Low Complexity and High Accuracy Estimation of Frequency Offsets for OFDM-Based Cable Transmission Systems
Abstract
:1. Introduction
2. Signal Model
3. Conventional Frequency-Offset Estimation Method
3.1. Conventional Scheme A
3.2. Conventional Scheme B
3.3. Conventional Scheme C
4. Proposed Frequency-Offset Estimation Method
4.1. Algorithm
4.2. Pilot Subset Selection
4.3. MSE Analysis
4.4. Computational Complexity
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Computational Complexity
Appendix A.1. Conventional Scheme A
Appendix A.2. Conventional Scheme B
Appendix A.3. Conventional Scheme C
Appendix A.4. Proposed Scheme
References
- ETSI EN 302 755 V.1.4.1. Digital Video Broadcasting (DVB); Frame Structure Channel Coding and Modulation for a Second Generation Digital Terrestrial Television Broadcasting System (DVB-T2); ETSI: Sophia Antipolis, France, 2015. [Google Scholar]
- 3GPP TS36.211. Evolved Universal Terrestrial Radio Access (EUTRA); Physical Channels and Modulation; Release 12; 3GPP: Phoenix, AZ, USA, 2015. [Google Scholar]
- IEEE Std 802.11a. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification: High-Speed Physical Layer in the 5GHz Band; IEEE: Piscataway, NJ, USA, 1999. [Google Scholar]
- Cvijetic, N. OFDM for next-generation optical access networks. J. Lightw. Technol. 2012, 30, 384–398. [Google Scholar] [CrossRef]
- Shoresh, T.; Katanov, N.; Malka, D. 1 × 4 MMI visible light wavelength demultiplexer based on GaN slot waveguide structures. J. Photon. Nanostruct. Fundam. Appl. 2018, 30, 45–49. [Google Scholar] [CrossRef]
- Malka, D.; Katz, G. An eight-channel C-band demuxbased on multicore photonic crystal fiber. Nanomaterials 2018, 8, 845. [Google Scholar] [CrossRef] [PubMed]
- Dadabayev, R.; Shabairoub, N.; Zalevsky, Z.; Malka, D. A visible light RGB wavelength demultiplexer based on silicon-nitride multicore PCF. Opt. Laser Technol. 2019, 111, 411–416. [Google Scholar] [CrossRef]
- HomePlug Powerline Alliance, Inc. Homeplug Green PHY Specification Release Version 1.1.1; HomePlug Alliance: Portland, OR, USA, 2013. [Google Scholar]
- IEEE 1901-2010. IEEE Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications; IEEE: New York, NY, USA, 2010. [Google Scholar]
- ETSI EN 302 769 V1.3.1. Digital Video Broadcasting (DVB). Frame Structure Channel Coding and Modulation for a Second Generation Digital Transmission System for Cable Systems (DVB-C2); ETSI: Sophia Antipolis, France, 2015. [Google Scholar]
- DVB Document A147, Digital Video Broadcasting (DVB). Implementation Guidelines for a Second Generation Digital Cable Transmission System (DVB-C2); ETSI: Sophia Antipolis, France, 2015. [Google Scholar]
- Jaeger, D.; Schaaf, C. DVB-C2: High Performance Data Transmission on Cable:-Technology, Implementation, Networks; Shaker Verlag GmbH: Herzogenrath/Maastricht, Germany, 2010. [Google Scholar]
- El-Hajjar, M.; Hanzo, L. A survey of digital television broadcast transmission techniques. IEEE Commun. Surv. Tutor. 2013, 15, 1924–1941. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, D.J.; Hur, N.H.; Kim, W.W. Performance analysis of a proposed pre-FEC structure for a DVB-C2 receiver. IEEE Trans. Broadcast. 2013, 59, 638–647. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, D.J.; Hur, N.H.; Kim, W.W. The performance of frequency offset estimation in DVB-C2 receiver. In Proceedings of the 2013 International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, 27–30 January 2013; pp. 1106–1110. [Google Scholar]
- Speth, M.; Fechtel, S.A.; Fock, G.; Meyr, H. Optimum receiver design for wireless broad-band systems using OFDM-Part I. IEEE Trans. Commun. 1999, 47, 1668–1677. [Google Scholar] [CrossRef]
- Oberli, C. ML-based tracking algorithms for MIMO-OFDM. IEEE Trans. Wirel. Commun. 2007, 6, 2630–2639. [Google Scholar] [CrossRef]
- Yuan, J.; Torlak, M. Joint CFO and SFO estimator for OFDM receiver using common reference frequency. IEEE Trans. Broadcast. 2016, 62, 141–149. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, J.H. Joint maximum likelihood estimation of carrier and sampling frequency offsets for OFDM systems. IEEE Trans. Broadcast. 2013, 57, 277–283. [Google Scholar]
- Zhou, M.; Feng, Z.; Liu, Y.; Huang, X. An efficient algorithm and hardware architecture for maximum-likelihood based carrier frequency offset estimation in MIMO systems. IEEE Access 2018, 6, 50105–50116. [Google Scholar] [CrossRef]
- Speth, M.; Fechtel, S.A.; Fock, G.; Meyr, H. Optimum receiver design for OFDM-based broadband transmission-Part II: A case study. IEEE Trans. Commun. 2001, 49, 571–578. [Google Scholar] [CrossRef]
- Shi, K.; Serpedin, E.; Ciblat, P. Decision-directed fine synchronization in OFDM systems. IEEE Trans. Commun. 2005, 53, 408–412. [Google Scholar] [CrossRef]
- Liu, S.; Chong, J.A. Study of joint tracking algorithms of carrier frequency offset and sampling clock offset for OFDM-based WLANs. In Proceedings of the 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, Chengdu, China, 29 June–1 July 2002; pp. 109–113. [Google Scholar]
- Kwon, K.W.; Cho, Y.S. A simple joint estimation method of residual frequency offset and sampling frequency offset for DVB systems. IEICE Trans. Commun. 2008, E91-B, 1673–1676. [Google Scholar] [CrossRef]
- Jung, Y.A.; Kim, J.Y.; You, Y.H. Complexity efficient least squares estimation of frequency offsets for DVB-C2 OFDM systems. IEEE Access 2018, 6, 35165–35170. [Google Scholar] [CrossRef]
- Tsai, P.Y.; Kang, H.Y.; Chiueh, T.D. Joint weighted least-squares estimation of carrier-frequency offset and timing offset for OFDM systems over multipath fading channels. IEEE Trans. Veh. Technol. 2005, 1, 211–223. [Google Scholar] [CrossRef]
- Chiang, P.; Lin, D.; Li, H.; Stuber, G.L. Joint estimation of carrier-frequency and sampling-frequency offsets for SC-FDE systems on multipath fading channels. IEEE Trans. Commun. 2008, 56, 1231–1235. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, S. A blind fine synchronization scheme for SC-FDE systems. IEEE Trans. Commun. 2014, 62, 293–301. [Google Scholar] [CrossRef]
- Morelli, M.; Moretti, M. Fine carrier and sampling frequency synchronization in OFDM systems. IEEE Trans. Wirel. Commun. 2010, 4, 1514–1524. [Google Scholar] [CrossRef]
- Murin, Y.; Dabora, R. Low complexity estimation of carrier and sampling frequency offsets in burst-mode OFDM systems. Wirel. Commun. Mob. Comput. 2016, 16, 1018–1034. [Google Scholar] [CrossRef]
- Cheng, Q. Joint estimation of carrier and sampling frequency offsets using OFDM WLAN preamble. Wirel. Person. Commun. 2018, 98, 2121–2161. [Google Scholar] [CrossRef]
- Fowler, M. Phase-based frequency estimation: A review. Digit. Signal Process. 2002, 4, 590–615. [Google Scholar] [CrossRef]
- Golub, G.H.; Vanloan, C.F. Matrix Computations; The Johns Hopkins University Press: Baltimore, MA, USA, 1996. [Google Scholar]
Parameters | Values |
---|---|
Bandwidth (Hz) | 8 M |
FFT size N | 4096 |
Sampling time (s) | 7/64 |
Subcarrier spacing (Hz) | 2232 |
Number of used subcarriers | 3408 |
Number of GI samples | 64 |
Number of CPs | 30 |
Subcarrier modulation | 16 QAM |
i | Echo Channel 1 | Echo Channel 2 | |||||
---|---|---|---|---|---|---|---|
Power (dB) | Delay (ns) | Phase (rad) | Power (dB) | Delay (ns) | Phase (rad) | ||
1 | −11 | 38 | 0.95 | −11 | 162 | 0.95 | |
2 | −14 | 181 | 1.67 | −14 | 419 | 1.67 | |
3 | −17 | 427 | 0.26 | −17 | 773 | 0.26 | |
4 | −23 | 809 | 1.20 | −23 | 1191 | 1.20 | |
5 | −32 | 1633 | 1.12 | −32 | 2067 | 1.12 | |
6 | −40 | 3708 | 0.81 | −40 | 13,792 | 0.81 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, Y.-A.; You, Y.-H. Low Complexity and High Accuracy Estimation of Frequency Offsets for OFDM-Based Cable Transmission Systems. Symmetry 2018, 10, 628. https://doi.org/10.3390/sym10110628
Jung Y-A, You Y-H. Low Complexity and High Accuracy Estimation of Frequency Offsets for OFDM-Based Cable Transmission Systems. Symmetry. 2018; 10(11):628. https://doi.org/10.3390/sym10110628
Chicago/Turabian StyleJung, Yong-An, and Young-Hwan You. 2018. "Low Complexity and High Accuracy Estimation of Frequency Offsets for OFDM-Based Cable Transmission Systems" Symmetry 10, no. 11: 628. https://doi.org/10.3390/sym10110628
APA StyleJung, Y. -A., & You, Y. -H. (2018). Low Complexity and High Accuracy Estimation of Frequency Offsets for OFDM-Based Cable Transmission Systems. Symmetry, 10(11), 628. https://doi.org/10.3390/sym10110628