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Abstract: Background: Although immune checkpoint inhibitors (ICIs) have demonstrated efficacy in
treating advanced cancers, their therapeutic success remains limited for many patients, with initial
responders often experiencing resistance and relapse. Interleukin-12 (IL-12) is a powerful cytokine
for antitumor immunotherapy, enhancing both lymphocyte recruitment into tumors and immune cell
activation. Methods: In this study, we successfully produced mouse interleukin-12 (mIL12) through
eukaryotic recombinant expression. In vivo, mIL12 exhibited significant control of tumor immunity
in ICI-resistant and aggressive tumor models. Further mechanistic analysis indicated that treatment
with mIL12 led to a substantial increase in tumor-infiltrating CD4+ T, CD8+ T, cDC1, and CD103+

cDC1 cells. Results: Our data underscore the potential of a combined therapeutic strategy involving
IL-12 with PD-1 and CTLA-4 blockade to elicit a potent antitumor immune response. Notably,
the co-administration of mIL12 and PD-1 blockade significantly enhanced the presence of central
memory T cells (TCM) within tumors. Conclusions: This study is the first to provide evidence that the
combination of mIL12 and PD-1 blockers promotes the generation of TCM, potentially contributing to
a robust and durable antitumor effect.
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1. Introduction

Tumor immunotherapy has emerged as a preeminent approach for cancer treatment.
The first immune checkpoint inhibitor (ICI) was approved in 2011 for the treatment of
unresectable melanoma following conventional therapies. Over the past decade, ICIs have
revolutionized cancer treatment, becoming a primary therapy for various cancers. Current
ICIs target proteins including programmed cell death protein 1 (PD-1), programmed
cell death ligand 1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and
lymphocyte-activation gene 3 (Lag3) [1–3]. Despite widespread use, particularly of PD-(L)1
inhibitors, many patients do not achieve sustained antitumor responses, and issues such as
drug resistance and relapse remain prevalent. Furthermore, a significant number of patients
with positive PD-L1 expression do not mount effective immune responses, underscoring
the urgent need for novel immunotherapeutic strategies or combination therapies involving
ICIs [4,5].

The antitumor immune response is predominantly mediated by CD8+ T cells, with
memory CD8+ T cells playing a pivotal role in sustaining long-term antitumor immunity.
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These memory cells are classified into four main subsets: central memory T cells (Tcm),
effector memory T cells (Tem), stem cell memory T cells (Tscm), and resident memory
T cells (Trm) [6–9]. Among them, central memory T cells (Tcm) are a type of circulating
CD8+ memory T cell known for their high proliferative capacity and potent antitumor
activity. Notably, Tcm cells have the ability to differentiate into both Tem and Trm subsets,
further bolstering the antitumor response [10]. Clinical studies have demonstrated a
positive correlation between the presence of Tcm cells and favorable outcomes in tumor
immunotherapy, emphasizing the importance of inducing tumor-specific memory T cells
for achieving durable antitumor immunity [11].

Additionally, previous research has shown that the antitumor efficacy of PD-1 in-
hibitors is dependent on IL-12 secretion by dendritic cells. Enhancing IL-12 secretion can
improve the effectiveness of PD-1 inhibitors, suggesting that a combination therapy involv-
ing IL-12 cytokine and PD-1 inhibitors may represent an effective strategy for enhancing
cancer immunotherapy [12]. Interleukin-12 (IL-12), a heterodimeric cytokine comprised
of IL-12p40 and IL-12p35 subunits linked by a disulfide bond, plays a pivotal role in both
innate and adaptive immunity [13]. Produced predominantly by antigen-presenting cells
like dendritic cells and macrophages, IL-12 initiates signaling through the IL-12Rβ1 and
IL-12Rβ2 receptor complexes, activating the JAK-STAT pathway. The production of IL-12
is influenced by various factors, including the regulatory mechanisms of IL-12 gene ex-
pression, the expression patterns of toll-like receptors (TLRs), interactions among different
dendritic cell subsets, and the effects of cytokines such as interleukin-10 (IL-10) and type I
interferon. IL-10 is known to negatively regulate IL-12 production by inhibiting the tran-
scription of the genes encoding IL-12 [14,15]. IL-12 is a potent pro-inflammatory cytokine
that not only induces the production of interferon-gamma (IFN-γ) but also promotes the
differentiation of helper T cells into type 1 (TH1) [16]. This cytokine stimulates T and natural
killer (NK) cells to produce a range of cytokines, including IFN-γ, granulocyte-macrophage
colony-stimulating factor (GM-CSF), and tumor necrosis factor (TNF). It also facilitates
IFN-γ production in conjunction with low levels of TNF and interleukin-1 (IL-1) [16]. Fur-
thermore, IL-12 enhances T cell and NK cell activation synergistically with other cytokines
and stimulates the T cell receptor-CD3 complex and immune complex formation with
interleukin-2 (IL-2), leading to efficient IFN-γ production [17]. It enhances the cytotoxic
activities of T and NK cells, promotes their production of IFN-γ, and stimulates the secre-
tion of chemokines such as CXCL9 and CXCL10, which recruit effector cells into the tumor
microenvironment [18–20]. In clinical trials, recombinant human IL-12 has been tested
against various advanced malignancies, including renal cell carcinoma, melanoma, and
non-Hodgkin’s lymphoma [21,22]. Moreover, recent preclinical studies have explored novel
therapeutic modalities using IL-12, such as mRNA therapies, oncolytic viruses, CAR-T
cells, and fusion proteins [23–27].

The potent antitumor effects of IL-12 are well-established. However, its clinical appli-
cation has been limited due to dose-limiting immune-related adverse events (irAEs), such
as cytokine release syndrome and liver injury [21,28–32]. These toxicities have hindered
the approval of IL-12 for clinical use despite its considerable promise in cancer therapy.
Consequently, devising methods to safely and effectively deploy IL-12 in clinical settings
poses a substantial challenge. Potential strategies to overcome these hurdles could include
optimizing dosing regimens, employing combination therapies, or developing modified
IL-12 molecules that exhibit reduced toxicity, thereby maximizing the therapeutic potential
of IL-12 while minimizing its adverse effects.

This study evaluates the antitumor efficacy of mouse IL-12 (mIL12) in several im-
munosuppressive mouse tumor models, demonstrating that mIL12′s antitumor activity is
dose-dependent. Mechanistic analyses suggest that mIL12 remodels the tumor microenvi-
ronment into a pro-inflammatory state and upregulates the expression of PD-1 and CTLA-4.
Additionally, when combined with PD-1 and CTLA-4 inhibitors, mIL12 enhances the effect,
significantly increasing the population of tumor-infiltrating central memory T cells. These
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findings propose a promising new strategy for integrating IL-12 with immune checkpoint
inhibitors in cancer therapy.

2. Method
2.1. Cell Line and Cell Culture

MC38 cells were acquired from the China Infrastructure of Cell Line Resources. CT26
and B16-F10 cells were sourced from the American Type Culture Collection (ATCC). All
cell lines, including MC38, CT26, and B16-F10, were cultured in Dulbecco’s Modified
Eagle Medium (Thermo Fisher Scientific, Walthan, MA, USA) supplemented with 10% fetal
bovine serum (Thermo Fisher Scientific). EMT6 cells, also from ATCC, were maintained
in Waymouth’s MB 752/1 medium (Thermo Fisher Scientific) containing 10% fetal bovine
serum. Expi 293FTM cells were purchased from Thermo Fisher Scientific and cultured in
KOP 293 medium (Kairui Biotech, Zhuhai, China).

2.2. Cell Counting

The cells were resuspended to ensure even distribution, and 20 µL of the cell suspen-
sion was mixed with 20 µL of Trypan Blue (Merck Sigma-Aldrich, Darmstadt, Germany).
Subsequently, a 20 µL aliquot of this mixture was placed into a counting chamber. Cell
counting and viability assessment were performed using a Counterstar IC1000 cell counter
(Conterstar, Shanghai, China), which provided both cell counts and viability metrics.

2.3. Expression and Purification of mIL12

The gene encoding mouse IL-12 (mIL12) was cloned into the eukaryotic expression
vector PTT5 (Youbio, Changsha, China). This construct was transfected into Expi293FTM

cells using the KOP293 Transfection Kit (Kairui Biotech) following the manufacturer’s
protocol. After 7 days, the cell supernatant was harvested, and the protein was purified. The
mIL12 protein was purified via Ni-NTA chromatography (GE Healthcare, Chicago, IL, USA)
according to the manufacturer’s instructions. Elution was carried out using 250 nmol/L
imidazole, followed by dialysis of the eluted protein against PBS. The quantification of
mIL12 was performed using a Multiskan GO microplate spectrophotometer (Thermo Fisher
Scientific).

2.4. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

mIL12 (3 µg) was mixed with either reducing or non-reducing loading buffer to
achieve a final volume of 15 µL, supplemented with PBS. The samples were boiled for
10 min and then subjected to separation on precast polyacrylamide gels GenScript. Proteins
were stained using eStain®® L1 protein stain (GenScript, Piscataway, NJ, USA) for 10
min and visualized with a FUSION FX Spectra imaging system (VILBER BIO IMAGING,
Paris, France).

2.5. Measurement of IFNγ by In Vitro Stimulation

Spleens were harvested from mice, homogenized, and treated with RBC lysis buffer
(Solarbio, Peking, China) to obtain mouse splenocytes. A total of 5 × 105 cells were seeded
in 24-well plates and stimulated with Dynabeads™ Mouse T-Activator CD3/CD28 (Thermo
Fisher Scientific). Cells were cultured in complete RPMI 1640 media, supplemented with
either 1.5 µg/mL of mIL12 or an equivalent volume of PBS. After 48 h of incubation, levels
of IFNγ were quantified using a Mouse IFNγ Precoated ELISA Kit (Dakewe, Shenzhen,
China), according to the manufacturer’s instructions.

2.6. Flow Cytometric Analysis

Tumors were collected and subjected to mechanical and enzymatic dissociation. Tumors
were mechanically dissected into small fragments and incubated with 0.5 mg/mL DNase I
(Merck Sigma-Aldrich) and 0.5 mg/mL Collagenase Type IV (Thermo Fisher Scientific) in
RPMI-1640 medium (Thermo Fisher Scientific) supplemented with 2% FBS. The dissociation
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was conducted in a shaker at 37 ◦C, 180 rpm, for 60 min. The sample was then passed twice
through a 70 µm nylon cell strainer and washed with RPMI-1640 medium. After RBC lysis for
5 min at room temperature, the cells were washed with PBS and resuspended in FACS buffer
for flow cytometric analysis. For surface staining, cells were plated at 2 × 106 cells per 50 µL PBS
in 1.5 mL tubes and stained with specific antibodies in FACS buffer for 30 min on ice. Following
two washes in FACS buffer, cells were resuspended in 300 µL FACS buffer for flow cytometric
analysis with a BD LSRFortessa X-20.

2.7. Antibody

The agents used for flow cytometry are listed below: anti-mouse CD45 BV395 (#564279,
BD), anti-mouse CD3 PerCP-Cy5.5 (#100218, Biolegend), anti-mouse CD3 APC-Cy7 (#100222,
Biolegend), anti-mouse CD3 AF700 (#100215, Biolegend), anti-Mouse CD4 FITC (#100406,
Biolegend), anti-mouse CD8a BV605 (#100744, Biolegend), anti-Mouse PD-1 BV785 (#135225,
Biolegend), anti-mouse CD152 APC (#106309, Biolegend), anti-Mouse CD62L APC-Cy7
(#104428, Biolegend), anti-mouse CD44 PE-Cy7 (#103030, Biolegend), anti-Mouse CD11b
BV650 (#101239, Biolegend), anti-mouse CD11c BV421 (#117343, Biolegend), anti-Mouse
I-A/I-E BV785 (#107645, Biolegend), anti-mouse XCR1 PerCP-Cy5.5 (#148208, Biolegend),
anti-mouse CD103 PE (121406, Biolegend), Zombie Aqua™ Fixable Viability Kit (#423102,
Biolegend). The anti-mouse CTLA-4 (#BE0032, Bio X Cell) and anti-mouse PD-1 (BE0273,
Bio X Cell) all were purchased from Bioxcell, Inc (Bioxcell, West Lebanon, NH, USA).

2.8. Tumor Inoculation and Treatments

Murine syngeneic tumor models using MC38, CT26, and EMT6 cells involved sub-
cutaneous inoculation of 5 × 106 cells in 100 µL PBS into the right flank of C57BL/6 or
Balb/c mice. For the B16-F10 model, 1 × 106 cells in 100 µL PBS were used. Treatments
commenced when tumors reached a predetermined volume, with either PBS, mIL12, or
immune checkpoint inhibitors administered intraperitoneally. Tumor dimensions were
measured every three days using electronic calipers, and the volume was calculated using
the formula:

Volume = Length × Widthˆ2/2.

2.9. Animal

Balb/c and C57BL/6J mice were sourced from Shanghai Slack Laboratory Animal Co.
and maintained under specific pathogen-free conditions with controlled temperature and
humidity. Animal use was approved by the Institutional Animal Care and Use Committee
at Xiamen University (XMULAC20150016) 2015,02.

2.10. Statistical Analysis

Flow cytometry data were analyzed using FlowJo v10.10.0. All other statistical analyses
were conducted using GraphPad Prism v10.1. Details of the statistical tests and sample sizes
are provided in each figure legend. Differences were considered statistically significant
at p < 0.05. Significance in figures is indicated as * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001; ns indicates non-significant.

3. Results
3.1. Generation and Activity Assessment of mIL12 Cytokine

To evaluate the activity of mIL12, we initially engineered a recombinant gene en-
coding mIL12, consisting of two subunits, P40 and P35, linked by a flexible linker (G4S)3
and tagged with a His-tag at the C-terminus (Figure 1A). The recombinant mIL12 cy-
tokine was expressed in 293F cells and analyzed by SDS-PAGE, which confirmed that
the molecular weight of mIL12 was approximately 75 kDa, aligning with the theoretical
value (Figure 1B). To assess its functionality, mIL12 significantly enhanced the release of
mouse interferon-gamma (mIFN-γ) from mouse splenocytes in the presence of anti-mouse
CD3 and anti-mouse CD28 antibodies (Figure 1C). Furthermore, to investigate the in vivo
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effects of mIL12 on tumor progression, MC38-bearing C57BL/6J mice were treated with
PBS, an IL-12 inhibitor (anti-mouse IL-12), and mIL12. Results indicated that blocking
IL-12 accelerated tumor progression, whereas mIL12 treatment markedly inhibited tumor
growth (Figure 1D,E). These findings demonstrate the successful expression and functional
verification of recombinant mIL12 in contributing to tumor suppression.
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Figure 1. Expression and characterization of mIL12. (A) Genetic map illustrating the coding gene for
mIL12. (B) SDS-PAGE analysis of mIL12 under reducing (R) and non-reducing (NR) conditions, with
molecular weight (MW) markers shown. (C) mIFN-γ levels in the culture medium of splenocytes from
C57BL/6 mice, stimulated ex vivo with PBS, anti-mouse CD3+ anti-mouse CD28 (amCD3+amCD28),
or amCD3+amCD28+mIL12. mIFN-γ levels were quantified using an ELISA assay, and the data are
representative of three independent experiments. (D) Treatment regimen for MC38 tumor−bearing
C57BL/6J mice, which received PBS, mIL12 (1 mg/kg), or anti-mIL12 (10 mg/kg) therapy (n = 5
per group). (E) Growth curves of tumors and (F) body weight changes in C57BL/6J mice. Data are
presented as means ± SEM. Statistical analysis was conducted using one−way ANOVA for panel
(C) and two-way ANOVA for panel (E). Significance levels are indicated as * p < 0.05; *** p < 0.001;
**** p < 0.0001.

3.2. Potent Control of Tumor Growth by mIL12

The antitumor efficacy of mIL12 was assessed in xenograft tumor models using CT26,
MC38, B16-F10, and EMT6 cells, subcutaneously established in mice (Figure 2A,D,G,J).
Treatments with PBS and varying doses of mIL12 (0.01 mpk, 0.1 mpk, 1 mpk) commenced
when tumor volumes reached approximately 151 mm3. Treatment with 0.1 mpk and 1 mpk
doses resulted in complete tumor eradication in mice bearing CT26 tumors (Figure 2B). In
models with immune checkpoint resistance, mIL12 significantly curtailed growth in MC38
tumors at all tested doses (Figure 2E). Furthermore, in the immunologically cold melanoma
model (B16-F10), 0.1 mpk and 1 mpk of mIL12 demonstrated a strong antitumor effect
(Figure 2H). Similar significant antitumor responses were observed in EMT6 tumor-bearing
models following mIL12 treatment (Figure 2H,K). Crucially, no weight loss was observed
in mice during the treatment with mIL12 (Figure 2C,F,I,L), underscoring its therapeutic
potency across various tumor types.
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for tumor-bearing mice: CT26 (n = 8), MC38 (n = 8), B16-F10 (n = 5), and EMT6 (n = 7) (Panels
(A,D,G,J). Mice were treated intraperitoneally with PBS or mIL12 at doses of 0.01 mg/kg, 0.1 mg/kg,
or 1 mg/kg every three days. Tumor growth curves (Panels (B,E,H,K) and body weight changes
(Panels (C,F,I,L) of the mice are shown. Data are presented as means ± SEM. Statistical analyses for
tumor growth (Panels (B,E,H,K) were conducted using two-way ANOVA. Significance levels are
denoted as ns (no significant difference), ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

3.3. Reshaping of the Tumor Immune Microenvironment by mIL12 and Upregulation of Immune
Checkpoints

To elucidate the antitumor mechanism of mIL12, flow cytometry analysis was con-
ducted on tumor samples from MC38-bearing mice post-treatment (Figure 3A). There
was a notable increase in tumor-infiltrating CD3+ T cells, CD4+ T cells and CD8+ T
cells (Figure 3B–D and Supplementary Figure S1), indicating that mIL12 treatment sig-
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nificantly promotes T lymphocyte infiltration. Additionally, a marked presence of cDC1
and CD103+cDC1 cells was observed in the tumor microenvironment following mIL12
therapy, suggesting these dendritic cells enhance the T cell-mediated antitumor immune
response (Figure 3E,F and Supplementary Figure S1). Notably, the immunosuppressive
molecules CTLA−4 and PD-1 were found to be upregulated in tumor-infiltrating T cells
(Figure 3G,H and Supplementary Figure S1), suggesting that while mIL12 reshapes the tu-
mor immune environment and bolsters T cell responses, the upregulation of these molecules
may limit therapeutic efficacy. Thus, combining mIL12 with PD-1 or CTLA-4 inhibitors
could potentially enhance its antitumor effects.
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Figure 3. Reshaping of the tumor immune microenvironment and upregulation of immune check-
points by mIL12. (A) Schematic of the treatment strategy for the MC38 tumor model. Tumors from
mice treated with mIL12 were dissociated and analyzed by flow cytometry. (B–F) Proportions of
tumor-infiltrating T cells and dendritic cells (DCs) among live CD45+ cells. (G) Percentage of CTLA-
4+CD4+ T cells and (H) PD-1+CD8+ T cells within the live CD45+ cell population. Data are presented
as means ± SEM. Statistical analyses for panels (B–H) were performed using unpaired two-tailed
Student’s t-test. Significance levels are indicated as * p < 0.05, ** p < 0.01, and **** p < 0.0001.

3.4. Enhanced Antitumor Efficacy of mIL12 Combined with Immune Checkpoint Inhibitors

Immune checkpoint inhibitors are currently among the most effective strategies in tu-
mor immunotherapy. To further explore the therapeutic potential of mIL12 in combination
with these inhibitors, we employed the MC38 tumor-bearing model to assess the antitumor
efficacy of mIL12 combined with PD-1 inhibitors versus monotherapy (Figure 4A). Results
indicated that the antitumor effects of the combination treatment were superior to those
observed with either mIL12 or PD-1 monotherapy alone (Figure 4B,D). Additionally, subse-
quent experiments with CTLA-4 inhibitors showed an even more pronounced antitumor
effect in the combined treatment group (Figure 4E,F,H). Importantly, no significant body
weight loss was observed in mice during the treatments (Figure 4C,G), underscoring the
potential of combining mIL12 with immune checkpoint inhibitors to elicit a robust antitu-
mor response without adverse effects. To investigate whether the combination of mIL12
and ICIs induces central memory T cell production, we conducted a comparison with
monotherapy in an MC38 tumor model (Figure 4I). Significantly, our results demonstrated
a notable increase in central memory T cells when mIL12 was combined with amPD-1
(Figure 4J and Supplementary Figure S2). These findings suggest that the combination of
mIL12 and PD-1 inhibitors achieves a more favorable therapeutic effect than either drug
alone and is particularly beneficial for promoting the generation of memory T cells.
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inhibitors. (A) Treatment scheme comparing the therapeutic efficacy of mIL12 combined with anti-
mouse PD-1 (amPD-1) antibody versus monotherapy. Mice bearing MC38 tumors received treatments
with PBS, mIL12, amPD-1, or a combination of amPD-1 with mIL12. (B) Tumor growth curves and
(C) body weight changes for monotherapy and combination therapy groups. (D) Individual tumor
growth curves for each treatment group (n = 7 per group). (E) Treatment scheme comparing the
therapeutic efficacy of mIL12 combined with anti-mouse CTLA-4 (amCTLA-4) antibody versus
monotherapy. Mice bearing MC38 tumors received PBS, mIL12, amCTLA-4, or a combination of
amCTLA-4 and mIL12. (F) Tumor growth curves and (G) body weight changes for monotherapy and
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combination therapy groups. (H) Individual tumor growth curves for each treatment group (n = 6
per group). (I) Schematic of the treatment strategy for the MC38 tumor model. Tumors from mice
treated with PBS, mIL12, mIL12+amPD-1 and mIL12+amCTLA-4 were dissociated and analyzed by
flow cytometry. (J) The proportion of tumor-infiltrating central memory T cells. Data are presented
as means ± SEM. Statistical analyses for (B,F) were performed using two-way ANOVA. Statistical
analyses for (J) were performed using one-way ANOVA. Significance levels are indicated as * p < 0.05,
*** p < 0.001, **** p < 0.0001.

4. Discussion

In this study, we successfully expressed the mIL12 cytokine through eukaryotic re-
combination and confirmed its purity and molecular weight via SDS-PAGE. Our results
demonstrated that mIL12 induced elevated levels of mouse IFN-γ in vitro. Experiments
revealed that blocking IL-12 accelerated tumor growth in vivo, whereas treatment with
mIL12 significantly controlled tumor immune responses. This suggests that IL-12 plays a
critical role in the antitumor immune response, as evidenced by the activity of the mIL12
we produced. To further explore the antitumor efficacy of mIL12, we administered various
doses to assess its therapeutic potential against several refractory tumor models. The
antitumor effects of mIL12 appeared dose-dependent. Mechanistically, our study showed
that mIL12 significantly enhanced the infiltration of CD4+ T cells, CD8+ T cells, cDC1, and
CD103+cDC1 cells into the tumor microenvironment. Concurrently, an upregulation of
the immune checkpoints PD-1 and CTLA-4 was observed. Notably, combining mIL12
with inhibitors of PD-1 and CTLA-4 yielded a superior antitumor response compared to
monotherapy. Particularly, mIL12 combined with a PD-1 inhibitor markedly increased the
population of tumor-infiltrating central memory T cells (TCM).

Our in vivo results consistently demonstrated a significant antitumor effect with mIL12
treatment, while IL-12 blockade led to enhanced tumor progression compared to control (PBS).
Previous research indicates that the efficacy of PD-1 inhibitors is diminished following IL-12
blockade, highlighting the indispensable role of IL-12 in mediating tumor immunity [12]. The
interaction between T cells and dendritic cells (DCs) within the cancer-immune cycle is crucial
for a robust immune response. Enhanced infiltration of T and DC cells helps counteract tumor-
induced immunosuppression, with cDC1 cells being essential for activating CD8+ T cell-driven
antitumor responses [33–35]. Our flow cytometry analysis revealed a significant increase in
tumor-infiltrating T and DC cells, indicating that mIL12 monotherapy can shift the tumor’s
microenvironment from an immunosuppressive to a pro-inflammatory state. Furthermore,
the expression of PD-1 and CTLA-4 on T cells suggests that combining immune checkpoint
inhibitors (ICIs) could amplify the antitumor effects. This finding aligns with studies showing
enhanced antitumor activity when IL-12 is combined with dual PD-1 and CTLA-4 blockade [36].
However, clinical studies have reported severe adverse effects with such combinations, leading
us to explore mIL12 in combination with PD-1 or CTLA-4 inhibitors separately [37,38]. Both
strategies showed more effective tumor control compared to monotherapy. Intriguingly, the
combination of PD-1 blockade with mIL12 significantly increased central memory CD8+ T cells,
known for their potent and durable antitumor responses [39]. The presence of memory T cells
has been correlated with a more favorable prognosis in cancer patients. Long-lived memory
CD8+ T cells play a crucial role in tumor immunity as they possess the ability to exert a durable
antitumor response [11]. In this study, our results first provided evidence that a combination of
IL-12 and PD-1 blockades can augment tumor-infiltrating memory CD8+ T cells.

While this study highlights the potential of mIL12 to enhance immune checkpoint
blockade therapy, there are limitations. The potent antitumor activity of IL-12 could induce
side effects, and further toxicological data are needed. Additionally, the substantial increase
in memory CD8+ T cells with mIL12 and PD-1 inhibitor combination warrants further
investigation into the mechanisms of memory T cell formation.

Given the potential toxicity associated with IL-12 in clinical settings, it is crucial to
explore flexible utilization strategies. IL-12 can be employed as a standalone therapeutic or
integrated into combination therapies with PD-1 inhibitors, allowing for precise regulation
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and dose adjustments. To minimize systemic toxicity, various administration methods, such
as in situ delivery and subcutaneous injections, can be considered. Moreover, innovative
approaches like the engineering of immune cytokine fusion proteins could be pursued.
These proteins would combine IL-12 with antibodies that bind high-affinity PD-1+ cells,
potentially achieving a synergistic antitumor effect by simultaneously blocking the PD-1
pathway and activating IL-12 signaling.

In conclusion, recombinant mIL12 significantly suppressed tumor growth in multiple
refractory tumor models. The combination of mIL12 with PD-1 or CTLA-4 blockade showed
superior antitumor efficacy compared to monotherapy, with the combination of mIL12 and
PD-1 blockade notably enhancing the number of memory CD8+ T cells. These findings offer
promising directions for optimizing immune checkpoint blockade therapy and developing
strategies for curative cancer immunotherapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antib13040094/s1, Figure S1: Analysis of T Cell and Dendritic
Cell Populations in the MC38 Tumor Model; Figure S2: Analysis of Central Memory T Cells (Tcm) in
the MC38 Tumor Model.
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