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Abstract: Existing control charts based on failure-censored (Type-II) reliability tests were designed
using classical statistics. Classical statistics was applied for the monitoring of the process when
observations in the sample or the population were determined. Neutrosophic statistics (NS) are
applied when there is uncertainty in the sample or population. In this paper, a control chart for
failure-censored (Type-II) reliability tests was designed using NS. The design of a control chart for the
Weibull distribution, which is applied when there is a lack of symmetry using neutrosophic statistics,
is given. The proposed control chart was used to monitor the neutrosophic mean and neutrosophic
variance, which are related to the neutrosophic scale parameter. The advantages of the proposed
control chart over the existing control chart are discussed.

Keywords: neutrosophic logic; neutrosophic statistics; classical statistics; neutrosophic Weibull
distribution; control chart

1. Introduction

During the manufacturing process, the monitoring of two variations, which can shift the process
from the specified target, is an important task. The presence of only the common cause of variation
does not affect the manufacturing process. Yet, the presence of a special cause of variation may
cause more defects. The control chart is an effective tool, which is widely used in the industry for
monitoring the production process. The control chart gives an immediate indication of when the
process is shifted from the set target in the presence of a special case of variation. A timely indication is
helpful for engineers to sort out the problems in the production process. Therefore, the main objectives
of the control chart are to give a quick indication of the shift in the process, to reduce the number of
defective products, and to maintain the high quality of the product. Control charts are designed under
the assumption that the production data follow the normal distribution or come from the normal
manufacturing process. However, experience show that, in the chemical industry, the processes of
cutting tool wear and concentrate production follow a skewed distribution [1]. Therefore, several
researchers designed control charts in the case of non-normal underlying distributions. Reference [2]
designed a control chart for sign statistics. Reference [3] designed Shewhart control charts in the case
of skewed data. Reference [4] presented a chart for a gamma distribution. Reference [5] developed a
cost model chart for non-normal data. Reference [6] proposed a median control chart. Reference [7]
proposed a chart for the Burr distribution. For more details on such control charts, the reader may
refer to [8–18].

In the modern era, every reputable industry and company is trying to enhance the quality of
their product. The target of creating high-quality products is achieved only by increasing the average
lifetime of the product. The reliability, which is the probability that an equipment or a product performs
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well for the specified period, is used to measure the high quality of the product. For the monitoring of
highly reliable products, it is not possible to wait for a specified number of failures. To save cost and
time, time-truncated experiments are important. In Type-I censoring, the time of the experiment is
fixed and, in Type-II censoring, the number of failures is fixed. The applications of Type-I censoring,
Type-II censoring, and progressive and mixed censoring are found in [19–26].

The Weibull distribution is very popular in the area of quality control and reliability due
to its flexibility of parameters. The Weibull distribution, due to its bathtub curve, is fitted
well to the reliability phenomena. References [27–29] discussed the applications of the Weibull
distribution. Reference [30] designed a control chart in which the process follows a Weibull distribution.
Reference [31] designed a bootstrap control chart for this distribution. References [32,33] introduced
control charts using time-truncated life tests. Recently, Khan et al. [34] designed a control chart for a
failure-censored reliability test for the Weibull distribution. A detailed discussion of Type-II censoring
control charts can be found in references [19–26].

The existing control chart using Type-II censoring is designed under the assumption that all
observations are determined. According to reference [35], “observations include human judgments,
and evaluations and decisions; a continuous random variable of a production process should include
the variability caused by human subjectivity or measurement devices, or environmental conditions.
These variability causes create vagueness in the measurement system.” In this case, a control chart
using the fuzzy approach was used for monitoring the process. Therefore, fuzzy logic is applied to
the design of control charts when the experiment is not sure about some parameters. Several authors
contributed in this area and designed control charts using the fuzzy approach such as reference [36]
who introduced fuzzy logic in statistical quality control (SQC). Reference [37] introduced an algorithm
using fuzzy approach. Reference [38] discussed the application of fuzzy control charts. Reference [35]
proposed a Shewhart control chart using this approach. Reference [39] presented a literature review
on fuzzy control charts. Reference [40] worked on a fuzzy U control chart. Reference [41] designed
fuzzy variable control charts and Reference [42] also worked on a fuzzy control chart. More details
on fuzzy control charts can be found in references [43–49]. Industrial applications can be found in
references [50–53].

Reference [54] mentioned that traditional fuzzy logic is a special case of neutrosophic logic (NS).
According to reference [54], neutrosophic logic can be applied when there exists indeterminacy in the
observations or the parameters. Based on neutrosophic logic, reference [55] introduced descriptive
neutrosophic statistics (NS). Reference [55] argued that NS is an extension of classical statistics. NS
has many applications in a variety of areas. References [56,57] applied NS to study rock roughness
issues. References [58,59] designed sampling plans using NS. Recently, reference [60] introduced
NS in the area of control charts. They designed an attribute control chart using the neutrosophic
statistical interval method (NSIM). Reference [60] designed a variance control chart using the NSIM.
They showed the efficiency of charts using NS over those based on classical statistics. Upon exploring
the literature, we found no work on the design of control charts for failure-censored reliability tests
in the uncertainty environment. In this paper, we focus on the design of such control charts using
the NSIM. We hypothesized that the proposed chart using the NSIM would be more adequate and
effective in the uncertainty environment than the existing control chart based on classical statistics.
The state of the art product is described in the next section. The advantages of the proposed chart and
a case study are given in Sections 3 and 4, respectively. Some conclusions are given in the final section.
More details failure censored reliability can be seen in reference [61].

2. State of the Art

The failure time of the complements is measured through complex systems or devices. Therefore,
it may be possible that some failure times are undetermined or unclear in terms of measurements.
As mentioned earlier, NS is the generalization of the classical statistics that is applied when the
observations in the sample are indeterminate or unclear. Suppose that the failure time indeterminacy
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interval XNiε{XL, XU} = i = 1, 2, 3, . . . , nN , where XL denotes the determinate part and XU denotes
the indeterminate part, follows the neutrosophic Weibull distribution. Reference [59] introduced the
following neutrosophic cumulative distribution function (ncdf) of the Weibull distribution.

FN(xN ; mN , λN) = 1− exp
(
−(λN xN)

mN
)
; xN ≥ 0, mNε{mL, mU}, λNε{λL, λU} (1)

where mNε{mL, mU} is the neutrosophic shape parameter and λNε{λL, λU} is the neutrosophic scale
parameter. The neutrosophic Weibull distribution reduces to a neutrosophic exponential distribution
when λNε{−1, 1}. The average lifetime of the neutrosophic Weibull distribution is shown below.

µN =
ΓN(1/mN)

mNλN
; mNε{mL, mU}, λNε{λL, λU} (2)

where ΓN(x) is the neutrosophic gamma function.
We designed a failure-censored control chart in the case of the failure time following the

neutrosophic Weibull distribution to monitor the neutrosophic average and neutrosophic variance,
which are related to λNε{λL, λU}. The proposed control chart is stated in the following steps.

1. Choose a random sample of the size nNε{nL, nU} and begin the test. Continue with the test until
rN are reached and note the ith failure time, say X(iN) (i = 1, . . . , rN).

2. Compute the following statistic under NSIM:

vN =
rN

∑
i=1

(X(iN)

µ0N

)mN

+ (nN − rN)

(X(iN)

µ0N

)mN

; mNε{mL, mU}, λNε{λL, λU} (3)

where µ0Nε{µL, µU} is the specified neutrosophic mean time.
3. Declare the process in the control state if LCLN ≤ vN ≤ UCLN where LCLN and UCLN

denote the neutrosophic lower control limit (NLCL) and neutrosophic upper control limit
(NUCL), respectively.

The operational process of the proposed control chart consists of two neutrosophic control limits.
The proposed control chart under the NSIM is an extension of Khan et al. [34] control chart under the
classical statistics. The proposed chart reduces to Khan et al. [34] chart when no uncertain observations
or parameters are in the sample or in the population.

Suppose that the process is an in-control state at a neutrosophic scale parameter λ0Nε{λ0L, λ0U}.
The neutrosophic average life is shown in the equation below.

µ0N =
ΓN(1/mN)

mNλN
; mNε{mL, mU}, λNε{λL, λU}. (4)

Note here that the proposed chart under NISM is independent of µ0Nε{µL, µU}. Reference [60]
mentioned that statistic vNε{vL, vU} is modeled by the neutrosophic gamma distribution with
rNε{rL, rU} and w0Nε{w0L, w0U} (see [60]). The neutrosophic parameter w0Nε{w0L, w0U} is defined
by the equation below.

w0N = (λ0Nµ0N)
mN =

(
ΓN(1/mN)

mN

)mN

; mNε{mL, mU}, λ0Nε{λ0L, λ0U}. (5)

Note here that 2vNw0N with 2rN degrees of freedom is modeled by a neutrosophic chi-squared
distribution. The probability that the process is an in-control state, say P0N

in at λ0Nε{λ0L, λ0U} under
the NISM, is derived by using the equation below.

P0N
in

∣∣∣λ0N = P(LCLN ≤ vN ≤ UCLN |λ0N) = GN2rN (2UCLNw0N)−GN2rN (2LCLNw0N) (6)
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where GN2rN (x) with 2rN represents the neutrosophic distribution function of neutrosophic chi-squared
distribution. Similarly, the probability that the process is out-of-control when actually in control at
λ0Nε{λ0L, λ0U} is given by the equation below.

P0N
out

∣∣∣λ0N = P(vN ≥ UCLN |λ0N) + P(vN ≤ LCLN |λ0N) ; λ0Nε{λ0L, λ0U} (7)

or
P0N

out

∣∣∣λ0N = 1−G2rN (2UCLNw0N) + G2rN (2LCLNw0N) ; λ0Nε{λ0L, λ0U}. (8)

The average run length under the NISM is known as the neutrosophic average run length (NARL),
which is introduced by Aslam et al. [60] and given by the equation below.

NARL0N =
1

P0N
out

∣∣∣λ0N

; NARL0Nε{NARL0L, NARL0U}. (9)

Several special causes of variations may shift the process away from the given target. Let λ1N =

cλ0N ; λ1Nε{λ0L, λ0U} denotes the shifted neutrosophic scale parameter where c denotes the shift
constant. The neutrosophic average life and w1N parameter at λ1N is given by Equations (10) and (11).

µ1N =
ΓN(1/mN)

mNλ1N
; mNε{mL, mU}, λNε{λL, λU} (10)

w1N = (λ1Nµ0)
m = cmw0N . (11)

Note that vNε{vL, vU} is modeled by the neutrosophic gamma distribution having rNε{rL, rU}
and w1Nε{w1L, w1U}. The probability of in-control under the NISM at λ1Nε{λ0L, λ0U} is given by the
formula below.

P1N
in

∣∣∣λ1N = P(LCLN ≤ vN ≤ UCLN |λ1N) = G2rN (2UCLNw1N)−G2rN (2LCLNw1N). (12)

The probability of out-of-control under the NISM at λ1Nε{λ0L, λ0U} is given by Equation (13) or
Equation (14) below.

P1N
in

∣∣∣λ1N = P(vN ≥ UCLN |λ1N) + P(vN ≤ LCLN |λ1N) (13)

P1N
in

∣∣∣λ1N = 1−G2rN (2UCLNw1N) + G2rN (2LCLNw1N). (14)

The NARL for the shifted process is given by Equation (15).

NARL1N =
1

P1N
out

∣∣∣λ0N

; NARL1Nε{NARL1L, NARL1U}. (15)

Suppose that r0Nε{rL, rU} denotes the specified value of NARL0Nε{NARL0L, NARL0U}. The
values of NARL1Nε{NARL1L, NARL1U} are shown in Tables 1–4 for various values of mNε{mL, mU},
λNε{λL, λU} and rNε{rL, rU}. From Tables 1–4, we note that, for the same values of other specified
parameters, the values of NARL decrease as the neutrophil parameter mN increases.
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Table 1. The values of NARL when mN = [0.4, 0.6] and λN = [0.45, 0.55].

Neutrosophic Control Limits rN=[2,5]

LCLN [0.0595, 0.778] [0.0484, 0.708] [0.0401, 0.621]
UCLN [6.1131, 11.498] [6.6267, 11.801] [6.0133, 11.331]

c NARL1N

0.1 [10.28, 1.45] [13.43, 1.49] [9.81, 1.43]
0.2 [28.02, 2.91] [40.55, 3.11] [26.63, 2.81]
0.3 [57.00, 6.20] [88.45, 6.86] [55.42, 5.87]
0.4 [95.77, 13.22] [155.28, 15.12] [98.58, 12.32]
0.5 [137.44, 27.61] [226.82, 32.64] [155.05, 25.52]
0.6 [172.70, 55.32] [283.97, 67.72] [218.65, 51.63]
0.7 [195.74, 102.02] [316.96, 130.22] [279.38, 100.34]

0.75 [202.48, 131.52] [324.90, 172.01] [305.64, 136.51]
0.8 [206.48, 161.66] [328.31, 216.90] [328.06, 181.27]

0.85 [208.20, 188.06] [328.22, 258.76] [346.29, 233.11]
0.9 [208.11, 206.64] [325.53, 290.79] [360.32, 287.91]

0.92 [207.68, 211.35] [323.91, 299.73] [364.80, 309.24]
0.95 [206.66, 215.43] [321.01, 308.62] [370.39, 339.15]
0.98 [205.29, 216.16] [317.68, 312.24] [374.70, 365.18]
0.99 [204.76, 215.74] [316.49, 312.36] [375.88, 372.78]

1 [204.20, 215.021] [315.26, 311.99] [376.92, 379.77]
1.1 [197.40, 196.27] [301.78, 288.42] [381.40, 413.47]
1.2 [189.38, 168.95] [287.42, 248.89] [377.72, 392.50]
1.3 [181.06, 142.89] [273.34, 210.15] [369.13, 347.01]
1.4 [172.94, 120.90] [260.06, 177.26] [357.92, 298.46]
1.5 [165.25, 103.03] [247.76, 150.53] [345.55, 255.18]
1.6 [158.07, 88.61] [236.47, 129.01] [332.90, 218.90]
1.7 [151.42, 76.92] [226.14, 111.61] [320.47, 189.04]
1.8 [145.30, 67.36] [216.70, 97.42] [308.54, 164.53]
1.9 [139.65, 59.47] [208.06, 85.73] [297.23, 144.29]
2 [134.44, 52.89] [200.13, 76.01] [286.60, 127.46]

2.5 [113.69, 32.17] [168.76, 45.55] [242.88, 75.01]
3 [99.01, 21.79] [146.74, 30.45] [211.32, 49.30]
4 [79.63, 12.21] [117.73, 16.65] [169.38, 26.17]
5 [67.30, 8.05] [99.31, 10.76] [142.69, 16.46]
6 [58.70, 5.87] [86.47, 7.69] [124.09, 11.50]

Table 2. The values of NARL when mN = [0.9, 1.10] and λN = [0.45, 0.55].

Neutrosophic Control Limits rN=[2,5]

LCLN [0.0865, 1.08] [0.0693, 0.961] [0.0621, 0.933]
UCLN [8.7698, 16.05] [9.1713, 16.073] [9.2462, 17.103]

c NARL1N

0.1 [1.47, 1.01] [1.51, 1.00] [1.52, 1.00]
0.2 [2.73, 1.14] [2.92, 1.14] [2.96, 1.12]
0.3 [5.42, 1.64] [6.05, 1.64] [6.17, 1.55]
0.4 [11.04, 2.96] [12.83, 2.97] [13.21, 2.66]
0.5 [22.54, 6.42] [27.35, 6.46] [28.43, 5.44]
0.6 [45.01, 15.99] [57.26, 16.15] [60.31, 12.76]
0.7 [84.15, 43.51] [112.87, 44.57] [121.43, 33.20]

0.75 [109.92, 71.90] [151.64, 75.13] [165.63, 54.94]
0.8 [137.49, 114.27] [195.01, 124.35] [216.93, 91.1923033]

0.85 [163.49, 165.47] [237.85, 193.61] [270.02, 148.57]
0.9 [184.36, 206.18] [273.92, 266.89] [317.40, 228.62]

0.92 [190.70, 214.58] [285.30, 289.78] [333.15, 264.14]
0.95 [197.82, 217.32] [298.53, 310.99] [352.37, 314.84]
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Table 2. Cont.

Neutrosophic Control Limits rN=[2,5]

0.98 [202.13, 210.10] [307.11, 314.91] [365.94, 354.61]
0.99 [202.98, 206.08] [308.97, 312.77] [369.22, 364.14]

1 [203.55, 201.49] [310.37, 309.19] [371.89, 371.54]
1.1 [197.60, 145.94] [304.06, 235.50] [371.27, 343.99]
1.2 [180.35, 101.35] [277.91, 163.84] [342.17, 250.67]
1.3 [161.00, 71.96] [247.86, 115.38] [306.11, 177.06]
1.4 [143.14, 52.65] [220.06, 83.59] [272.03, 127.50]
1.5 [127.65, 39.62] [195.98, 62.26] [242.29, 94.23]
1.6 [114.45, 30.55] [175.50, 47.53] [216.92, 71.35]
1.7 [103.22, 24.08] [158.11, 37.08] [195.36, 55.21]
1.8 [93.64, 19.35] [143.28, 29.49] [176.96, 43.55]
1.9 [85.40, 15.82] [130.53, 23.86] [161.16, 34.95]
2 [78.26, 13.13] [119.51, 19.60] [147.48, 28.49]

2.5 [53.68, 6.21] [81.58, 8.83] [100.47, 12.32]
3 [39.61, 3.67] [59.90, 4.97] [73.63, 6.67]
4 [24.73, 1.92] [37.06, 2.38] [45.38, 2.97]
5 [17.31, 1.37] [25.72, 1.58] [31.38, 1.85]
6 [13.03, 1.15] [19.20, 1.26] [23.33, 1.40]

Table 3. The values of NARL when mN = [2.4, 2.6] and λN = [0.45, 0.55].

Neutrosophic Control Limits rN=[2,5]

LCLN [0.119, 1.27] [0.106, 1.07] [0.0882, 0.955]
UCLN [12.029, 18.76] [13.87, 18.84] [13.089, 18.984]

c NARL1N

0.1 [1.00, 1.00] [1.00, 1.00] [1.00, 1.00]
0.2 [1.0, 1.00] [1.02, 1.00] [1.01, 1.00]
0.3 [1.09, 1.00] [1.12, 1.00] [1.11, 1.00]
0.4 [1.35, 1.01] [1.47, 1.01] [1.42, 1.01]
0.5 [2.03, 1.09] [2.41, 1.09] [2.24, 1.09]
0.6 [3.85, 1.44] [5.19, 1.44] [4.57, 1.45]
0.7 [9.45, 2.74] [15.11, 2.77] [12.40, 2.81]

0.75 [16.32, 4.52] [28.77, 4.59] [22.75, 4.70]
0.8 [29.86, 8.52] [58.00, 8.7.00] [44.56, 8.99]

0.85 [56.52, 18.41] [117.97, 18.96] [90.98, 19.80]
0.9 [104.00, 45] [214.7, 47.4] [180.79, 50.26]

0.92 [128.33, 65.61] [254.10, 70.55] [229.02, 75.59]
0.95 [164.80, 113.08] [295.89, 129.5] [302.41, 142.57]
0.98 [191.91, 173.85] [307.79, 226.65] [355.84, 263.97]
0.99 [197.40, 191.41] [305.72, 264.90] [366.03, 317.43]

1 [200.93, 204.62] [301.36, 302.15] [372.12, 374.36]
1.1 [166.99, 127.68] [214.78, 262.21] [300.84, 411.25]
1.2 [114.56, 53.35] [144.52, 106.83] [204.15, 166.01]
1.3 [79.65, 24.85] [100.14, 47.67] [141.14, 72.39]
1.4 [57.02, 12.92] [71.51, 23.63] [100.48, 34.96]
1.5 [41.92, 7.41] [52.44, 12.87] [73.43, 18.52]
1.6 [31.55, 4.65] [39.36, 7.64] [54.91, 10.67]
1.7 [24.26, 3.16] [30.16, 4.91] [41.91, 6.63]
1.8 [19.00, 2.31] [23.55, 3.38] [32.59, 4.42]
1.9 [15.15, 1.81] [18.70, 2.49] [25.76, 3.14]
2 [12.26, 1.49] [15.08, 1.94] [20.67, 2.37]

2.5 [5.18, 1.03] [6.23, 1.08] [8.29, 1.14]
3 [2.82, 1.00] [3.30, 1.00] [4.23, 1.00]
4 [1.40, 1.00] [1.54, 1.00] [1.82, 1.00]
5 [1.08, 1.00] [1.12, 1.00] [1.21, 1.00]
6 [1.01, 1.00] [1.02, 1.00] [1.04, 1.00]
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Table 4. The values of NARL when mN = [2.40, 2.60] and λN = [1.90, 2.10].

Neutrosophic Control Limits rN=[2,5]

LCLN [0.121, 1.36] [0.109, 0.815] [0.0908, 1.21]
UCLN [12.3, 19.9] [15.135, 18.198] [13.5992, 21.39]

c NARL1N

0.1 [1.00, 1.00] [1.00, 1.00] [1.00, 1.00]
0.2 [1.01, 1.00] [1.02, 1.00] [1.02, 1.00]
0.3 [1.10, 1.00] [1.15, 1.00] [1.12, 1.00]
0.4 [1.37, 1.01] [1.55, 1.00] [1.45, 1.02]
0.5 [2.08, 1.11] [2.72, 1.07] [2.35, 1.14]
0.6 [4.02, 1.53] [6.42, 1.39] [4.97, 1.68]
0.7 [10.11, 3.18] [20.95, 2.55] [14.12, 3.89]

0.75 [17.71, 5.54] [42.43, 4.10] [26.61, 7.31]
0.8 [32.83, 11.15] [89.79, 7.50] [53.45, 16.03]

0.85 [62.65, 25.8] [181.82, 15.73] [110.80, 40.93]
0.9 [114.54, 66.39] [294.62, 37.93] [216.44, 117.07]

0.92 [140.01, 96.61] [323.83, 56.07] [268.18, 176.84]
0.95 [175.93, 156.06] [337.46, 104.54] [337.22, 294.34]
0.98 [199.53, 203.24] [322.35, 200.44] [375.37, 375.25]
0.99 [203.48, 208.65] [313.57, 248.88] [379.59, 379.24]

1 [205.45, 208.09] [303.79, 307.56] [379.96, 371.89]
1.1 [163.83, 98.63] [203.67, 744.86] [286.61,161.48]
1.2 [111.83, 41.49] [136.53, 321.09] [193.27, 65.86]
1.3 [77.73, 19.68] [94.63, 136.05] [133.63, 30.25]
1.4 [55.66, 10.43] [67.61, 63.56] [95.17, 15.48]
1.5 [40.93, 6.11] [49.61, 32.46] [69.59, 8.73]
1.6 [30.82, 3.92] [37.26, 17.98] [52.07, 5.38]
1.7 [23.70, 2.73] [28.58, 10.71] [39.77, 3.59]
1.8 [18.58, 2.04] [22.33, 6.83] [30.94, 2.58]
1.9 [14.81, 1.63] [17.75, 4.64] [24.47, 1.98]
2 [12.00, 1.38] [14.33, 3.34] [19.65, 1.61]

2.5 [5.08, 1.02] [5.95, 1.29] [7.92, 1.04]
3 [2.77, 1.00] [3.17, 1.02] [4.06, 1.00]
4 [1.39, 1.00] [1.51, 1.00] [1.77, 1.00]
5 [1.07, 1.00] [1.11, 1.00] [1.19, 1.00]
6 [1.01, 1.00] [1.01, 1.00] [1.04, 1.00]

The following algorithm under the NISM is applied to determine the neutrosophic control limits
and NARL1Nε{NARL1L, NARL1U}:

1. Specify mNε{mL, mU}, λNε{λL, λU} and rNε{rL, rU}.
2. Specify r0Nε{rL, rU} and determine the neutrosophic control limits such that NARL0N ≥ r0N .
3. Several combinations exist that satisfy the condition NARL0N ≥ r0N . However, choose the

combination of the neutrosophic parameters where NARL0N is very close to r0N .
4. Use neutrosophic control limits to find NARL1Nε{NARL1L, NARL1U}.

3. Advantages of the Proposed Chart

In the NS, by following reference [54], we defined the NARL as NARL1N = ARL1L + uI where
ARL1L is the average run length (ARL) for the determined part under the classical statistics, uI is an
indeterminate part for ARL1L, and Iε{in f I, supI} presents the indeterminacy. When there are certain
observations in the sample or in the population, the indeterminate part uI = 0 and NARL1N under the
NS becomes the same as the ARL under the classical statistics. According to reference [57], under the
uncertainty settings, a method that provides the indeterminacy interval of NARL is said to be a more
efficient and effective method than the method that provides a determined value of ARL1. The values
of NARL1N from the proposed control chart under NISM and ARL1 from Aslam et al. [34] under the
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classical statistics are in Table 5 at the same levels of all specified control chart parameters. From Table 5,
we note that the proposed control chart has the values of NARL1N in the indeterminacy interval while
the existing control chart under the classical statistics provides only the determined values of ARL1. For
example, when c = 0.1, we have NARL1N = 1.45+ 1.45I; Iε{0, 7.09}. Thus, the determinate par is ARL1

= 1.45 and the indeterminate part is 1.45I; Iε{0, 7.09}. Therefore, the indeterminacy interval of NARL1N

is NARL1N = [10.287, 1.451]; Iε{0, 7.09}. From this example, it is clear that the proposed control chart
has determinate and indeterminate information under the indeterminate situation. Therefore, the
proposed control chart is more effective under the indeterminate situation than Aslam et al. [34] chart,
which is a special case of the proposed chart.

Table 5. The comparison of the proposed chart with the existing one when mN = [0.4, 0.6], λN =

[0.45, 0.55], and rN = [2, 5].

Neutrosophic
Control Limits Proposed Control Chart Existing Control Chart

LCLN
NARL0N∈[200,200] NARL0N∈[300,300] NARL0N∈[370,370] ARL = 200 ARL = 300 ARL = 370

UCLN

c NARL1 ARL1

0.1 [10.28, 1.45] [13.43, 1.49] [9.81, 1.43] 1.45 1.49 1.43
0.2 [28.02, 2.91] [40.55, 3.11] [26.63, 2.81] 2.91 3.11 2.81
0.3 [57.00, 6.20] [88.45, 6.86] [55.42, 5.87] 6.20 6.86 5.87
0.4 [95.77, 13.22] [155.28, 15.12] [98.58, 12.32] 13.22 15.1 12.32
0.5 [137.44, 27.61] [226.82, 32.64] [155.05, 25.52] 27.61 32.6 25.52
0.6 [172.70, 55.32] [283.97, 67.72] [218.65, 51.63] 55.32 67.72 51.63
0.7 [195.74, 102.02] [316.96, 130.22] [279.38, 100.34] 102.02 130.22 100.34

0.75 [202.48, 131.52] [324.90, 172.01] [305.64, 136.51] 131.52 172.01 136.51
0.8 [206.48, 161.66] [328.31, 216.90] [328.06, 181.27] 161.66 216.90 181.27

0.85 [208.20, 188.06] [328.22, 258.76] [346.29, 233.11] 188.06 258.76 233.11
0.9 [208.11, 206.64] [325.53, 290.79] [360.32, 287.91] 206.64 290.79 287.91

0.92 [207.68, 211.35] [323.91, 299.73] [364.80, 309.24] 211.35 299.73 309.24
0.95 [206.66, 215.43] [321.01, 308.62] [370.39, 339.15] 215.43 308.62 339.15
0.98 [205.29, 216.16] [317.68, 312.24] [374.70, 365.18] 216.16 312.24 365.18
0.99 [204.76, 215.74] [316.49, 312.36] [375.88, 372.78] 215.74 312.36 372.78

1 [204.20, 215.02] [315.26, 311.99] [376.92, 379.77] 215.02 311.99 376.92
1.1 [197.40, 196.27] [301.78, 288.42] [381.40, 413.47] 196.27 288.42 381.40
1.2 [189.38, 168.95] [287.42, 248.89] [377.72, 392.50] 168.95 248.89 377.7
1.3 [181.06, 142.89] [273.34, 210.15] [369.13, 347.01] 142.89 210.15 347.01
1.4 [172.94, 120.90] [260.06, 177.26] [357.92, 298.46] 120.90 177.26 298.46
1.5 [165.25, 103.03] [247.76, 150.53] [345.55, 255.18] 103.03 150.53 255.18
1.6 [158.07, 88.61] [236.47, 129.01] [332.90, 218.90] 88.61 129.01 218.90
1.7 [151.42, 76.92] [226.14, 111.61] [320.47, 189.04] 76.92 111.61 189.04
1.8 [145.30, 67.36] [216.70, 97.42] [308.54, 164.53] 67.36 97.42 164.53
1.9 [139.65, 59.47] [208.06, 85.73] [297.23, 144.29] 59.47 85.73 144.29
2 [134.44, 52.89] [200.13, 76.01] [286.60, 127.46] 52.89 76.01 127.46

2.5 [113.69, 32.17] [168.76, 45.55] [242.88, 75.01] 32.17 45.55 75.01
3 [99.01, 21.79] [146.74, 30.45] [211.32, 49.30] 21.79 30.45 49.30
4 [79.63, 12.21] [117.73, 16.65] [169.38, 26.17] 12.21 16.65 26.17
5 [67.30, 8.05] [99.31, 10.76] [142.69, 16.46] 8.05 10.76 16.46
6 [58.70, 5.87] [86.47, 7.69] [124.09, 11.50] 5.87 7.69 11.50

Now, we compare the performance of the proposed control chart under NISM with the chart
under the classical statistics using the simulated data. The neutrosophic data was generated from the
neutrosophic Weibull distribution with parameters mN = [2.40, 2.60] and λN = [0.45, 0.55]. The first
20 neutrosophic observations were generated when the process was in-control at λN = [0.45, 0.55]
and the next 20 neutrosophic observations were generated from the shifted process when c = 0.85.
From Table 3, the indeterminacy interval of NARL1N is NARL1Nε{90.98, 19.80}. Under the uncertainty
environment, it is expected that the process will be out-of-control between the 19th and 90th samples
when c = 0.85. The values of vNε{vL, vU} are plotted on the control chart in Figure 1. From Figure 1,
we note the proposed control chart under NISM detected a shift at the 39th sample. The values of v are
also plotted on the existing chart in Figure 2. From Figure 2, we note that the existing control chart
under classical statistics did not detect any shift in the process. By comparing Figures 1 with 2, we
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conclude that the proposed control chart is more efficient in detecting an early shift in the process than
the existing chart under classical statistics.
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4. Case Study

This section is presented to explain the application of the proposed control chart in the very
popular automobile manufacturing industry located in Japan. For the high quality of the subsystems
of the passenger’s cars, the monitoring of the process is done through the control chart. The quality of
the subsystems of the cars is based on the service time. The data is in days until the service is required
for the subsystems. The service time data of subsystems is measured through the complex equipment.
Therefore, some observations about the time until the service is required are uncertain. The monitoring
of such data cannot be done using the control chart proposed by Aslam et al. [34] under classical
statistics. Under the uncertainty environment, the company has decided to apply the proposed control
chart for the monitoring of service time data. Suppose, for this experiment, the company decided to
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set parameters as rNε[2, 5] and NARL0Nε{370, 370}. The service time data of presenter cars follows
the neutrosophic Weibull distribution with mNε[2.40, 2.60] and λNε[1.90, 2.10]. The vN for this data is
shown in Table 6.

Table 6. The statistics for the service time data.

Sample No. vN Sample No. vN

1 [3.01, 2.76] 21 [0.36, 16.32]

2 [2.61, 7.57] 22 [0.39, 4.44]

3 [7.74, 4.57] 23 [0.98, 10.49]

4 [0.84, 4.25] 24 [6.06, 6.49]

5 [1.19, 10.66] 25 [7.31, 2.59]

6 [2.55, 10.25] 26 [2.54, 9.34]

7 [3.73, 7.66] 27 [6.18, 11.58]

8 [3.37, 6.82] 28 [1.78, 6.91]

9 [6.19, 5.43] 29 [2.61, 7.28]

10 [6.12, 4.31] 30 [5.05, 4.73]

11 [3.03, 9.71] 31 [3.67, 8.89]

12 [0.33, 2.64] 32 [4.74, 6.45]

13 [3.46, 5.18] 33 [0.36, 13.32]

14 [3.11, 11.91] 34 [3.00, 9.29]

15 [1.67, 5.78] 35 [0.67, 11.71]

16 [1.09, 4.59] 36 [0.61, 3.30]

17 [2.29, 8.98] 37 [2.01, 1.69]

18 [2.47, 4.16] 38 [0.29, 15.05]

19 [1.22, 11.02] 39 [1.00, 12.85]

20 [3.13, 7.45] 40 [2.55, 9.40]

For example, for sample #1: the service time in days is XNε{0.357262, 0.510949; 0.077456, 0.122034,
0.241257, 0.289738, 0.369004}. The statistic vN for this sample is computed by using the formula below.

vNε ∑rN
i=1

(X(iN)

µ0N

)mN
+ (nN − rN)

(X(iN)

µ0N

)mN
= {2.76, 3.01}; mN = [2.40, 2.60], rNε[2, 5] and λN =

[1.90, 2.10]. The values of vN are plotted on the control chart in Figure 3. From Figure 3, we note that
several values of the statistic lie in the indeterminacy interval of the control limits. Yet, the control chart
proposed by Aslam et al. [34] in Figure 4 shows that the process is an in-control state. From Figure 3, it
can be noted that several values of plotting statistics are in the indeterminacy interval. Samples #12,
#21, #22, #33, and #37 are very close to the LCLL that needs special attention by the industrial engineers.
However, the existing control chart indicates that only two values are very close to the control limit. By
comparing Figures 3 with 4, we conclude that the proposed control chart is better, more flexible, and
more effective than the existing chart under the uncertainty environment. In addition, the proposed
control chart is more efficient for the monitoring of the process than the existing control chart.
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5. Conclusions

A control chart for failure-censored (Type-II) reliability tests under the NS was presented in
this paper. The necessary measures to apply the proposed control chart were given in the paper.
The proposed control chart was the generalization of the control chart under classical statistics.
A simulation study and real data showed the efficiency of the proposed control chart under the
uncertainty environment. By comparing the proposed chart with the chart under the classical
statistics, we noted that the proposed chart was more effective, more flexible, and adequate for
use in the uncertainty environment. The proposed control chart can be applied in this industry when
there are some uncertain, unclear, and fuzzy observations in the sample or in the population. The
proposed control chart, when using the other sampling schemes or the cost model, can be studied in
future research.



Symmetry 2018, 10, 690 12 of 14

Author Contributions: Conceived and designed the experiments, M.A. (Mohammed Albassam), N.K., and M.A.
(Mohammed Albassam) Performed the experiments, M.A. (Mohammed Albassam) and N.K. Analyzed the data,
M.A. (Mohammed Albassam) and N.K. Contributed reagents/materials/analysis tools, M.A. (Muhammad Aslam).
Wrote the paper, M.A. (Muhammad Aslam).

Funding: This article was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University,
Jeddah. The authors, therefore, acknowledge and thank DSR technical and financial support.

Acknowledgments: The authors are deeply thankful to the editor and reviewers for their valuable suggestions to
improve the quality of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest regarding this paper.

References

1. Aichouni, M.; Al-Ghonamy, A.; Bachioua, L. Control charts for non-normal data: Illustrative example from
the construction industry business. Available online: https://www.google.com.tw/url?sa=t&rct=j&q=
&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjgz4mTn_zeAhWOFogKHXjbCXIQFjAAe
gQICRAC&url=http%3A%2F%2Fwww.wseas.us%2Fe-library%2Fconferences%2F2014%2FMalaysia%2FM
ACMESE%2FMACMESE-10.pdf&usg=AOvVaw1PPU0bV-aBbm7pVZ9wunqY (accessed on 11 November
2018).

2. Amin, R.W.; Reynolds, M.R., Jr.; Saad, B. Nonparametric quality control charts based on the sign statistic.
Commun. Stat. Theory Methods 1995, 24, 1597–1623. [CrossRef]

3. Bai, D.; Choi, I. (x) over-bar-control and r-control charts for skewed populations. J. Qual. Technol. 1995, 27,
120–131. [CrossRef]

4. Al-Oraini, H.A.; Rahim, M. Economic statistical design of x control charts for systems with gamma (λ, 2)
in-control times. Comput. Ind. Eng. 2002, 43, 645–654. [CrossRef]

5. Chen, Y.-K. Economic design of x control charts for non-normal data using variable sampling policy. Int. J.
Prod. Econ. 2004, 92, 61–74. [CrossRef]

6. Ahmad, S.; Riaz, M.; Abbasi, S.A.; Lin, Z. On efficient median control charting. J. Chin. Inst. Eng. 2014, 37,
358–375. [CrossRef]

7. Lio, Y.; Tsai, T.-R.; Aslam, M.; Jiang, N. Control charts for monitoring burr type-x percentiles. Commun. Stat.
Simul. Comput. 2014, 43, 761–776. [CrossRef]

8. Miller, T.; Balch, B. Statistical process control in food processing. ISA Trans. 1991, 30, 35–37. [CrossRef]
9. Kegel, T. Statistical control of a pressure instrument calibration process. ISA Trans. 1996, 35, 69–77. [CrossRef]
10. Chou, C.-Y.; Chen, C.-H.; Liu, H.-R. Economic-statistical design of x¥ charts for non-normal data by

considering quality loss. J. Appl. Stat. 2000, 27, 939–951. [CrossRef]
11. Wu, Z.; Xie, M.; Tian, Y. Optimization design of thex & s charts for monitoring process capability. J. Manuf.

Syst. 2002, 21, 83–92.
12. Venkatesan, G. Process control of product quality. ISA Trans. 2003, 42, 631–641. [CrossRef]
13. Lin, Y.-C.; Chou, C.-Y. On the design of variable sample size and sampling intervals charts under

non-normality. Int. J. Prod. Econ. 2005, 96, 249–261. [CrossRef]
14. Zhang, H.Y.; Shamsuzzaman, M.; Xie, M.; Goh, T.N. Design and application of exponential chart for

monitoring time-between-events data under random process shift. Int. J. Adv. Manuf. Technol. 2011, 57,
849–857. [CrossRef]

15. McCracken, A.; Chakraborti, S. Control charts for joint monitoring of mean and variance: An overview. Qual.
Technol. Quant. Manag. 2013, 10, 17–35. [CrossRef]

16. Addeh, J.; Ebrahimzadeh, A.; Azarbad, M.; Ranaee, V. Statistical process control using optimized neural
networks: A case study. ISA Trans. 2014, 53, 1489–1499. [CrossRef] [PubMed]

17. Celano, G.; Castagliola, P.; Fichera, S.; Nenes, G. Performance of t control charts in short runs with unknown
shift sizes. Comput. Ind. Eng. 2013, 64, 56–68. [CrossRef]

18. Aslam, M.; Azam, M.; Khan, N. X-bar control charts for non-normal correlated data under repetitive
sampling. J. Test. Eval. 2015, 44, 1756–1767. [CrossRef]

19. Pascual, F.; Li, S. Monitoring the weibull shape parameter by control charts for the sample range of type ii
censored data. Qual. Reliab. Eng. Int. 2012, 28, 233–246. [CrossRef]

https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjgz4mTn_zeAhWOFogKHXjbCXIQFjAAe
https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjgz4mTn_zeAhWOFogKHXjbCXIQFjAAe
gQICRAC&url=http%3A%2F%2Fwww.wseas.us%2Fe-library%2Fconferences%2F2014%2FMalaysia%2FM
ACMESE%2FMACMESE-10.pdf&usg=AOvVaw1PPU0bV-aBbm7pVZ9wunqY
http://dx.doi.org/10.1080/03610929508831574
http://dx.doi.org/10.1080/00224065.1995.11979575
http://dx.doi.org/10.1016/S0360-8352(02)00119-5
http://dx.doi.org/10.1016/j.ijpe.2003.09.011
http://dx.doi.org/10.1080/02533839.2013.781794
http://dx.doi.org/10.1080/03610918.2012.714033
http://dx.doi.org/10.1016/0019-0578(91)90052-7
http://dx.doi.org/10.1016/0019-0578(96)00009-2
http://dx.doi.org/10.1080/02664760050173274
http://dx.doi.org/10.1016/S0019-0578(07)60011-1
http://dx.doi.org/10.1016/j.ijpe.2004.05.001
http://dx.doi.org/10.1007/s00170-011-3345-z
http://dx.doi.org/10.1080/16843703.2013.11673306
http://dx.doi.org/10.1016/j.isatra.2013.07.018
http://www.ncbi.nlm.nih.gov/pubmed/24210290
http://dx.doi.org/10.1016/j.cie.2012.10.003
http://dx.doi.org/10.1520/JTE20140290
http://dx.doi.org/10.1002/qre.1239


Symmetry 2018, 10, 690 13 of 14

20. Guo, B.; Wang, B.X. Control charts for monitoring the weibull shape parameter based on type-ii censored
sample. Qual. Reliab. Eng. Int. 2014, 30, 13–24. [CrossRef]

21. Haghighi, F.; Pascual, F.; Castagliola, P. Conditional control charts for weibull quantiles under type ii
censoring. Qual. Reliab. Eng. Int. 2015, 31, 1649–1664. [CrossRef]

22. Chan, Y.; Han, B.; Pascual, F. Monitoring the weibull shape parameter with type ii censored data. Qual.
Reliab. Eng. Int. 2015, 31, 741–760. [CrossRef]

23. Wang, F.K.; Bizuneh, B.; Cheng, X.B. New control charts for monitoring the weibull percentiles under
complete data and type-ii censoring. Qual. Reliab. Eng. Int. 2018, 34, 403–416. [CrossRef]

24. Asadzadeh, S.; Kiadaliry, F. Monitoring type-2 censored reliability data in multistage processes. Qual. Reliab.
Eng. Int. 2017, 33, 2551–2561. [CrossRef]

25. Aslam, M.; Arif, O.H.; Jun, C.-H. An attribute control chart for a weibull distribution under accelerated
hybrid censoring. PLoS ONE 2017, 12, e0173406. [CrossRef] [PubMed]

26. Guo, B.; Wang, B.X.; Xie, M. Arl-unbiased control charts for the monitoring of exponentially distributed
characteristics based on type-ii censored samples. J. Stat. Comput. Simul. 2014, 84, 2734–2747. [CrossRef]

27. Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers; John Wiley & Sons: New York,
NY, USA, 2010.

28. Rausand, M.; Høyland, A. System Reliability Theory: Models, Statistical Methods, and Applications; John Wiley &
Sons: New York, NY, USA, 2004; Volume 396.

29. Borror, C.M.; Keats, J.B.; Montgomery, D.C. Robustness of the time between events cusum. Int. J. Prod. Res.
2003, 41, 3435–3444. [CrossRef]

30. Nelson, P.R. Control charts for weibull processes with standards given. IEEE Trans. Reliab. 1979, 28, 283–288.
[CrossRef]

31. Nichols, M.D.; Padgett, W. A bootstrap control chart for weibull percentiles. Qual. Reliab. Eng. Int. 2006, 22,
141–151. [CrossRef]

32. Aslam, M.; Jun, C.-H. Attribute control charts for the weibull distribution under truncated life tests. Qual.
Eng. 2015, 27, 283–288. [CrossRef]

33. Aslam, M.; Khan, N.; Jun, C.-H. A control chart for time truncated life tests using pareto distribution of
second kind. J. Stat. Comput. Simul. 2015, 86, 2113–2122. [CrossRef]

34. Khan, N.; Aslam, M.; Raza, S.M.M.; Jun, C.H. A new variable control chart under failure-censored reliability
tests for Weibull distribution. Qual. Reliab. Eng. Int. 2018. [CrossRef]

35. Senturk, S.; Erginel, N. Development of fuzzy x∼-r∼ and x∼-s∼ control charts using α-cuts. Inf. Sci. 2009,
179, 1542–1551. [CrossRef]

36. Rowlands, H.; Wang, L.R. An approach of fuzzy logic evaluation and control in spc. Qual. Reliab. Eng. Int.
2000, 16, 91–98. [CrossRef]

37. El-Shal, S.M.; Morris, A.S. A fuzzy rule-based algorithm to improve the performance of statistical process
control in quality systems. J. Intell. Fuzzy Syst. 2000, 9, 207–223.
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