Integrated Clarification and Purification of Monoclonal Antibodies by Membrane Based Separation of Aqueous Two-Phase Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation
2.2. Aqueous Two-Phase Systems
2.3. Membrane Modification
2.4. Contact Angle Measurement
2.5. Membrane Based Phase Separation
2.6. Analytical Procedure
2.7. Design of Experiments
3. Results and Discussion
3.1. Surfactant and Membrane Screening for Phase Separation
3.2. Characterization of ATPS Phase Separation
3.2.1. Contact Angle Measurements
3.2.2. Aqueous Phase Separation Experiments
3.2.3. Feasibility Study
3.3. ATPS Optimization by DoE
3.4. Application Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andreakos, E.; Taylor, P.C.; Feldmann, M. Monoclonal antibodies in immune and inflammatory diseases. Curr. Opin. Biotechnol. 2002, 13, 615–620. [Google Scholar] [CrossRef]
- Reichert, J.M.; Rosensweig, C.J.; Faden, L.B.; Dewitz, M.C. Monoclonal antibody successes in the clinic. Nat. Biotechnol. 2005, 23, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Ecker, D.M.; Jones, S.D.; Levine, H.L. The therapeutic monoclonal antibody market. MAbs 2015, 7, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottschalk, U. Bioseparation in antibody manufacturing: The good, the bad and the ugly. Biotechnol. Prog. 2008, 24, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Chon, J.H.; Zarbis-Papastoitsis, G. Advances in the production and downstream processing of antibodies. New Biotechnol. 2011, 28, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.; Meneses-Acosta, A. Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl. Microbiol. Biotechnol. 2012, 96, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Arunkumar, A.; Chollangi, S.; Tan, Z.G.; Borys, M.; Li, Z.J. Clarification technologies for monoclonal antibody manufacturing processes: Current state and future perspectives. Biotechnol. Bioeng. 2016, 113, 698–716. [Google Scholar] [CrossRef]
- Shukla, A.A.; Hubbard, B.; Tressel, T.; Guhan, S.; Low, D. Downstream processing of monoclonal antibodies—Application of platform approaches. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 848, 28–39. [Google Scholar] [CrossRef]
- Maybury, J.P.; Hoare, M.; Dunnill, P. The use of laboratory centrifugation studies to predict performance of industrial machines: Studies of shear-insensitive and shear-sensitive materials. Biotechnol. Bioeng. 2000, 67, 265–273. [Google Scholar] [CrossRef]
- Burgstaller, D.; Krepper, W.; Haas, J.; Maszelin, M.; Mohoric, J.; Pajnic, K.; Jungbauer, A.; Satzer, P. Continuous cell flocculation for recombinant antibody harvesting. J. Chem. Technol. Biotechnol. 2018, 93, 1881–1890. [Google Scholar] [CrossRef]
- Belter, P.A.; Cussler, E.L.; Hu, W.-S. Bioseparations. Downstream Processing for Biotechnology; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Liu, H.F.; Ma, J.; Winter, C.; Bayer, R. Recovery and purification process development for monoclonal antibody production. MAbs 2010, 2, 480–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Meer, T.; Minow, B.; Lagrange, B.; Krumbein, F.; Rolin, F. Diatomaceous Earth Filtration: Innovative Single-Use Concepts for Clarification of High-Density Mammalian Cell Cultures. BioProcess Int. 2014, 12. Available online: https://bioprocessintl.com/downstream-processing/filtration/diatomaceous-earth-filtration-innovative-single-use-concepts-clarification-high-density-mammalian-cell-cultures/ (accessed on 21 June 2019).
- Shirgaonkar, I.Z.; Lanthier, S.; Kamen, A. Acoustic cell filter: A proven cell retention technology for perfusion of animal cell cultures. Biotechnol. Adv. 2004, 22, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, P. Technology trends in antibody purification. J. Chromatogr. A 2012, 1221, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.M.; Rosa, P.A.J.; Ferreira, I.F.; Aires-Barros, M.R. Integrated process for the purification of antibodies combining aqueous two-phase extraction, hydrophobic interaction chromatography and size-exclusion chromatography. J. Chromatogr. A 2008, 1213, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.M.; Rosa, P.A.J.; Ferreira, I.F.; Aires-Barros, M.R. Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing. Trends Biotechnol. 2009, 27, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Gronemeyer, P.; Ditz, R.; Strube, J. DoE based integration approach of upstream and downstream processing regarding HCP and ATPE as harvest operation. Biochem. Eng. J. 2016, 113, 158–166. [Google Scholar] [CrossRef]
- Rosa, P.A.J.; Azevedo, A.M.; Sommerfeld, S.; Bäcker, W.; Aires-Barros, M.R. Aqueous two-phase extraction as a platform in the biomanufacturing industry: Economical and environmental sustainability. Biotechnol. Adv. 2011, 29, 559–567. [Google Scholar] [CrossRef]
- Hatti-Kaul, R. Aqueous two-phase system. Mol. Biotechnol. 2001, 19, 269–277. [Google Scholar] [CrossRef]
- Azevedo, A.M.; Rosa, P.A.J.; Ferreira, I.F.; Aires-Barros, M.R. Optimisation of aqueous two-phase extraction of human antibodies. J. Biotechnol. 2007, 132, 209–217. [Google Scholar] [CrossRef]
- Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Sattar, A.; Shabbir, M.A.B.; et al. Aqueous two-phase system (ATPS): An overview and advances in its applications. Biol. Proced. Online 2016, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Richter, M.; Rudolph, F.; Strube, J. Integration of Aqueous Two-Phase Extraction as Cell Harvest and Capture Operation in the Manufacturing Process of Monoclonal Antibodies. Antibodies 2017, 6, 21. [Google Scholar] [CrossRef]
- Glyk, A.; Solle, D.; Scheper, T.; Beutel, S. Optimization of PEG–salt aqueous two-phase systems by design of experiments. Chemom. Intell. Lab. Syst. 2015, 149, 12–21. [Google Scholar] [CrossRef]
- Rosa, P.A.J.; Azevedo, A.M.; Aires-Barros, M.R. Application of central composite design to the optimisation of aqueous two-phase extraction of human antibodies. J. Chromatogr. A 2007, 1141, 50–60. [Google Scholar] [CrossRef]
- Igarashi, L.; Kieckbusch, T.G.; Franco, T.T. Mass transfer in aqueous two-phases system packed column. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 807, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Rosa, P.A.J.; Azevedo, A.M.; Sommerfeld, S.; Bäcker, W.; Aires-Barros, M.R. Continuous aqueous two-phase extraction of human antibodies using a packed column. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 880, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Dieterle, M.; Rudolph, F. Protein Purification by Means of Aqueous Two-Phase Centrifugal Extraction. WO2014135420A1, 12 September 2014. [Google Scholar]
- Kralj, J.G.; Sahoo, H.R.; Jensen, K.F. Integrated continuous microfluidic liquid-liquid extraction. Lab Chip 2007, 7, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Noël, T.; Kuhn, S.; Musacchio, A.J.; Jensen, K.F.; Buchwald, S.L. Suzuki-Miyaura cross-coupling reactions in flow: Multistep synthesis enabled by a microfluidic extraction. Angew. Chem. Int. Ed. Engl. 2011, 50, 5943–5946. [Google Scholar] [CrossRef] [PubMed]
- Wellsandt, T.; Stanisch, B.; Strube, J. Development of Micro Separation Technology Modules. Part 1: Liquid-Liquid Extraction. Chem. Ing. Tech. 2015, 87, 1198–1206. [Google Scholar] [CrossRef]
- Cheryan, M. Handbuch Ultrafiltration; Behr: Hamburg, Germany, 1990. [Google Scholar]
- Riedl, W.; Raiser, T. Membrane-supported extraction of biomolecules with aqueous two-phase systems. Desalination 2008, 224, 160–167. [Google Scholar] [CrossRef]
- Zobel-Roos, S.; Schmidt, A.; Mestmäcker, F.; Mouellef, M.; Huter, M.; Uhlenbrock, L.; Kornecki, M.; Lohmann, L.; Ditz, R.; Strube, J. Accelerating Biologics Manufacturing by Modeling or: Is Approval under the QbD and PAT Approaches Demanded by Authorities Acceptable Without a Digital-Twin? Processes 2019, 7, 94. [Google Scholar] [CrossRef]
- Oelmeier, S.A.; Ladd-Effio, C.; Hubbuch, J. Alternative separation steps for monoclonal antibody purification: Combination of centrifugal partitioning chromatography and precipitation. J. Chromatogr. A 2013, 1319, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Oelmeier, S.A.; Ladd Effio, C.; Hubbuch, J. High throughput screening based selection of phases for aqueous two-phase system-centrifugal partitioning chromatography of monoclonal antibodies. J. Chromatogr. A 2012, 1252, 104–114. [Google Scholar] [CrossRef] [PubMed]
- De Gennes, P.-G.; Brochard-Wyart, F.; Quéré, D.; Reisinger, A. Capillarity and Wetting Phenomena. Drops, Bubbles, Pearls, Waves; Springer: New York, NY, USA, 2004. [Google Scholar]
- Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H. Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 2018, 13, 1521–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, L. Design of Experiments. Principles and Applications; Umetrics: Umeå, Sweden, 2008. [Google Scholar]
- Li, Y.; Hewitt, D.; Lentz, Y.K.; Ji, J.A.; Zhang, T.Y.; Zhang, K. Characterization and stability study of polysorbate 20 in therapeutic monoclonal antibody formulation by multidimensional ultrahigh-performance liquid chromatography-charged aerosol detection-mass spectrometry. Anal. Chem. 2014, 86, 5150–5157. [Google Scholar] [CrossRef] [PubMed]
- Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar] [CrossRef]
- Marquis de Laplace, P.S. Supplément au dixième livre du Traité de Mécanique Céleste. Traité Mécanique Céleste 1805, 4, 1–79. [Google Scholar]
- Franken, A.; Nolten, J.; Mulder, M.; Bargeman, D.; Smolders, C.A. Wetting criteria for the applicability of membrane distillation. J. Membr. Sci. 1987, 33, 315–328. [Google Scholar] [CrossRef] [Green Version]
- Atha, D.H.; Ingham, K.C. Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. J. Biol. Chem. 1981, 256, 12108–12117. [Google Scholar]
- Hassan, I.B.; Ennouri, M.; Lafforgue, C.; Schmitz, P.; Ayadi, A. Experimental Study of Membrane Fouling during Crossflow Microfiltration of Yeast and Bacteria Suspensions: Towards an Analysis at the Microscopic Level. Membranes (Basel) 2013, 3, 44–68. [Google Scholar] [CrossRef] [Green Version]
ATPS | Feed (w%) | Polymer (w%) | Salt (w%) | pH (-) | Displacement Agent (w%) | Phase Ratio (v/v) | ||
---|---|---|---|---|---|---|---|---|
PEG 400 | PEG1450 | Phosphate | Citrate | NaCl | ||||
1 [23] | 44.5 | 15.5 | - | 16 | - | 6 | - | 1.43 |
2 [35] | 26.4 | 19.6 | - | - | 18.9 | 6 | - | 1.02 |
3 [36] | 40.5 | - | 6 | 15 | - | 6 | 10 | 0.26 |
4 [18] | 27.2 | 6.8 | - | 26.12 | - | 7.3 | 0.7 | 0.24 |
Opt | 36 | 19 | - | 16.4 | - | 8 | 4 | 1.13 |
ATPS | IgG Yield (%) | DNA Removal (%) | HCP Removal (%) |
---|---|---|---|
1 | 93 ± 1 | 17 ± 3 | −4 ± 1 |
2 | 87 ± 3 | 84 ± 1 | 21 ± 1 |
3 | 32 ± 4 | 97 ± 1 | 23 ± 2 |
4 | 33 ± 3 | 66 ± 1 | −64 ± 4 |
Factor | Value Range |
---|---|
Feed (w%) | 20–40 |
PEG 400 (w%) | 8–20 |
Phosphate salt (w%) | 16–24 |
pH-value | 6–8 |
NaCl (w%) | 0–10 |
IgG Yield (%) | DNA Removal (%) | HCP Removal (%) | |
---|---|---|---|
Model prediction | 100 | 86 | 15 |
Experiment | 92 ± 3 | 85 ± 2 | 52 ± 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruse, T.; Schmidt, A.; Kampmann, M.; Strube, J. Integrated Clarification and Purification of Monoclonal Antibodies by Membrane Based Separation of Aqueous Two-Phase Systems. Antibodies 2019, 8, 40. https://doi.org/10.3390/antib8030040
Kruse T, Schmidt A, Kampmann M, Strube J. Integrated Clarification and Purification of Monoclonal Antibodies by Membrane Based Separation of Aqueous Two-Phase Systems. Antibodies. 2019; 8(3):40. https://doi.org/10.3390/antib8030040
Chicago/Turabian StyleKruse, Thomas, Axel Schmidt, Markus Kampmann, and Jochen Strube. 2019. "Integrated Clarification and Purification of Monoclonal Antibodies by Membrane Based Separation of Aqueous Two-Phase Systems" Antibodies 8, no. 3: 40. https://doi.org/10.3390/antib8030040
APA StyleKruse, T., Schmidt, A., Kampmann, M., & Strube, J. (2019). Integrated Clarification and Purification of Monoclonal Antibodies by Membrane Based Separation of Aqueous Two-Phase Systems. Antibodies, 8(3), 40. https://doi.org/10.3390/antib8030040