deamidation.

Retention-time specific MS/MS spectra showing a high degree of fragment-ion cover-
age were validated manually to ensure the confident assignment of residue-specific modifi-
cations. The quantification of modifications was based on the extracted ion-chromatogram
peak areas of the modified and native peptides. The fraction unmodified for each peptide
was calculated as the ratio of the integrated peak area of the unmodified peptide to the sum
of the integrated peak areas from the modified and unmodified peptides, and the fraction
unmodified was normalized against any background oxidation seen in the unexposed
control sample. The fraction of unmodified protein as a function of exposure time was
plotted in Origin v.2019b (OriginLab, Northampton, MA, USA) and the dose–response
profiles were fitted to the first-order exponential function y = e−kt. The rate constant, k(s−1),
is a measure of the intrinsic hydroxyl radical reactivity and the solvent accessibility of the
residue, while the ratio (R) of rate constants provides a measure of the relative change in the
solvent accessibility of the residue between the free and complex states of the protein [17].

3. Results
3.1. PD-1 Deglycosylation Analysis

We first analyzed the LC-MS/MS footprinting data to assess the PNGase F deglyco-
sylation reaction and to verify the expected N-linked glycosylation sites of PD-1, since
enzyme-mediated N-linked deglycosylation results in Asn deamidation. A search for the
deamidation of Asn using the zero-exposure control samples showed >90% deamidation for
N49, N58, N74, N102, and N116. The high degree of deamidation of N102 was unexpected,
since this residue has not previously been identified as a site of N-linked glycosylation [4].
N102 is highly conserved but has the motif NGR which does not conform to the consensus
sequence N-X-S/T [26] associated with N-linked glycosylation. Asn can undergo spon-
taneous nonenzymatic deamidation [26], and it has been shown that a high deamidation
rate is possible after a typical overnight proteolytic digestion when Asn is followed by
Gly in the peptide sequence [27], which is indeed the case here for residue N102. We
observed a >90% deamidation of N102 in both the trypsin/Lys-C and the chymotrypsin
zero-exposure samples. Asn deamidation was subsequently set as a fixed modification for
oxidative modification searches involving peptides containing N102 and the four N-linked
glycosylation sites.

3.2. Epitope Mapping Using Hydroxyl Radical Footprinting of the PD-1/Nivolumab Complex

Footprinting results showed extensive labeling across the PD-1 sequence; however, the
oxidative modifications selected for inclusion in this study were limited to those for which a
confident assignment could be made based on a high degree of fragment-ion coverage. The
LC-MS/MS analysis of the protease-digested samples produced residue-specific hydroxyl
radical reactivity rate constants for each state (Figure S1 and Table S1) and the ratio of those
rate constants in turn revealed the relative change in solvent accessibility for a particular
residue (Figure 2).
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rate constant of free PD-1 to the hydroxyl radical reactivity rate constant of PD-1 bound to 
nivolumab. Unless noted, the residue modification represents a hydroxylated product with a +16 
Da mass shift. Co-eluting, modified peptide isomers are shown as mixed modifications. The bar 
chart color scheme reflects changes in solvent accessibility between free PD-1 and the PD-
1/nivolumab complex. Gray-colored bars indicate the modification observed, but minimal change 
in solvent accessibility. Error bars represent the SD of the ratio [28]. The sequence locations of N-
linked glycosylation sites and PD-1 structural loops are indicated with green triangles and purple 
arrows respectively. 

The PD-1/nivolumab epitope footprinting results show a high degree of protection 
of N-loop residues as well as FG loop residues (Figures 2 and 3). L25, D26, P28, D29, 
P31/W32, A129/P130, P130, and K131 all show a greater than three-fold decrease in solvent 
accessibility, with P28 and D29 being protected in the complex to such an extent that no 
hydroxyl radical labeling was observed (Figure S1). I126 and I134 flank the FG loop, and 
both show a two-fold decrease in solvent accessibility. 

Figure 2. PD-1 residue-specific change in solvent accessibility (SA) upon PD-1/nivolumab complex
formation. The height of each column corresponds to the ratio (R) of the hydroxyl radical reactivity
rate constant of free PD-1 to the hydroxyl radical reactivity rate constant of PD-1 bound to nivolumab.
Unless noted, the residue modification represents a hydroxylated product with a +16 Da mass shift.
Co-eluting, modified peptide isomers are shown as mixed modifications. The bar chart color scheme
reflects changes in solvent accessibility between free PD-1 and the PD-1/nivolumab complex. Gray-
colored bars indicate the modification observed, but minimal change in solvent accessibility. Error
bars represent the SD of the ratio [28]. The sequence locations of N-linked glycosylation sites and
PD-1 structural loops are indicated with green triangles and purple arrows respectively.

The PD-1/nivolumab epitope footprinting results show a high degree of protection
of N-loop residues as well as FG loop residues (Figures 2 and 3). L25, D26, P28, D29,
P31/W32, A129/P130, P130, and K131 all show a greater than three-fold decrease in solvent
accessibility, with P28 and D29 being protected in the complex to such an extent that no
hydroxyl radical labeling was observed (Figure S1). I126 and I134 flank the FG loop, and
both show a two-fold decrease in solvent accessibility.

There is no change in solvent accessibility for the footprinted AB-loop residues, and
the BC-loop residues (F56-S62) did not generate oxidative modifications. F56 is not sol-
vent exposed in either the apo structure (PDB: 3RRQ) or in the complex structure (PDB:
5WT9) [14]. The Ser, Thr, and Asn residues of the BC loop have low intrinsic reactivities
toward hydroxyl radicals and seldom produce detectable products, which explains the lack
of modification of the BC-loop residues.
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due to the missing C′D loop. This figure was prepared with ChimeraX [29]. 
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L79, F82, and a majority of the C′D-loop residues were modified and showed a mod-
erate decrease in solvent accessibility overall. The C′D loop was not resolved in the Tan et 
al. [14] crystal structure of the PD-1/nivolumab complex (Figure 3) but is stabilized and 
resolved in the crystal structure of PD-1 bound to pembrolizumab [30], indicating that the 
C′D loop is not part of the PD-1 epitope of nivolumab. The X-ray footprinting results sup-
port this conclusion given the relatively moderate change in solvent accessibility of the 
C′D-loop residues; however, the decrease in solvent accessibility of F82, in particular, 
points to allosteric conformational changes in PD-1 upon complex formation. Recent work 
characterizing antibodies against COVID-19 variants observed similar antibody-binding 
induced allosteric changes in the antigen [31]. 

Figure 3. XFMS data mapped onto the structure of PD-1 bound to nivolumab-Fab (PDB: 5WT9).
The blue color gradient for footprinted PD-1 residues indicates the change in solvent accessibility
upon complex formation, with deep blue representing a greater than three-fold decrease in solvent
accessibility. Labeled side-chains in gray showed modification but minimal change in solvent
accessibility. The modified residues D85, R86, P89, and C93 could not be visualized in the structural
model due to the missing C’D loop. This figure was prepared with ChimeraX [29].

L79, F82, and a majority of the C’D-loop residues were modified and showed a
moderate decrease in solvent accessibility overall. The C’D loop was not resolved in the
Tan et al. [14] crystal structure of the PD-1/nivolumab complex (Figure 3) but is stabilized
and resolved in the crystal structure of PD-1 bound to pembrolizumab [30], indicating that
the C’D loop is not part of the PD-1 epitope of nivolumab. The X-ray footprinting results
support this conclusion given the relatively moderate change in solvent accessibility of
the C’D-loop residues; however, the decrease in solvent accessibility of F82, in particular,
points to allosteric conformational changes in PD-1 upon complex formation. Recent work
characterizing antibodies against COVID-19 variants observed similar antibody-binding
induced allosteric changes in the antigen [31].

A direct comparison of XFMS-identified residues with crystal structure residues in-
volved in the binding interface shows excellent agreement between the two structural
biology methods (Table 1). Of the 14 PD-1 residues determined to be involved in either
hydrogen bonding or other atom-to-atom contacts with nivolumab residues, XFMS saw
modification data and a greater than three-fold decrease in solvent accessibility for eight of
those residues.
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Table 1. PD-1 residue-level comparison of XFMS and crystallography.

PD-1 Residues Showed a Greater than
Three-Fold Decrease in Solvent Accessibility
when PD-1 Is Bound to Nivolumab as
Determined by XFMS

PD-1 Crystal Structure Residues Determined
to Contribute to Contacts in the
PD-1/Nivolumab Interface [14]

N-loop
L25, D26, P28, D29, P31/W32
FG loop
A129/P130, P130, K131

N-loop
L25(2), D26, S27(1), P28(1), D29(1), R30(4), P31
BC loop
T59(1), S60
FG loop
L128, A129(1), P130(1), K131(2), A132(1)

Numbers in parenthesis indicate the total number of hydrogen bonds.

4. Discussion

To date, nearly a dozen monoclonal antibodies targeting PD-1 have been FDA-approved,
a subset of which have been crystallized in complex with PD-1. In addition to the crystal
structures of PD-1 in complex with nivolumab [14] and pembrolizumab [30], the PDB
holds structures for PD-1 complexed with tislelizumab [32], camrelizumab (PDB: 7CU5),
toripalimab (PDB: 6JBT), cemiplimab [33] (PDB: 7WVM), serplulimab [34] (PDB: 7E9B), and
dostarlimab [35] (PDB: 7WSL). Interestingly, of these crystal structures, most interactions
between the antibody and PD-1 occur on one or several loops of PD-1, including the FG,
C’D, BC, and N-loops [1]. Here, we have performed the first XFMS structural analysis
of a PD-1/antibody interaction, choosing the full-length nivolumab in complex with the
ectodomain of human PD-1 to validate the method against the corresponding crystal
structure. The XFMS mapping of the solution state PD-1 epitope of full-length nivolumab
showed two strongly protected regions at the N-loop and the FG loop, confirming the
binding interface determined from the crystal structure of the PD-1/nivolumab interaction.
In addition, XFMS showed moderate protections corresponding to a region encompassing
the C’D loop, which is the loop recognized by pembrolizumab. The crystal structure of
PD-1/pembrolizumab showed a binding interface consisting of residues V64, N66, Y68,
Q75, T76, D77, K78, P83, E84, D85, R86, S87, Q88, and P89, and the XFMS data showed
a moderate protection of Q75, L79, F82, F82/P83, E84/D85/R86, and P89 in that region.
While XFMS cannot distinguish between protections due to conformational changes in
a protein versus protections due to interaction with a binding partner, it is nonetheless
interesting to note that nivolumab and pembrolizumab have shown partial complementary
binding, despite the proximity of their respective binding sites on PD-1 [14]. The subtle
changes in solvent accessibility in the C’D region could be due to a slight stabilization of
the loop, which would affect the complementarity of binding of the two antibodies.

Since structural methods each have their strengths and limitations, they are often
used together to give a full picture of protein–protein interactions. Crystal structures give
detailed atomic models, for instance, yet disordered regions are either not present in the
structure or the crystal matrix will force loops into static conformations not necessarily
representative of the solution-state structure. XFMS data, while sometimes challenging to
interpret in the absence of other structural data, complements high-resolution structural
models with a nuanced picture of changes in side-chain solvent accessibility. In addition,
XFMS has the ability to report on structural features that are too flexible to be captured by
crystallography, and can help to distinguish between biologically relevant interfaces and
crystal contacts [36–38]. In summary, we have demonstrated here the utility of XFMS in
mapping a loop-defined epitope on PD-1 in the solution state, highlighting the need for the
integration of structural methods to fully characterize antibody–antigen interactions.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/antib13030077/s1, Figure S1: Residue-specific dose response
plots; Table S1: XFMS hydroxyl radical reactivity rate constants
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