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Abstract: Algorithms to construct the optimal systems of dimension of at most three of Lie algebras
are given. These algorithms are applied to determine the Lie algebra structure and optimal systems
of the symmetries of the wave equation on static spherically symmetric spacetimes admitting G7 as
an isometry algebra. Joint invariants and invariant solutions corresponding to three-dimensional
optimal systems are also determined.
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1. Introduction

It was shown in [1–3] that spherically symmetric spacetimes belong to one of the following four
classes according to their isometries and metrics:

• G10 corresponding to the static spacetimes Minkowski, de Sitter and anti de Sitter.
• G7 corresponding to the static spacetimes Einstein and the anti Einstein universe, and one

non-static spacetime.
• G6 corresponding to the static spacetimes Bertotti–Robinson and two other metrics of Petrov type

D, and six non-static spacetimes.
• G4 is a class of metrics involving one or two arbitrary functions of one variable.

Azad et al. [4] applied Lie group analysis to study the wave equation on the classes of static
spherically symmetric spacetimes admitting the isometry groups G10 or G7 or G6. The Iwasawa
decomposition for the symmetry algebras was obtained to partially classify non-conjugate solvable
algebras. The optimal system of subalgebras was not given in this previous study.

The G7 spacetimes admit either so(4)⊕R or so(1, 3)⊕R as isometry algebras as shown in [3].
In this paper, we continue the investigation started in [4] by finding the optimal system of subalgebras
of dimension of at most three and the corresponding invariant solutions for spacetimes admitting G7

as isometry algebras. We expect these solutions to be of interest to mathematical physicists.
As regards optimal systems, we can always construct a family of group invariant solutions

obtained by using a subgroup of a symmetry group admitted by a given differential equation,
as explained in [5]. Since there are infinitely many subgroups of a symmetry group admitted by a given
differential equation, listing of all the group invariant solutions is impossible. However, obtaining
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optimal systems-meaning conjugacy classes- of s-dimensional subgroups of the symmetry group and
applying the optimal systems leads to an effective and systematic mechanism of classifying the group
invariant solutions. This leads to non-similar invariant solutions under symmetry transformations.

Classifying the group invariant solutions by utilizing optimal systems is a significant application
of Lie group and Lie symmetry methods to differential equations. The method was first introduced by
Ovsiannikov [6]. He applied this method in classifying the invariant solutions of the one-dimensional
gasdynamic equation [7]. Ibragimov extended this work to the two-dimensional adiabatic gas motions
in his master thesis [8] by applying the expansion method for solvable Lie algebra. The main idea
behind the method is discussed in detail in Ibragimov [5,9], Olver [10] and Hydon [11].

The symmetry Lie algebra of the equations under study is non-solvable, but finding the optimal
systems for non-solvable Lie algebras is more challenging. In this paper, improved algorithms are
introduced and applied to construct the optimal systems of dimension of at most three of Lie algebras.
The reason is that a PDE with four independent variables can be reduced to an ordinary differential
equation (ODE) using three-dimensional subalgebras satisfying the transversality condition with rank
three [10]. This provides the non-trivial invariant solutions under a maximum number of symmetries.

The paper is organized as follows: in Section 2, algorithms to construct the optimal systems
of dimension of at most three of Lie algebras are introduced. In Section 3, Lie point symmetry
transformations of the wave equation on the metrics considered in this paper are found. In Section 4,
the algorithms are applied to determine the Lie algebra structure and optimal systems of the
symmetries. In Section 5, joint invariants and invariant solutions corresponding to three-dimensional
optimal systems are determined.

2. Algorithms to Construct the Optimal Systems of Dimension of at Most Three of Non-Solvable
Lie Algebras

In this paper, we are interested only in finding an optimal system of subalgebras of dimension
of at most three as explained in the introduction. This is achieved by using the algorithms explained
below. These algorithms are based on a combination of the expansion method and algorithms for
determining maximal solvable subalgebras of semi-simple Lie algebras.

If X is a solvable, then either X is abelian or it can be obtained from its commutator X′ by a
sequence of one-dimensional ideals . Thus, in any case, by using normalizers or centralizers, one can
reach X from lower dimensional subalgebras. In more detail, the expansion method is revised and
improved to a systematic method by using the normalizers and their associated quotient algebras
as follows:

Let Θr be the optimal systems of r-dimensional solvable subalgebras of the solvable algebra L.
For every X ∈ Θt−1, find the normalizer N (X). In case the quotient algebra N (X)/X is non-zero,
we find a one-dimensional optimal system in N (X)/X for every X ∈ Θt−1 by considering the
invariants of the adjoint representation of N (X)/X.

Among the constructed optimal systems of N (X)/X for every X ∈ Θt−1, we may still have
repetitions in their preimages in L. Removing the repetitions provides an optimal system Θt.
Enumeration of all non-conjugate solvable subalgebras of L can finally be done through consecutive
choice of the values of t from 1 till dim(L).

The Expansion method can be used to find optimal systems of solvable subalgebras in solvable
or non-solvable Lie algebras. However, dealing with the general adjoint action of the group once the
Lie algebra is non-solvable is very difficult. Therefore, in order to find the optimal systems of solvable
subalgebras in a non-solvable Lie algebra, we proceed as follows:

For a general Lie algebra with Levi decomposition L = S ⊕s ℛ(L), where S is a semisimple
subalgebra of L and ℛ(L) is the radical of L, every maximal solvable subalgebra is of the form
M⊕s ℛ(L), whereM is maximal solvable in S . The maximal solvable subalgebras can be determined
using the algorithms given in [12] or more efficiently using the method detailed in Section 2.1. For a
semisimple algebra S , there is a subalgebra N in which all elements are ad-nilpotent and which
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contains—up to conjugacy—all the commutators of solvable subalgebras of S . All the maximal
solvable subalgebras that are not compact tori can be constructed from the normalizers of conjugacy
classes in N—as detailed in Section 2.1. Then, the task of finding the optimal systems of solvable
subalgebras of the Lie algebra L is reduced to finding the optimal systems of solvable subalgebras in
each of these maximal solvable subalgebras using the expansion method. Finally, the repetitions in the
obtained rough classification of subalgebras are removed using the adjoint representation of L.

As a special case, if the radical is the center, then the calculations are greatly simplified. The reason
is that it is enough to find the optimal systems of solvable subalgebras in each conjugacy class of
maximal solvable subalgebras in the semisimple part of L. Then, the repetitions in the obtained rough
classification of subalgebras are removed using the adjoint representation of the semisimple part of L.
Finally, adjoining the subalgebras of the radical gives the optimal systems of solvable subalgebras in L.

In order to find the general adjoint action of the semisimple part of L, we need to make a suitable
change of basis depending on the root space decomposition or the Iwasawa decomposition of the
semisimple part ℒ based on the signature of the Killing form.

2.1. Algorithm for Finding the Conjugacy Classes of Maximal Solvable Subalgebras

For the convenience of the reader who is not a specialist in Lie theory, we first recall how to
construct Cartan algebras and roots algorithmically from a knowledge of the commutator table of a
given Lie algebra.

The structure of a semisimple Lie algebra is determined by its roots. For more details, the reader
is referred to [13]; see also [14–16].

Definition 1. A Lie subalgebra H of a Lie algebra L is said to be a Cartan subalgebra if H is abelian and
every element h ∈ H is semisimple: by a semisimple element, we mean an element that is diagonalizable in the
adjoint representation. Moreover, H is maximal with these properties.

Definition 2. Let C be a Cartan subalgebra of a semisimple Lie algebraL. A non-zero vector v ∈ LC := L+ iL
such that [h, v] = λ(h)v for all h ∈ C is called a root vector and the corresponding linear function λ is called
a root of the Cartan algebra C.

In general, the roots will be complex-valued. In the following argument, we will use the notion of
positive roots, so one needs to define what it means for a complex valued root to be positive.

Definition 3. A complex number z = a + ib, a, b ∈ R is positive if either its real part a is positive or a = 0,
but its imaginary part b is positive.

Fix a basis h1, . . . , hr of a Cartan algebra C. A non-zero root λ is positive if the first non-zero
number λ(hi) is a complex positive number. Otherwise, it is called a negative root. Positive roots
which are not a sum of two positive roots are called simple roots.

The well known software Maple is able to find the root space decompositions of Lie algebras of
fairly high dimensions by using the command “RootSpaceDecomposition(C)”, where C is a list of
vectors in a Lie algebra, defining a Cartan subalgebra.

The Cartan algebra is picked up using an algorithm due to de Graaf [15]. However, one gets
better coordinates for computation if one chooses a Cartan algebra by enlarging a given diagonalizable
subalgebra to a Cartan subalgebra following the algorithms given in [13]. We need in this paper only a
special case of these algorithms to compute the Cartan subalgebras. We first compute the Killing form
of the Lie algebra. If it is negative definite, pick any non-zero element X and compute its centralizer.
By a negative definite matrix, we mean a matrix which is equal to its conjugate transpose and its
eigenvalues are strictly negative. If the centralizer of X, C(X), is self centralizing, i.e., C(C(X)) = C(X),
then C(X) is the Cartan subalgebra. Otherwise, we can find a linearly independent element Y in
the centralizer of X. Continue this procedure with the abelian algebra 〈X, Y〉 until a self centralizing
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subalgebra is reached. The obtained algebra is the Cartan algebra because it is abelian and every
element is diagonalizable.

On the other hand, if the Killing form is not negative definite and a maximal compact subalgebra
is known, say K, then computing a Cartan subalgebra C of K using the procedure explained in the
previous paragraph for compact algebras and the centralizer of C in the full Lie algebra gives us the
required Cartan algebra.

The main use of Cartan algebras is to find all the maximal solvable subalgebras [17]. In case the
Lie algebra L is compact, a Cartan algebra is, up to conjugacy, the only maximal solvable subalgebra.
This follows from Lie’s theorem on solvable algebras [14].

There is a solvable subalgebra B with real eigenvalues in the adjoint representation of L with the
property that any other solvable algebra with real eignvalues in the adjoint representation is conjugate
to a subalgebra of B.

In [12], it is found that the algebra B can be constructed algorithmically by using positive roots of
a given maximally real Cartan subalgebra; by maximally real Cartan subalgebra, we mean a Cartan
algebra whose real part has maximal possible dimension. In case the Killing form is not negative
definite, any Cartan algebra is a sum of two subalgebras such that one of them has all real eigenvalues
in the adjoint representation in L and the other has all purely imaginary eigenvalues in the adjoint
representation in L. We call the first subalgebra the real part of the Cartan subalgebra and the second
subalgebra the compact part of the Cartan subalgebra. Let N be the algebra consisting of the real
and imaginary parts of the positive root vectors for the given maximally real Cartan subalgebra.
Then, the algebra B = A + N where A is the real part of the maximally real Cartan subalgebra
has the property that every solvable algebra with real eigenvalues in the adjoint representation is
conjugate to subalgebra of B. Moreover, all maximal solvable algebras which are non-abelian can
be obtained by computing normalizers of subalgebras of N. In more detail, we consider conjugacy
classes of subalgebras of N. If X is a representative of such a class, we compute the normalizer
of X and its Levi decomposition. We keep only those X in which the normalizer of X has Levi
decomposition N (X) = S +R(N (X)), R(N (X))/X a torus and where the semisimple part has a
compact Cartan subalgebra. If T is this compact Cartan subalgebra, then T +R(N (X)) is a maximal
solvable subalgebra and all such, apart from compact maximal tori-if any- are obtained in this way.

2.2. Algorithm for Finding Three-Dimensional Optimal System of Non-Solvable Subalgebras of a Lie Algebra

• It is a classical fact that any non-solvable three-dimensional subalgebra is isomorphic to either
sl(2,R) or so(3) copies in ℒ up to conjugacy where ℒ is a semisimple subalgebra of the given Lie
algebra L. Therefore, one can construct the three-dimensional optimal system of non-solvable
subalgebras by finding copies of so(3) and sl(2,R) in ℒ .

• In order to find such copies in the semisimple Lie algebra S, we have developed the following
algorithms which are based on the canonical relations for so(3) :

[X, A] = Y, [A, Y] = X, [Y, X] = A, (1)

and sl(2,R)
[A, B] = 2B, [A, Y] = −2Y, [B, Y] = A. (2)

To find the non-conjugate copies of so(3):

• We start with an element A of the one-dimensional optimal system of S whose non-zero
eigenvalues in the adjoint representation are purely imaginary.

• By scaling, we may assume that this eigenvalue is i. Let X + iY be the eigenvector of A
corresponding to the eigenvalue i. If [X, Y] = λA for some negative constant λ, then the algebra
〈A, X, Y〉 forms a copy of so(3).
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• Applying this algorithm for all elements in the one-dimensional optimal system gives us the
copies of so(3).

• Removing the repetitions using invariant tools gives the non-conjugate copies of so(3).

To find the copies of sl(2,R):

• We start with an element of the two-dimensional optimal system of non-abelian subalgebras.
• If 〈A, B〉 is such algebra with [A, B] = cB for some non-zero constant c, find the eigenvectors of

adA, if any corresponding to the eigenvalue −c. We reject 〈A, B〉 if there is no such eigenvalue.
Otherwise, let Y be an eigenvector of ad(A) with eigenvalue −c. If the commutator [B, Y] is a
nonzero multiple of A, then 〈A, B, Y〉 is a copy of sl(2,R).

• Removing the repetitions using invariant tools gives the non-conjugate copies of sl(2,R).

3. Lie Point Symmetry Transformations of the Wave Equation

The wave equation on a spacetime is given by �gu = 0, where �g = ∂
∂xi

(
√
| g |gik ∂

∂xk
) is called

the Laplace–Beltrami operator for the metric given by

ds2 = eν(r,t)dt2 − eλ(r,t)dr2 − eµ(r,t)dθ2 − eµ(r,t) sin2 θdϕ2. (3)

Hence, the wave equation �gu = 0 on the metric (3) can be written as

∂
∂t

(
e(µ− ν

2 +
λ
2 ) sin θ ∂u

∂t

)
− ∂

∂r

(
e(µ+ ν

2−
λ
2 ) sin θ ∂u

∂r

)
− ∂

∂θ

(
e(

ν
2 +

λ
2 ) sin θ ∂u

∂θ

)
− ∂

∂ϕ

(
e(

ν
2 + λ

2 )
sin θ

∂u
∂ϕ

)
= 0. (4)

The approach to find the symmetries of the wave equation using the conformal Killing vector
field of the underlying spacetimes metric is due to Yuri Bozhkov and Igor Leite Freire [18].

Theorem 1 ([18]). Let Mn be a Lorentzian manifold of dimension n ≥ 3 with the metric g given in local
coordinates {x1, x2, ..., xn}. The Lie symmetries of wave equation �gu = 0 on Mn have the form

X = ξ i(x)
∂

∂xi
+

((
2− n

4
µ(x) + c

)
u + b(x)

)
∂

∂u
, (5)

where c is an arbitrary constant,
�gb(x) = 0, �gµ(x) = 0, (6)

Y = ξ i(x) ∂
∂xi

is a conformal Killing vector field of the metric g such that

(£Yg)ab = ξc∂cgab + gcb∂aξc + gca∂bξc = µ(x)gab (7)

and £Y denotes the Lie derivative with respect to vector field Y, where b(x) and µ(x) satisfy (6).

3.1. Lie Point Symmetry Transformations of the Wave Equation on Einstein Spacetime

The wave equation �gu = 0 on the spherically symmetric space admitting so(4)⊕R as isometry
algebra can be obtained from Equation (4) by substituting ν = 0, λ = − ln(αr2 + 1) and µ = ln r2,
α = −c2 < 0 as shown in [3].

From now on, we will work with Cartesian coordinates as their introduction simplifies
many comutations. The wave equation under study can be written in Cartesian coordinates
x = r cos ϕ sin θ, y = r sin ϕ sin θ, z = r cos θ as:

utt +
(
c2x2 − 1

)
uxx +

(
c2y2 − 1

)
uyy +

(
c2z2 − 1

)
uzz + 3 c2zuz + 2 c2xzuzx

+3 c2xux + 2 c2xyuxy + 2 c2yzuyz + 3 c2yuy = 0.
(8)
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By using Theorem 1 and the isometries of the metric given in [3], the Lie symmetry algebra of the
wave Equation (8) consists of the eight-dimensional subalgebra spanned by

X1 = B ∂
∂y , X2 = B ∂

∂x , X3 = B ∂
∂z , X4 = x ∂

∂z − z ∂
∂x ,

X5 = z ∂
∂y − y ∂

∂z , X6 = x ∂
∂y − y ∂

∂x , X7 = ∂
∂t , X8 = u ∂

∂u ,
(9)

and the infinite-dimensional ideal consisting of the operators

Xτ = τ(t, x, y, z)
∂

∂u
, (10)

where τ(t, x, y, z) is an arbitrary solution of the wave Equation (8) and
B =

√
1− c2(x2 + y2 + z2).

Moreover, the one-parameter groups Gi(ε) = {eεXi , ε ∈ R} generated by (9) are given as follows:

G1(ε1) : (t, x, y, z, u) 7→ (t, x, 1
c

√
1− c2( x2 + z2) sin

(
arctan

( c y
B
)
+ c ε1

)
, z, u),

G2(ε2) : (t, x, y, z, u) 7→ (t, 1
c

√
1− c2( y2 + z2) sin

(
arctan

( c x
B
)
+ c ε2

)
, y, z, u),

G3(ε3) : (t, x, y, z, u) 7→ (t, x, y, 1
c

√
1− c2( x2 + y2) sin

(
arctan

( c z
B
)
+ c ε3

)
, u),

G4(ε4) : (t, x, y, z, u) 7→ (t, x sin ε4 − z cos ε4, y, x sin ε4 + z cos ε4, u),
G5(ε5) : (t, x, y, z, u) 7→ (t, x,−z sin ε5 − y cos ε5, y sin ε5 − z cos ε5, u),
G6(ε6) : (t, x, y, z, u) 7→ (t,−y sin ε6 + x cos ε5, x sin ε6 + y cos ε6, z, u),
G7(ε7) : (t, x, y, z, u) 7→ (t + ε7, y, z, u),
G8(ε8) : (t, x, y, z, u) 7→ (t, x, y, z, u + ε8).

(11)

3.2. Lie Point Symmetry Transformations of the Wave Equation on Anti-Einstein Spacetime

The wave Equation �gu = 0 on the spherically symmetric space admitting so(1, 3) ⊕ R as
isometry algebra can be obtained from Equation (4) by substituting ν = 0, λ = − ln(αr2 + 1) and
µ = ln r2, α = c2 > 0 as shown in [3].

As before, we will work with Cartesian coordinates as their introduction simplifies many
comutations. The wave equation under study can be written in Cartesian coordinates x = r cos ϕ sin θ,
y = r sin ϕ sin θ, z = r cos θ as:(

c2x2 + 1
)

uxx +
(
c2y2 + 1

)
uyy +

(
c2z2 + 1

)
uzz + 2 c2yzuyz,

+3 xc2ux + 2 c2xyuxy + 2 c2xzuxz + 3 c2zuz + 3 c2yuy − utt = 0.
(12)

By using Theorem 1 and the isometries of the metric given in [3], the Lie symmetry algebra of the
wave Equation (12) consists of the eight-dimensional subalgebra spanned by

X1 = B ∂
∂y , X2 = B ∂

∂x , X3 = B ∂
∂z , X4 = x ∂

∂z − z ∂
∂x ,

X5 = z ∂
∂y − y ∂

∂z , X6 = x ∂
∂y − y ∂

∂x , X7 = ∂
∂t , X8 = u ∂

∂u ,
(13)

and the infinite-dimensional ideal consisting of the operators

Xτ = τ(t, x, y, z)
∂

∂u
, (14)

where τ(t, x, y, z) is an arbitrary solution of the wave Equation (12) and B =
√

1 + c2(x2 + y2 + z2).
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Moreover, the one-parameter groups Gi(ε) = {eεXi , ε ∈ R} generated by (13) are given as follows:

G1(ε1) : (t, x, y, z, u) 7→ (t, x,
e−cε1(2 cBe2 cε1 y+(B2+c2y2)e2 cε1−1−c2(x2+z2))

2 c2y+2 cB , z, u),

G2(ε2) : (t, x, y, z, u) 7→ (t, (
2 e2 cε2 (B2−1)+2 cBe2 cε2 x−c2(y2+z2)+e2 cε2−1)e−cε2

2 c2x+2 cB , y, z, u),

G3(ε3) : (t, x, y, z, u) 7→ (t, x, y,
e−cε3(2 cBe2 cε3 z+B2e2 cε3−1−c2(x2+y2))

2 c2z+2 cB , u),
G4(ε4) : (t, x, y, z, u) 7→ (t, x sin ε4 − z cos ε4, y, x sin ε4 + z cos ε4, u),
G5(ε5) : (t, x, y, z, u) 7→ (t, x,−z sin ε5 − y cos ε5, y sin ε5 − z cos ε5, u),
G6(ε6) : (t, x, y, z, u) 7→ (t,−y sin ε6 + x cos ε5, x sin ε6 + y cos ε6, z, u),
G7(ε7) : (t, x, y, z, u) 7→ (t + ε7, x, y, z, u),
G8(ε8) : (t, x, y, z, u) 7→ (t, x, y, z, u + ε8).

(15)

4. Lie Algebra Structure and Optimal Systems

4.1. Lie Point Symmetry Algebra of the Wave Equation on Einstein Spacetime

The non-zero Lie brackets of (9) are:

[X1, X2] = c2X6, [X1, X3] = c2X5, [X1, X5] = −X3, [X1, X6] = −X2,
[X2, X3] = −c2X4, [X2, X4] = X3, [X2, X6] = X1, [X3, X4] = −X2,
[X3, X5] = X1, [X4, X5] = X6, [X4, X6] = −X5, [X5, X6] = X4.

(16)

The Levi-Decomposition of this algebra is L = {X1, X2, X3, X4, X5, X6} ⊕ {X7, X8}. Let S be
the semisimple part. To identify the semisimple part, we need to find a Cartan algebra and the
corresponding root space decomposition.

First of all, after computing the Killing form, we see that it is negative definite. Thus, to determine
a Cartan algebra, choose any non-zero element in the semisimple part S. We choose, for example,
the element X3 and compute its centralizer. The centralizer turns out to be {X3, X6} and the subalgebra
{X3, X6} is self centralizing. Thus, C = {X3, X6} is a Cartan subalgebra which is itself the only
maximal solvable subalgebra up to the conjugacy as mentioned in Section 2.1. The roots for this
Cartan subalgebra are {(ci, i), (−ci, i), (−ci,−i), (ci,−i)}, i =

√
−1. Therefore, the positive roots are

{(ci, i), (ci,−i)}. The root vectors for the positive roots are {X1 + cX4 + i(X2 + cX5), X1− cX4 + i(X2−
cX5)}. Since the negative roots are conjugates of the positive roots, the real and the imaginary parts of
the positive root vectors must generate, as a Lie algebra, the full Lie algebra.

This gives us the change of basis which gives the general adjoint action of the group of
symmetry transformations:

V1 = X1 + cX4, V2 = X2 + cX5, V3 = X3 − cX6, V4 = X1 − cX4,
V5 = X2 − cX5, V6 = X3 + cX6, V7 = X7, V8 = X8.

(17)

The corresponding non-zero Lie brackets of this subalgebra are:

[V1, V2] = −2cV3 [V1, V3] = 2cV2, [V2, V3] = −2cV1, [V4, V5] = 2cV6,
[V4, V6] = −2cV5, [V5, V6] = 2cV4.

(18)

It is obvious from (18) that the subalgebra 〈V1, V4〉 is Cartan since it is abelian and it is self
centralizing. Since our Lie algebra is compact, therefore, 〈V1, V4〉 is the only maximal solvable algebra
up to the conjugacy. The subalgebra 〈V1, V4〉 is conjugate to 〈V3, V6〉.

As we will see later, 〈V1, V2, V3〉 and 〈V4, V5, V6〉 form two copies of so(3) which commute with
each other. Since so(4), which is the set of all skew symmetric 4× 4 matrices, is also isomorphic to
so(3)⊕ so(3) [19], we see that the semisimple part is isomorphic to so(4). This decomposition can be
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obtained by working with a Cartan subalgebra of so(4) and determining its root space decomposition
as was done above.

4.1.1. Optimal Systems of Solvable Subalgebras of so(4)

To find the optimal systems of so(4), we first find the one-dimensional optimal system and a
rough classification of higher order subalgebras inside the maximal solvable subalgebra 〈V1, V4〉 which
is abelian. Secondly, we obtain the higher-dimensional optimal system by removing the repetitions
from the obtained rough classification of subalgebras using the adjoint representation of so(4).

Theorem 2. The optimal systems Θi up to order three of solvable subalgebras of so(4) with the non-zero Lie
brackets (18) are the following:

• The one-dimensional optimal system Θ1 is {〈V1 + αV4〉, 〈V1〉, 〈V4〉, α 6= 0},
• The two-dimensional optimal system Θ2 is {〈V1, V4〉}.

There is no three-dimensional optimal system.

Proof. Clearly, it is enough to deal with the one-dimensional optimal system only. The one-dimensional
optimal system of the maximal solvable subalgebra of so(4) is itself the one-dimensional optimal
system of so(4). This is because the representative elements are non-conjugate under the adjoint
representation of so(4) given by

A(ε1, . . . , ε6) = eε1C(1) . . . eε6C(6), (19)

where C(j) is the matrix whose (i, k)th entries are given as ck
ij: here, the constants ck

ij are the structure
constants relative to the basis V1, ..., V6.

4.1.2. Optimal Systems of Solvable Subalgebras of L = so(4)⊕R2

First, note the general fact that if L = S⊕ R where S is the semisimple part and the radical R is
the center, then the conjugacy classes of S can be joined with elements of the center to obtain conjugacy
classes of L, as follows:

Let π : S⊕ R→ S be the projection defined by π(x, y) = x. This is a homomorphism because R
is an ideal. Therefore, it will map conjugate classes to conjugate classes.

Every k-dimensional subalgebra of L is of the form 〈x1 + y1, x2 + y2, ..., xk + yk〉, where xi ∈ S,
yi ∈ R. Its projection is 〈x1, ..., xk〉 of dimension less than or equal to k. Moreover, if 〈x1 + y1, x2 +

y2, ..., xk + yk〉 is conjugate to 〈x̃1 + ỹ1, x̃2 + ỹ2, ..., x̃k + ỹk〉, then as the radical R is the center, yi = ỹi
and 〈x1, x2, ..., xk〉 is conjugate to 〈x̃1, x̃2, ..., x̃k〉. However, the dimension of the image algebra of
〈x̃1 + ỹ1, x̃2 + ỹ2, ..., x̃k + ỹk〉 can go down. Thus, to get all conjugacy classes of the full algebra, we start
with the elements of the optimal systems of S and add to each one of them arbitrary elements of the
center and keep those that form a subalgebra. The classes of the center correspond to the zero subspace
of S. This will give all the conjugacy classes of the full algebra. Applying this to L = so(4)⊕ R2,
we obtain the following classes.

Clearly, the one-dimensional optimal system Θ̃1 of R2 is {〈V7〉, 〈V8〉, 〈V7 + αV8〉, α 6= 0} and the
only two-dimensional optimal system Θ̃2 of R2 is {〈V7, V8〉}.

In order to get the optimal systems of the full Lie algebra up to order three, we use the optimal
systems of so(4) constructed in Theorem 2 . We join it with the optimal system of the abelian algebra
R2 as explained above.

• To get the one-dimensional optimal system of L, we have the cases:

1. We add an arbitrary element from R2 to every element in Θ1; in this case, we get
{〈V1 + αV4 + Z1〉, 〈V1 + Z1〉, 〈V4 + Z1〉, α 6= 0}.
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2. We take Θ̃1 itself; in this case, we get {〈V7〉, 〈V8〉, 〈V7 + βV8〉, β 6= 0}.

• To get the two-dimensional optimal system of L, we have the cases:

1. We add an arbitrary element from R2 to every element in Θ2; in this case, we get
{〈V1 + Z1, V4 + Z2〉}.

2. We add an arbitrary element from R2 to every element in Θ1 and combine the result with an
element from Θ̃1; in this case, we get {〈V1 + αV4 + Z1, Z3〉, 〈V1 + Z1, Z3〉, 〈V4 + Z1, Z3〉, α 6= 0}.

3. Take Θ̃2 itself; in this case, we get {〈V7, V8〉}.

• To get the three-dimensional optimal system of L,

1. Either we add an arbitrary element from R2 to every element in Θ2 and combine the result
with an element from Θ̃1; in this case, we get {〈V1 + Z1, V4 + Z2, Z3〉};

2. or we add an arbitrary element from R2 to every element in Θ1 and combine the result
with an element from Θ̃2; in this case, we get {〈V1 + αV4 + Z1, V7, V8〉, 〈V1 + Z1, V7, V8〉,
〈V4 + Z1, V7, V8〉, α 6= 0}.

Finally, we check that the obtained class is a subalgebra by taking the wedge product of it
with its commutator and equate by zero and see if we can kill some constants. This leads to the
following theorem:

Theorem 3. The optimal systems of solvable subalgebra of L with the non-zero Lie brackets (18) are as follows:

• The one-dimensional optimal system is {〈V1 + αV4 + Z1〉, 〈V1 + Z1〉, 〈V4 + Z1〉, 〈V7〉, 〈V8〉, 〈V7 + βV8〉,
α, β 6= 0}.

• The two-dimensional optimal system is {〈V1 + Z1, V4 + Z2〉, 〈V1 + αV4 + Z1, Z3〉, 〈V1 + Z1, Z3〉, 〈V4 + Z1,
Z3〉, 〈V7, V8〉, α 6= 0}.

• The three-dimensional optimal system is {〈V1 + Z1, V4 + Z2, Z3〉, 〈V1 + αV4 + Z1, V7, V8〉, 〈V1 + Z1,
V7, V8〉, 〈V4 + Z1, V7, V8〉, α 6= 0}.

Here, Z1 = α1V7 + β1V8, Z2 = α2V7 + β2V8 are arbitrary elements of R2 and Z3 = V7 + α3V8 or
Z3 = V8 represent a one-dimensional optimal system of R2.

4.1.3. Three-dimesional Optimal System of Non-solvable Subalgebras of L = so(4)⊕R2

If H is a three-dimensional non-solvable algebra, then H equals its commutator. As the
commutator of L is so(4), all such subalgebras of L are subalgebras of so(4). We need to construct the
copies of so(3) and sl(2,R), if any, by following the algorithm given in Section 2.2:

• First, construct the copies of so(3):

1. The element V1 has the eigenvector V2 + iV3 corresponding to the eigenvalue 2ci. Therefore,
Ṽ1 = V1

2c has the same eigenvector with the eigenvalue i. Moreover, [V2, V3] = −(2c)2Ṽ1.
Hence, 〈V1, V2, V3〉 forms a copy of so(3).

2. The element V4 has the eigenvector V5 + iV6 corresponding to the eigenvalue−2ci. Therefore,
Ṽ4 = V4

−2c has the same eigenvector with the eigenvalue i. Moreover, [V5, V6] = −(2c)2Ṽ4.
Hence, 〈V4, V5, V6〉 forms a copy of so(3).

3. The element V1 + αV4 has the eigenvector V2 + V5 + i(V3 − V6) corresponding to the
eigenvalue 2ci. Therefore, Ṽ = V1+αV4

2c has the same eigenvector with the eigenvalue i.
Moreover, and [V2 + V5, V3 −V6] = −2cṼ. Hence, 〈V1 + V4, V2 + V5, V3 −V6〉 forms a copy
of so(3). Note that here α must be equal to one to ensure that 〈V1 + αV4, V2 + V5, V3 −V6〉 is
a subalgebra.

• The Lie algebra so(4) does not contain any copy of sl(2,R), since it does not contain any
non-abelian two-dimensional subalgebra.
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This proves the following theorem:

Theorem 4. The three-dimensional optimal system of non-solvable subalgebras of L is
{〈V1, V2, V3〉, 〈V4, V5, V6〉, 〈V1 +V4, V2 +V5, V3−V6〉}, where the Vi, i = 1, . . . , 6 form a basis of so(4) given
in (17).

4.2. Lie Point Symmetry Algebra of the Wave Equation on Anti-Einstein Spacetime

The non-zero Lie brackets of (13) are:

[X1, X2] = −c2X6, [X1, X3] = −c2X5, [X1, X5] = −X3, [X1, X6] = −X2,
[X2, X3] = c2X4, [X2, X4] = X3, [X2, X6] = X1, [X3, X4] = −X2,
[X3, X5] = X1, [X4, X5] = X6, [X4, X6] = −X5, [X5, X6] = X4.

(20)

The Levi-Decomposition of this algebra is L = {X1, X2, X3, X4, X5, X6} ⊕ {X7, X8}. Let S be the
semisimple part.

To determine the structure of the semisimple part, we need to find a Cartan algebra and the root
space decomposition with respect to the Cartan algebra. In this case, the Killing form is not negative
definite and it has exactly three negative eigenvalues. This means that the maximal compact algebra is
three-dimensional.

The reason is that, if K is a maximal compact subalgebra of the Lie algebra L, then any compact
subalgebra of L is conjugate to a subalgebra of K. Moreover, every one-dimensional subalgebra of K is
conjugate to a subalgebra of a fixed Cartan subalgebra of K [14–16].

As we will explain later, the subalgebra 〈X4, X5, X6〉 is a copy of so(3) in the given Lie algebra.
Thus, K = 〈X4, X5, X6〉 is a maximal compact subalgebra of the algebra S. A Cartan subalgebra of S
can be obtained by choosing any element of K and computing its centralizer. We choose, for example,
X6 as a representative of a Cartan algebra of K. Computing the centralizer of X6, we find that it is
〈X3, X6〉. In addition, as the centralizer of 〈X3, X6〉 is itself, C = 〈X3, X6〉 is a Cartan subalgebra of S.
Moreover, computing the eigenvalues of X3, we find that all eigenvalues of adX3 are real and X3 is
diagonalizable. Moreover, the centralizer of X3 is C and the centralizer of X6 is also C; this means that
C is the maximally real Cartan subalgebra.

We find roots of C in S. The roots are (c, i), (c,−i), (−c, i), (−c,−i), the positive roots are
(c, i), (c,−i) and clearly the sum of these positive roots is not a root. The root spaces for the positive
roots (c, i) and (c,−i) are 〈X1 + cX5 + i(cX4 − X2)〉. Let N = 〈X1 + cX5, X2 − cX4〉. The algebra
B = A⊕ N, where A = 〈X3〉 is the real part of C, has the property that every solvable algebra with real
eigenvalues in the adjoint representation is conjugate to a subalgebra of B. We compute the normalizers
of each conjugacy class of N. The normalizer of each representative element of the one-dimensional
optimal system of N does not contain a Cartan algebra. Therefore, we keep only N because its
normalizer N (N) is solvable and contains a Cartan algebra. Thus, there is only one maximal solvable
subalgebra, namely N (N) = 〈X6, X3〉 ⊕ 〈X1 + cX5, X2 − cX4〉. Therfore, the Iwasawa decomposition
of S is K⊕ A⊕ N = 〈X4, X5, X6〉 ⊕ 〈X3〉 ⊕ 〈X1 + cX5, X2 − cX4〉 [14,16].

This gives us the following change of basis which makes the computations easier:

V1 = X4, V2 = X5, V3 = X6, V4 = X3,
V5 = X1 + cX5, V6 = X2 − cX4, V7 = X7, V8 = X8.

(21)

The non-zero Lie brackets of (21) are

[V1, V2] = V3, [V1, V3] = −V2, [V1, V4] = cV1 + V6, [V1, V5] = cV3,
[V1, V6] = −V4, [V2, V3] = V1, [V2, V4] = cV2 −V5, [V2, V5] = V4,
[V2, V6] = cV3 [V3, V5] = V6, [V3, V6] = −V5, [V4, V5] = cV5,
[V4, V6] = cV6.

(22)
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In fact, the semisimple part S is isomorphic to so(1, 3) as can be seen by working with its Cartan
algebra and the associated root space decompositions. The algebra 〈V7, V8〉 is the center of the Lie
algebra L.

4.2.1. Optimal Systems of Solvable Subalgebras of so(1, 3)

To find the optimal system of so(1, 3), we first find the one-dimensional optimal system and a
rough classification of higher order subalgebras inside the maximal solvable subalgebra spanned by
E1 := V3, E2 := V4, E3 := V5, E4 := V6. The corresponding non-zero Lie brackets of this subalgebra are:

[E1, E3] = E4, [E1, E4] = −E3, [E2, E3] = cE3, [E2, E4] = cE4. (23)

Secondly, we obtain the higher-dimensional optimal system by removing the repetitions from the
obtained rough classification of subalgebras using the adjoint action of so(1, 3).

Theorem 5. The optimal systems Θi up to order three of the solvable subalgebras of so(1, 3) with the non-zero
Lie brackets (22) are the following:

• The one-dimensional solvable optimal system Θ1 is
{〈V4〉, 〈V5〉, 〈V3 + αV4〉 : α ∈ R}.

• The two-dimensional solvable optimal system Θ2 is {〈V3, V4〉, 〈V4, V5〉, 〈V5, V6〉}.
• The three-dimensional solvable optimal system Θ3 is
{〈V4, V5, V6〉, 〈V3 + αV4, V5, V6〉 : α ∈ R}.

Proof. To remove the repetitions in the obtained one-dimensional optimal system and the
higher-dimensional rough classification of the maximal solvable subalgebra of L, we use their
normalizers in so(1, 3) as follows:

• The one-dimensional optimal system of the maximal solvable subalgebra of so(1, 3) is itself the
one-dimensional optimal system of so(1, 3). This is because the representative elements are
non-conjugate under the adjoint action of so(1, 3), as can be seen using the action of corresponding
adjoint group given as in (19).

• The two-dimensional abelian subalgebras are 〈V3, V4〉, 〈V5, V6〉. The non-abelian subalgebra
〈V4, V5〉 is clearly non-conjugate with both of them. Moreover, since the normalizers of the
two-dimensional abelian subalgebras are N (〈V3, V4〉)/〈V3, V4〉 = 0, N (〈V5, V6〉)/〈V5, V6〉 =

〈V̄3, V̄4〉. As their dimensions are different, they are non-conjugate.
• All the three-dimensional subalgebras given in the rough classification have the same normalizers,

centralizers and commutators, namely the abelian subalgebra 〈V5, V6〉.

Let X be one of these algebras. We find that the eigenvalues of X/X′ are repeated real in one case,
purely imaginary in one case and complex conjugates but not purely imaginary in the third case.
Therefore, they are non-conjugate.

4.2.2. Optimal Systems of Solvable Subalgebras of L = so(1, 3)⊕R2

Clearly, the one-dimensional optimal system Θ̃1 of R2 is {〈V8〉, 〈V7 + αV8〉 : α ∈ R} and the only
two-dimensional optimal system Θ̃2 of R2 is {〈V7, V8〉}.

In order to get the optimal systems of the full Lie algebra up to order three, we use the optimal
systems of so(1, 3) constructed in Theorem 5 and join each one of them with the optimal systems of the
abelian algebra R2.

• To get the one-dimensional optimal system of L,

1. either we take Θ̃1 itself; in this case, we get {〈V8〉, 〈V7 + βV8〉 : β ∈ R};
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2. or we add an arbitrary element from R2 to every representative element in Θ1; in this case,
we get {〈V4 + Z1〉, 〈V5 + Z1〉, 〈V3 + αV4 + Z1〉 : α ∈ R}.

• To get the two-dimensional optimal system of L,

1. either we add an arbitrary element from R2 to every element in Θ2; in this case, we get
{〈V3 + Z1, V4 + Z2〉, 〈V4 + Z1, V5 + Z2〉, 〈V5 + Z1, V6 + Z2〉},

2. or we add an arbitrary element from R2 to every element in Θ1 and combine the result with
an element from Θ̃1; in this case, we get {〈V4 + Z1, Z3〉, 〈V5 + Z1, Z3〉, 〈V3 + αV4 + Z1, Z3〉 :
α ∈ R}.

3. or take Θ̃2 itself; in this case, we get {〈V7, V8〉}.

• To get the three-dimensional optimal system of L,

1. either we add an arbitrary element from R2 to every element in Θ3; in this case, we get
{〈V4 + Z1, V5 + Z2, V6 + Z3〉, 〈V3 + αV4 + Z1, V5 + Z2, V6 + Z3〉 : α ∈ R},

2. or we add an arbitrary element from R2 to every element in Θ2 and combine the result
with an element from Θ̃1; in this case, we get {〈V3 + Z1, V4 + Z2, Z3〉, 〈V4 + Z1, V5 + Z2, Z3〉,
〈V5 + Z1, V6 + Z2, Z3〉},

3. or we add an arbitrary element from R2 to every element in Θ1 and combine the result with
an element from Θ̃2; in this case, we get {〈V4 + Z1, V7, V8〉, 〈V5 + Z1, V7, V8〉, 〈V3 + αV4 +

Z1, V7, V8〉 : α ∈ R},

where Z1 = α1V7 + β1V8, Z2 = α2V7 + β2V8 are arbitrary elements of R2 and Z3 = V7 + α3V8 or
Z3 = V8 represents a one-dimensional optimal system of R2 and α1, α2, α3, β1, β2 ∈ R.

Finally, we check that the obtained class is a subalgebra by taking the wedge product of its
commutator with each element in the class and make these wedges equal to zero. Therefore, we have
the following theorem.

Theorem 6. The optimal systems of solvable subalgebras of L with the non-zero Lie brackets (22) are as follows:

• The one-dimensional solvable optimal system is {〈V4 + Z1〉, 〈V5 + Z1〉, 〈V8〉, 〈V3 + αV4 + Z1〉, 〈V7 +

βV8〉 : α, β ∈ R}.
• The two-dimensional solvable optimal system is
{〈V3 + Z1, V4 + Z2〉, 〈V4 + Z1, V5〉, 〈V5 + Z1, V6 + Z2〉, 〈V4 + Z1, Z3〉, 〈V5 + Z1, Z3〉, 〈V7, V8〉, 〈V3 +

αV4 + Z1, Z3〉 : α ∈ R}.
• The three-dimensional solvable optimal system is {〈V4 + Z1, V5, V6〉, 〈V3 + Z1, V4 + Z2, Z3〉,
〈V4 + Z1, V5, Z3〉, 〈V5 + Z1, V6 + Z2, Z3〉, 〈V4 + Z1, V7, V8〉, 〈V5 + Z1, V7, V8〉, 〈V3 + αV4 + Z1,
V5, V6〉, 〈V3 + αV4 + Z1, V7, V8〉 : α ∈ R}.

Here, Z1 = α1V7 + β1V8, Z2 = α2V7 + β2V8 are arbitrary elements of R2 and Z3 = V7 + α3V8 or
Z3 = V8 represents a one-dimensional optimal system of R2.

4.2.3. Three-Dimensional Optimal System of Non-Solvable Subalgebras of L = so(1, 3)⊕R2

If H is a three-dimensional non-solvable algebra, then H equals its commutator. As the
commutator of L is so(1, 3), all such subalgebras of L are subalgebras of so(1, 3). To find such
subalgebras, we follow the algorithm given in Section 2.2.

We need to construct the copies of so(3) and sl(2,R), if any, by following the algorithm that is
given in Section 2.2:

• First, construct the copies of so(3): the element V3 has the eigenvector V1 + iV2 corresponding to
the eigenvalue−i. Therefore, Ṽ3 = −V3 has the same eigenvector with the eigenvalue i. Moreover,
[V1, V2] = −Ṽ3. Therefore, 〈V1, V2, V3〉 forms a copy of so(3).
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• The only non-abelian two-dimensional subalgebra in so(1, 3) is 〈V4, V5〉 with [V4, V5] = cV5.
Moreover, the eigenvector of adV4 corresponding to the eigenvalue −c is V5 − 2cV2 and
[V5 − 2cV2, V5] = −2cV4. Hence, the subalgebra 〈V4, V5, V5 − 2cV2〉 forms a copy of sl(2,R).

This proves the theorem.

Theorem 7. The three-dimensional non-solvable optimal system is {〈V1, V2, V3〉, 〈V4, V5, V5 − 2cV2〉},
where the Vi (i = 1, . . . , 6) forms a basis of so(1, 3) given in (21).

5. Joint Invariants and Invariant Solutions Corresponding to Three-Dimensional Optimal
Systems of L

The invariant solutions can be obtained through symmetry reductions carried out by
implementing the well-known procedure of utilizing the joint invariants of the subalgebras obtained
by three-dimensional optimal system, see, e.g., [6,11,20] for details.

Remark 1 ([10]). Let 〈X1, . . . , Xn〉 be a Lie algebra with basis

Xi = ξ1
i

∂

∂t
+ ξ2

i
∂

∂r
+ ξ3

i
∂

∂θ
+ ξ4

i
∂

∂ϕ
+ ηi

∂

∂u
, i = 1, . . . , n.

A necessary condition for the existence of an invariant solution under the Lie algebra 〈X1, . . . , Xn〉 is the
following transversality condition:

rank{E1} = rank{E2}, (24)

where

E1 =

 ξ1
1 ξ2

1 ξ3
1 ξ4

1
...

...
...

...
ξ1

n ξ2
n ξ3

n ξ4
n

 , E2 =

 ξ1
1 ξ2

1 ξ3
1 ξ4

1 η1
...

...
...

...
...

ξ1
n ξ2

n ξ3
n ξ4

n ηn

 .

Before giving the formal definition of equivalent invariant solutions, let us note the following
general fact:

Whenever a transformation group G operates on a set S and U is a subset of S and H is the
stabilizer of U, then the stabilizer of a.U, a ∈ G is aHa−1. We will apply this where the set S is the set
of solutions of a differential equation, U is the set of invariant solutions and the group G is the local
group whose Lie algebra is the symmetry algebra of the differential equation.

Definition 4. Consider the differential equation admitting the group of transformations G. Let L be the
Lie algebra corresponding the group G. If u = Θ1(x) and u = Θ2(x) are two invariant solutions of the
given differential equation under the subalgebras H1 and H2 of L, respectively, then we call u = Θ1(x) and
u = Θ2(x) equivalent invariant solutions with respect to the group G if one can find some transformation
in G that transforms u = Θ1(x) to u = Θ2(x).

Let H1 be conjugate to H2 with respect to the group of transformations G. Define U to be the set
of invariant surfaces under H1. Then, H1 belongs to the stabilizer of U and H2 belongs to the stabilizer
of a.U for some a ∈ G. The set of invariant surfaces under H2 should be of the form a.U.

Therefore, the problem of classifying the invariant solutions is reduced to classifying the
corresponding conjugacy classes of subalgebras of the symmetry algebra L [6].

In this section, we compute the invariant solutions corresponding to three-dimensional
subalgebras of L.
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5.1. Invariant Solutions of the Wave Equation on Einstein Spacetime

5.1.1. Solvable Subalgebras of of L

Example 1. In the case of L1 = 〈V1 + Z1, V4 + Z2, Z3〉, Z3 = V7 + α3V8. The generators of L1 in Cartesian
coordinates are as follows:

V1 + Z1 = α1
∂
∂t − cz ∂

∂x +
√

1− c2(x2 + y2 + z2) ∂
∂y + cx ∂

∂z + β1u ∂
∂u ,

V4 + Z2 = α2
∂
∂t + cz ∂

∂x +
√

1− c2(x2 + y2 + z2) ∂
∂y − cx ∂

∂z + β2u ∂
∂u ,

Z3 = ∂
∂t + α3u ∂

∂u .

(25)

The transversality condition (24) of (25) with rank three is always satisfied. Since the Lie algebra
L1 is abelian, one can find the invariant functions, we call them also invariants, of L1 in any order. The
invariants of Z3 are:

m1 = x, m2 = y, m3 = z, m4 = ue−α3 t. (26)

The remaining operators can be given in terms of the variables mi, i = 1, . . . , 4 as

V1 + Z1 = −cm3
∂

∂m1
+
√

1− c2(m1
2 + m22 + m32) ∂

∂m2
+ cm1

∂
∂m3
−m4 (α3 α1 − β1)

∂
∂m4

,
V4 + Z2 = cm3

∂
∂m1

+
√

1− c2(m1
2 + m22 + m32) ∂

∂m2
− cm1

∂
∂m3
−m4 (α3 α2 − β2)

∂
∂m4

.
(27)

Next, the invariants of V1 + Z1 are

n1 = m1
2 + m3

2, n2 = arctan
(

c m2√
1−c2(m1

2+m2
2+m3

2)

)
− arctan

(
m3
m1

)
,

n3 = m4 e
(α3 α1−β1)

c arctan
(

m3
m1

)
.

(28)

In terms of the variables ni, i = 1, . . . , 3, the remaining operator is

V4 + Z2 = −2 c
∂

∂n2
− n3 ((α1 + α2) α3 − β2 − β1)

∂

∂n3
. (29)

Finally, the invariants of V4 + Z2 are

n1, n3 e
(β1+β2−α3 α1−α3 α2)

2c n2 . (30)

Writing the invariants (30) in terms of the original variables gives the joint invariants of L1 as

x2 + z2, u e

(
A1 arctan

(
c y√

1−c2(x2+y2+z2)

)
+A2 arctan

(
z
x

)
−α3t

)
,

(31)

where A1 = (α1+α2)α3−β1−β2
2c , A2 = (3α1+α2)α3−3β1−β2

2c .
Note that A1 = A2 = 0 when Z1 = Z2 = 0. Therefore, for simplicity, let us discuss the invariant

solution for this case.
The invariant transformations in this case are:

w = x2 + z2, Z(w) = u e−α3t. (32)

Thus, using (32), Equation (8) can be reduced to the ODE:

4w
(
c2w− 1

)
Z′′ + 4(2c2w− 1)Z′ + α3

2Z = 0. (33)
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It was found that the transformation

w =
r
c2 , Z(w) = R(r) (34)

reduces Equation (33) to the hypergeometric differential equation

r(r− 1)R′′ +
(
(ν + µ + 1)r− γ

)
R′ + νµR = 0 (35)

with ν =
c−
√

c2−α3
2

2c , µ =
c+
√

c2−α3
2

2c , γ = 1. The solution of (35) is given in terms of the
hypergeometric function F(ν, µ; γ; r) as

R(r) = c1F(µ, ν; ν + µ; 1− r) + c2(r− 1)1−ν−µF(1− ν, 1− µ; 2− ν− µ; 1− r). (36)

Therefore, the solution of (33) is

Z(w) = R(c2w). (37)

Thus, the invariant solution of (8) is

u(t, x, z) = eα3t
(

c1F(µ, ν; ν + µ; 1− c2(x2 + z2)) + c2(c2(x2 + z2)− 1)1−ν−µF(1− ν, 1− µ; 2− ν− µ; 1− c2(x2 + z2))
)

. (38)

Another interesting special case when α3 = c, the solution of Equation (35) becomes

R(r) = c1EllipticK(
√

r) + c2EllipticCK(
√

r), (39)

where EllipticK and EllipticCK are respectively the complete and the complementary Elliptic integrals
of the first kind.

Thus, the invariant solution of (8) is

u(t, x, z) = ect
(

c1EllipticK
(√

c2(x2 + z2)
)
+ c2EllipticCK

(√
c2(x2 + z2)

))
. (40)

5.1.2. Non-Solvable Subalgebras of of L

As is well known, all three-dimensional non-solvable subalgebras are simple. As they have no
non-trivial ideal, we use the method of reduced row echelon form of operators in any convenient basis.
As shown in [21], the operators of the three-dimensional non-solvable subalgebra in the reduced row
echelon form always form an abelian algebra. Clearly, the joint invariants of the three-dimensional
non-solvable subalgebra are the same as those of this abelian algebra. Using this, we find that the joint
invariants for L as follows:

Example 2. In the case of L1 = 〈V1, V2, V3〉, by writing L1 in the reduced row echelon form, the fundamental
set of the invariants can be obtained by solving the following system:


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




It

Ix

Iy

Iz

Iu

 =


0
0
0
0
0

 . (41)
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Clearly, the joint invariants are t, u. Therefore, the invariant transformations are:

w = t, Z(w) = u. (42)

Thus, using (125), Equation (8) can be reduced to the ODE:

Z′′ = 0, (43)

which has the solution
Z(w) = c1 + c2 w. (44)

Thus, the invariant solution of (8) is

u(t) = c1 + c2 t. (45)

Example 3. In the case of L2 = 〈V4, V5, V6〉, since the reduced row echelon form of the operators of L2 coincides
with that in (124), it follows that they have the same solution.

5.2. Invariant Solutions of the Wave Equation on Anti-Einstein Spacetime

5.2.1. Solvable Subalgebras of L

Example 4. Case L1 = 〈V3 + αV4 + Z1, V5, V6〉, α 6= 0. The generators of L1 in Cartesian coordinates are
as follows:

V3 + αV4 + Z1 = α1
∂
∂t − y ∂

∂x + x ∂
∂y + α

√
1 + c2(x2 + y2 + z2) ∂

∂z , β1u ∂
∂u ,

V5 = (
√

1 + c2(x2 + y2 + z2) + cz) ∂
∂y − cy ∂

∂z ,
V6 = (

√
1 + c2(x2 + y2 + z2) + cz) ∂

∂x − cx ∂
∂z .

(46)

The transversality condition (24) of (46) with rank three is always satisfied. Since the derived Lie
algebra generated by L1 is 〈V5, V6〉 which is abelian, one can find the invariants of L1 by starting with
V5 or V6. The invariants of V5 are:

m1 = t, m2 = x, m3 =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
, m4 = u. (47)

The operator V6 can be given in terms of the variables mi, i = 1, . . . , 4 as

V6 = 1
m3

∂
∂m2

. (48)

Next, the invariants of V6 are

n1 = m1, n2 = m3, n3 = m4. (49)

In terms of the variables ni, i = 1, 2, 3, the remaining operator is

V3 + αV4 + Z1 = α1
∂

∂m1
− α cn2

∂
∂n2

+ β1n3
∂

∂n3
. (50)

We have to study the following two cases:

• Case 1: If α1 6= 0, the invariants of V3 + αV4 + Z1 are

n2 e
cα
α1

n1 , n3 e−
β1
α1

n1 . (51)
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Writing the invariants (51) in terms of the original variables gives the joint invariants of L1 as

−cz +
√

1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
e

α c
α1

t, ue−
β1
α1

t.

Therefore, the invariant transformations are:

w =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
e

α c
α1

t, Z(w) = u e−
β1
α1

t. (52)

Thus, using (52), Equation (12) can be reduced to the ODE:

c
((

α2 + α1
2
)

c + 2 α β1

)
w Z′ + c2

(
α2 − α1

2
)

w2 Z′′ + β1
2 Z = 0, (53)

which has the non-trivial solution for the following cases:

1. α2 − α2
1 6= 0:

Z (w) = c1 w
−cα1

2−α β1+α1

√
c2α1

2+2 cα β1+β1
2

(α2−α1
2)c + c2 w

−cα1
2−α β1−α1

√
c2α1

2+2 cα β1+β1
2

(α2−α1
2)c . (54)

2. α2 − α2
1 = 0, cα1 + β1 6= 0:

Z (w) = c1 w
− β2

1
2cα1 (α1 c+β1) . (55)

Thus, the invariant solution of (12) is

u(t, x, y, z) = Z
(−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
e

α c
α1

t
)

e
β1
α1

t (56)

• Case 2: If α1 = 0, the invariants of V3 + αV4 + Z1 are

n1, n3n2
β1
α c . (57)

Writing the invariants (57) in terms of the original variables gives the joint invariants of L1 as

t, u

(
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)

) β1
α c

.

Therefore, the invariant transformations are:

w = t, Z(w) = u

(
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)

) β1
α c

. (58)

Thus, using (58), Equation (12) can be reduced to the ODE:

α2Z′′ − β1 ( β1 + 2α c) Z = 0, (59)

which has the solution

Z (w) = c1 e

√
β2

1+2β1 α c
α w + c2 e−

√
β2

1+2β1 α c
α w. (60)
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Thus, the invariant solution of (12) is

u(t, x, y, z) = Z(t)

(
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)

)− β1
α c

. (61)

Example 5. Case L2 = 〈V3 + Z1, V5, V6〉. The generators of L2 in Cartesian coordinates are as follows:

V3 + Z1 = α1
∂
∂t − y ∂

∂x + x ∂
∂y + β1u ∂

∂u ,
V5 = (

√
1 + c2(x2 + y2 + z2) + cz) ∂

∂y − cy ∂
∂z ,

V6 = (
√

1 + c2(x2 + y2 + z2) + cz) ∂
∂x − cx ∂

∂z .

(62)

The transversality condition (24) of (62) with rank three is satisfied for α1 6= 0. Since the derived
Lie algebra generated by L2 is 〈V5, V6〉 which is abelian, one can find the invariants of L2 by starting
with the invariants of 〈V5, V6〉 which are given by (49) as

n1 = t, n2 =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
, n3 = u. (63)

In terms of the variables ni, i = 1, 2, 3, the remaining operator is

V3 + Z1 = α1
∂

∂n1
+ β1n3

∂
∂n3

. (64)

Finally, the invariants of V3 + Z1 are

n2, n3 e−
β1
α1

n1 . (65)

Writing the invariants (65) in terms of the original variables gives the joint invariants of L2 as

−cz +
√

1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
, ue−

β1
α1

t.

Therefore, the invariant transformations are:

w =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2(x2 + y2)
, Z(w) = ue−

β1
α1

t. (66)

Thus, using (66), Equation (12) can be reduced to the Cauchy–Euler ODE:

w2Z′′ − wZ′ −
( β1

cα1

)2
Z = 0, (67)

which has the solution

Z (w) = c1 w
cα1+
√

c2α1
2+β1

2

cα1 + c2 w
cα1−
√

c2α1
2+β1

2

cα1 . (68)

Thus, the invariant solution of (12) is

u(t, x, y, z) = Z
(−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2(x2 + y2)

)
e

β1
α1

t. (69)
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Example 6. Case L3 = 〈V4 + Z1, V5, V6〉. The generators of L3 in Cartesian coordinates are as follows:

V4 + Z1 = α1
∂
∂t +

√
1 + c2(x2 + y2 + z2) ∂

∂z + β1u ∂
∂u ,

V5 = (
√

1 + c2(x2 + y2 + z2) + cz) ∂
∂y − cy ∂

∂z ,
V6 = (

√
1 + c2(x2 + y2 + z2) + cz) ∂

∂x − c x ∂
∂z .

(70)

The transversality condition (24) of (70) with rank three is always satisfied. Since the derived Lie
algebra generated by L3 is 〈V5, V6〉 which is abelian, one can find the invariants of L3 by starting with
the invariants of 〈V5, V6〉 which are given by (49) as

n1 = t, n2 =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
, n3 = u. (71)

In terms of the variables ni, i = 1, 2, 3, the remaining operator is

V4 + Z1 = α1
∂

∂n1
− c n2

∂
∂n2

+ β1n3
∂

∂n3
. (72)

We have to consider the following two cases:

• Case 1: If α1 6= 0, the invariants of V4 + Z1 are

n2e
c

α1
n1 , n3e−

β1
α1

n1 . (73)

Writing the invariants (73) in terms of the original variables gives the joint invariants of L3 as

−cz +
√

1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
e

ct
α1 , ue−

β1
α1

t. (74)

Therefore, the invariant transformations are:

w =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
e

ct
α1 , Z(w) = u e−

β1
α1

t. (75)

Thus, using (75), Equation (12) can be reduced to the ODE:

c2
(

α2
1 − 1

)
w2Z′′ −

((
1 + α1

2
)

c + 2 β1

)
cwZ′ − β1

2Z = 0, (76)

which has the non-trivial solution for the following cases:

1. α2
1 − 1 6= 0:

Z (w) = c1 w
cα1

2+β1+α1

√
c2α1

2+2 cβ1+β1
2

c(α1
2−1) + c2 w

cα1
2+β1−α1

√
c2α1

2+2 cβ1+β1
2

c(α1
2−1) , (77)

2. α2
1 − 1 = 0, c + β1 6= 0:

Z (w) = c1 w
− β2

1
2c ( c+β1) . (78)
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Thus, the invariant solution of (12) is

u(t, x, y, z) = Z
(−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)
e

ct
α1

)
e

β1
α1

t. (79)

• Case 2: If α1 = 0, the invariants of V4 + Z1 are

n1, n3 n2
β1
c . (80)

Writing the invariants (80) in terms of the original variables gives the joint invariants of L3 as

t, u

(
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)

) β1
c

. (81)

Therefore, the invariant transformations are:

w = t, Z(w) = u

(
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)

) β1
c

. (82)

Thus, using (82), Equation (12) can be reduced to the Cauchy–Euler ODE:

Z′′ −
(

2 β1 c + β1
2
)

Z = 0, (83)

which has the solution
Z (w) = c1 e

√
β2

1+2 cβ1w + c2 e−
√

β2
1+2 cβ1w. (84)

Thus, the invariant solution of (12) is

u(t, x, y, z) = Z(t)

(
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2 (x2 + y2)

)− β1
c

. (85)

Example 7. Case L4 = 〈V3 + Z1, V4 + Z2, Z3〉, Z3 = V7 + α3V8. The generators of L4 in Cartesian
coordinates are as follows:

V3 + Z1 = α1
∂
∂t − y ∂

∂x + x ∂
∂y + β1 u ∂

∂u ,
V4 + Z2 = α2

∂
∂t +

√
1 + c2(x2 + y2 + z2) ∂

∂z + β2 u ∂
∂u ,

Z3 = ∂
∂t + α3 u ∂

∂u .
(86)

The transversality condition (24) of (86) with rank three is always satisfied. Since the Lie algebra
generated by L4 is abelian, one can find the invariants of L4 in any order. The invariants of Z3 are:

m1 = x, m2 = y, m3 = z, m4 = ue−α3 t. (87)

The operators can be given in terms of the variables mi, i = 1, . . . , 4 as

V3 + Z1 = −m2
∂

∂m1
+ m1

∂
∂m2

+ (β1 − α3 α1)m4
∂

∂m4
,

V4 + Z2 =
√

1 + c2(m1
2 + m22 + m32) ∂

∂m3
+ (β2 − α2 α3)m4

∂
∂m4

.
(88)
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Next, the invariants of V3 + Z1 are

n1 = m1
2 + m2

2, n2 = m3, n3 = m4e(β1−α3 α1) arctan
(

m1
m2

)
. (89)

In terms of the variables ni, i = 1, 2, 3, the remaining operator is

V4 + Z2 =
√

1 + c2(n1 + n22) ∂
∂n1

+ (β2 − α2 α3) n3
∂

∂n3
. (90)

Finally, the invariants of V4 + Z2 are

n1, n3

(
c n2 +

√
1 + c2(n1 + n22)

) α2 α3−β2
c

. (91)

Writing the invariants (91) in terms of the original variables gives the joint invariants of L4 as

x2 + y2, ue−α3 teA1 arctan
(

x
y

) (
cz +

√
1 + c2 (x2 + y2 + z2)

)A2

, (92)

where A1 = (β1 − α3 α1) , A2 = α2 α3−β2
c .

Therefore, the invariant transformations are:

w = x2 + y2, Z(w) = ue−α3 teA1 arctan
(

x
y

) (
cz +

√
1 + c2 (x2 + y2 + z2)

)A2

. (93)

Thus, using (93), Equation (12) can be reduced to the ODE:

4(w2 + c2w3)Z′′ + 4(w− c2 (A2 − 2)w2)Z′ +
( ((

A2
2 − 2 A2

)
c2 − α2

)
w + A1

2
)

Z = 0, (94)

which can be transformed using the transformation w = − r
c2 .

Z(w) = r
1
2 iA1 R(r) to the hypergeometric differential equation

r(r− 1)R′′ +
(
(ν + µ + 1)r− γ

)
R′ + νµR = 0 (95)

with ν =
(1+iA1−A2)c+

√
c2+α3

2

2c , µ =
(1+iA1−A2)c−

√
c2+α3

2

2c , γ = 1 + iA1. The solution of (95) is given in
terms of the hypergeometric function F(ν, µ; γ; r) as

R(r) = c1F(ν, µ; γ; r) + c2r1−γF(ν− γ + 1, µ− γ + 1; 2− γ; r). (96)

Therefore, the solution of (94) is

Z(w) = (−c2w)
1
2 (γ−1)R(−c2w). (97)

Thus, the invariant solution of (12) is

u(t, x, y, z) = Z(x2 + y2) eα3 tei(γ−1) arctan
(

x
y

) (
cz +

√
1 + c2 (x2 + y2 + z2)

)3ν−γ−µ

, (98)

where α2
3 = c2(ν− µ)2 − c2.
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Example 8. Case L5 = 〈V4 + Z1, V5, Z3〉, Z3 = V7 + α3V8. The generators of L5 in Cartesian coordinates
are as follows:

V4 + Z1 = α1
∂
∂t +

√
1 + c2(x2 + y2 + z2) ∂

∂z + β1u ∂
∂u ,

V5 = (
√

1 + c2(x2 + y2 + z2) + cz) ∂
∂y − cy ∂

∂z ,
Z3 = ∂

∂t + α3u ∂
∂u .

(99)

The transversality condition (24) of (99) with rank three is always satisfied. Since the derived Lie
algebra generated by L5 is 〈V5〉, one can find the invariants of L5 by starting with V5. The invariants
of V5 are:

m1 = t, m2 = x, m3 = u, m4 =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2(x2 + y2)
. (100)

The operators can be given in terms of the variables mi, i = 1, . . . , 4 as

V4 + Z1 = α1
∂

∂m1
+ β1m3

∂
∂m3
− cm4

∂
∂m4

,
Z3 = ∂

∂t + α3m3
∂

∂m3
.

(101)

Next, the invariants of V4 + Z1 are

n1 = m2, n2 = m3e−
β1
α1

m1 , n3 = m4e
c

α1
m1 . (102)

In terms of the variables ni, i = 1, 2, 3, the remaining operator is

Z3 = (α3 α1−β1)
α1

n2
∂

∂n2
+ c

α1
n3

∂
∂n3

. (103)

Finally, the invariants of Z3 are

n1, n2 n3
β1−α3 α1

c . (104)

Writing the invariants (104) in terms of the original variables gives the joint invariants of L5 as

x, u e−α3t
( 1 + c2(x2 + y2)

−cz +
√

1 + c2(x2 + y2 + z2)

)A1
, (105)

where A1 = β1−α1α3
c .

Therefore, the invariant transformations are:

w = x, Z(w) = u e−α3t
( 1 + c2(x2 + y2)

−cz +
√

1 + c2(x2 + y2 + z2)

)A1
. (106)

Thus, using (106), Equation (12) can be reduced to the ODE:(
c2w2 + 1

)
Z′′ − c2 (2A1 − 3)wZ′ +

(
c2(A2

1 − 2A1)− α2
3

)
Z = 0. (107)

It was found using Maple software (Maple 13.0, Waterloo Maple Inc., Waterloo, ON, Canada) that
the transformation

w =
r
ic

, Z (w) =
(

r2 − 1
) 1

2 A1− 1
4 R (r) (108)

reduces Equation (107) to the associated Legendre equation

(1− r2)R′′ − 2rR′ +
(

ν(ν + 1)− µ2

1− r2

)
R = 0 (109)
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with ν =
2
√

c2+α2
3−c

2c , µ = A1 − 1
2 . Therefore, the solution of (107) is

Z (w) =
(
−c2w2 − 1

) µ
2
(

c1Pµ
ν (icw) + c2Qµ

ν (icw)
)

, (110)

where Pµ
ν and Qµ

ν are the associated Legendre functions of the first and second kinds respectively. Thus,
the invariant solution of (12) is

u(t, x, y, z) = Z(x) eα3t
(−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2(x2 + y2)

)µ+ 1
2
, (111)

where α2
3 = c2(ν + 1

2 )
2 − c2.

Example 9. Case L6 = 〈V5 + Z1, V6 + Z2, Z3〉, Z3 = V7 + α3V8. The generators of L6 in Cartesian
coordinates are as follows:

V5 + Z1 = α1
∂
∂t + (

√
1 + c2(x2 + y2 + z2) + cz) ∂

∂y − cy ∂
∂z + β1u ∂

∂u ,
V6 + Z2 = α2

∂
∂t + (

√
1 + c2(x2 + y2 + z2) + cz) ∂

∂x − cx ∂
∂z + β2 u ∂

∂u ,
Z3 = ∂

∂t + α3 u ∂
∂u .

(112)

The transversality condition (24) of (112) with rank three is always satisfied. Since the Lie algebra
generated by L6 is abelian, one can find the invariants of L6 in any order. The invariants of Z3 are:

m1 = x, m2 = y, m3 = z, m4 = ue−α3 t. (113)

The operators can be given in terms of the variables mi, i = 1, . . . , 4 as

V5 + Z1 = (
√

1 + c2 (m1
2 + m22 + m32) + cm3)

∂
∂m2
− cm2

∂
∂m3

+ (β1 − α3 α1)m4
∂

∂m4
,

V6 + Z2 = (
√

1 + c2 (m1
2 + m22 + m32) + c m3)

∂
∂m1
− c m1

∂
∂m3

+ (β2 − α2 α3)m4
∂

∂m4
.

(114)

Next, the invariants of V5 + Z1 are

n1 = m1,

n2 =
−cm3+

√
1+c2(m1

2+m2
2+m3

2)

1+c2(m1
2+m2

2)
,

n3 = m4e

(α3 α1−β1)m2

(
−cm3+

√
1+c2(m1

2+m2
2+m3

2)
)

1+c2(m1
2+m2

2) .

(115)

In terms of the variables ni, i = 1, 2, 3, the remaining operator is

V6 + Z2 = 1
n2

∂
∂n1

+ (β2 − α2 α3) n3
∂

∂n3
. (116)

Finally, the invariants of V6 + Z2 are

n2, n3 e(α2 α3−β2)n1n2 . (117)

Writing the invariants (117) in terms of the original variables gives the joint invariants of L6 as

−cz +
√

1 + c2 (x2 + y2 + z2)

1 + c2(x2 + y2)
, ue−αte

(
A1x+A2y

)(
−cz+
√

1+c2(x2+y2+z2)
1+c2(x2+y2)

)
, (118)

where A1 = α2α3 − β2, A2 = α1α3 − β1.
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Therefore, the invariant transformations are:

w =
−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2(x2 + y2)
, Z(w) = ue−αte

(
A1x+A2y

)(
−cz+
√

1+c2(x2+y2+z2)
1+c2(x2+y2)

)
. (119)

Thus, using (119), Equation (12) can be reduced to the ODE:

c2w2Z′′ − c2wZ′ +
(
(A2

1 + A2
2)w

2 − α2
3

)
Z = 0, (120)

which can be transformed using the transformation w = r, Z(w) = rR(r) to the parametric
Bessel equation:

r2R′′ + rR′ +
(

α2r2 − v2
)

R = 0 (121)

with α =

√
A1

2+A2
2

c , v =
√

c2+α2

c .
Therefore, the solution of (120) is

Z(w) = c1wJv(αw) + c2wYv(αw), (122)

where Jv and Yv are the Bessel functions of the first and second kind, respectively. Thus, the invariant
solution of (12) is

u(t, x, y, z) = Z
(−cz +

√
1 + c2(x2 + y2 + z2)

1 + c2(x2 + y2)

)
eα3te

(
A1x+A2y

)(
cz−
√

1+c2(x2+y2+z2)
1+c2(x2+y2)

)
. (123)

5.2.2. Non-Solvable Subalgebras of L

Example 10. Case L1 = 〈V4, V5, V5− 2cV2〉. By writing L1 in the reduced row echelon form, the fundamental
set of the invariants can be obtained by solving the following system:


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




It

Ix

Iy

Iz

Iu

 =


0
0
0
0
0

 . (124)

Clearly, the joint invariants are t, u. Therefore, the invariant transformations are:

w = t, Z(w) = u. (125)

Thus, using (125), Equation (12) can be reduced to the ODE:

Z′′ = 0, (126)

which has the solution
Z(w) = c1 + c2 w. (127)

Thus, the invariant solution of (12) is

u(t) = c1 + c2 t. (128)



Symmetry 2018, 10, 665 25 of 26

6. Concluding Remarks and Future Research

Improved algorithms of the expansion method introduced by Ovsiannikov [6] are introduced to
construct the optimal systems of dimension of at most three of non-solvable Lie algebra. The algorithms
are then applied to determine the Lie algebra structure and optimal systems of the symmetries of
the wave equation on static spherically symmetric spacetimes admitting G7 as an isometry algebra,
while joint invariants and invariant solutions corresponding to three-dimensional optimal systems are
also found. The energy density e(u) = 1

2 gijuiuj and the corresponding energy of the solutions can be
investigated for physical significance of the wave functions obtained in the examples.

It would be of interest to complete and extend this study by applying the algorithms in this paper
to equations of physical interest on all static and non-static spherically symmetric spacetimes and to
find the corresponding invariant solutions.
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