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Abstract

:

In this article, we prove some fixed-point theorems in b-dislocated metric space. Thereafter, we propose a simple and efficient solution for a non-linear integral equation and non-linear fractional differential equations of Caputo type by using the technique of fixed point.
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1. Introduction


The F-contraction is widely renowned, and has provided research contributions on various aspects in fixed-point theory for over 10 years.



Definition 1

([1]). Let (X,d) be a metric space. A mapping T:X→X is said to be a F-contraction on (X,d) if there exist F along with C1,C2,C3 and τ>0 such that


(⋆)d(Tx,Ty)>0⇒τ+F(d(Tx,Ty))≤F(d(x,y)).













From above we have:

	
every F-contraction is necessarily continuous;



	
every F-contraction is need not be a Banach contraction.








Now we present a list of certain F-contractive conditions for a self-map on a metric space:

	(E1)

	
12d(x,Tx)<d(x,y)⇒τ+F(d(Tx,Ty))≤F(d(x,y)),




	(E2)

	
12d(x,Tx)<d(x,y)⇒τ+F(d(Tx,Ty))≤Fd(x,y),d(x,Tx),d(y,Ty),d(x,Tx)+d(y,Ty)4,




	(E3)

	
d(Tx,Ty)>0⇒τ+F(d(Tx,Ty))≤Fmaxd(x,y),d(x,Tx),d(y,Ty),d(x,Ty)+d(y,Tx)2




	(E4)

	
d(Tx,Ty)>0⇒τ+F(d(Tx,Ty))≤F(d(x,y)+Ld(y,Tx)) and



d(Tx,Ty)>0⇒τ+F(d(Tx,Ty))≤F(d(x,y)+Ld(x,Ty))




	(E5)

	
ϖ(d(x,y))+F(d(Tx,Ty))≤F(f1d(x,y)+f2d(x,Tx)+f3d(y,Ty)+f4d(x,Ty)+f5d(y,Tx))




	(E6)

	
ϖ(d(x,y))+F(d(Tx,Ty))≤F(d(x,y))






for all x,y∈X, where τ>0, T:X→X,F:R0+→R and ϖ:(0,∞)→(0,∞).



Below is the list of necessary conditions which helps authors to establish the statements of the certain F-contractions and treated as main tool to obtain fixed points:

	(C1). 

	
F is strictly increasing;




	(C2). 

	
limn→∞t1n=0ifandonlyiflimn→∞F(t1n)=−∞;




	(C3). 

	
There exists k∈(0,1) such that limt1→0+t1kF(t1)=0;




	(C4). 

	
inf F = −∞;




	(C5). 

	
F is continuous on (0,∞);




	(C6). 

	
lim infu→v+ϖ(u)>0 for all v≥0;




	(C7). 

	
limv→0+F(v)=−∞.









We present a list of F-contractions and we named these conditions with their respective authors:

	1°.

	
Secelean type F-contraction [2] if T satisfies (⋆) along with (C1), (C4) and (C5);




	2°.

	
Piri type F-contraction [3] if T satisfies (E1) along with (C1), (C4) and (C5);




	3°.

	
Karapınar type F-contraction [4] if T satisfies (E2) along with (C1), (C4) and (C5);




	4°.

	
Wardowski-I type F-contraction [5] if T satisfies (E3) along with (C1), (C2) and (C3);




	5°.

	
Minak type F-contraction [6] if T satisfies (E3) along with (C1), (C2) and (C3);




	6°.

	
Minak-I type F-contraction [6] if T satisfies (E4) along with (C1), (C2) and (C3);




	7°.

	
Vetro type F-contraction [7] if T satisfies (E5) along with (C1), (C2),(C3) and (C6);




	8°.

	
Wardowski-II type F-contraction [8] if T satisfies (E6) along with (C1), (C6) and (C7);




	9°.

	
A. Lukacs and S. Kajanto type F-contraction [9] if T satisfies (⋆) along with (C1) and (C3);









If we consider the F-contraction in the theory of fixed point, we can see various developments in it. More particularly, the techniques used to obtain fixed points in [1] have attracted several authors. In this scenario, many authors imposed various restrictions to obtain the existence of a fixed point (see for example [10,11,12,13,14,15]).



On the other hand, there are many generalizations on the concept of metric spaces in the literature. In particular, Matthews [16] introduced the notion of dislocated metric space under the name ’metric domains’. Later, in 2000, Hitzler and Seda [17] renamed these spaces as ’dislocated metric spaces’ as below:

Definition 2

([17]). A dislocated metric on a nonempty set X is a function d:X×X→[0,+∞) such that for all x,y,z∈X. Then the following conditions hold good:

	1.

	
d(x,y)=0⇒x=y;




	2.

	
d(x,y)=d(y,x);




	3.

	
d(x,y)≤d(x,z)+d(z,y).






The pair (X,d) is called a dislocated metric space.







Very recently, Alghamdi et al. [18] introduced b-dislocated metric space as below.



Definition 3

([18]). A b-dislocated metric on a nonempty set X is a function d:X×X→[0,+∞) such that for all x,y,z∈X and a constant b≥1 the following conditions hold good:

	1.

	
d(x,y)=0⇒x=y;




	2.

	
d(x,y)=d(y,x);




	3.

	
d(x,y)≤k[d(x,z)+d(z,y)].






The pair (X,d) is called a b-dislocated metric space. Moreover, if k=1 then b-dislocated metric space becomes dislocated metric space as in [16,17].





The structure properties of convergent, Cauchy and complete of b-dislocated metric space can be found in [18] as below:

Definition 4

([18]). Let (X,d) be a b-dislocated metric space, and let {xn} be a sequence of points of X. Then {xn} called,

	
Convergent to x if and only if limn→+∞d(x,xn)=0



	
Cauchy if and only if limm,n→∞d(xn,xm) exists and is tends to finite.



	
Complete if and only if every Cauchy sequence {xn} in X converges to x∈X this gives


limm,n→∞d(xn,xm)=0=limn→∞d(xn,x).




















The study of dislocated metric space and its generalizations was very interesting and expanded very extensively. For more info, the reader can refer to [19,20,21,22,23,24,25,26].



Motivated by Wardowski [1], we introduce the notions of an extended F-contraction and weak-generalized F-contraction. Furthermore, we establish some fixed-point results for given named contractions. Thereafter, we propose a simple and efficient solution for a non-linear integral equation by using the technique of fixed point in the setting of b-dislocated metric space.




2. Extended F-Contraction


Now we start this section by introducing below definition.



Definition 5.

Let (X,d) be a b-dislocated metric space. A mapping T:X→X is said to be an Extended F-contraction if there exists F∈F and τ>0 such that for all x,y∈X with d(Tx,Ty)>0,


12kd(x,Tx)<d(x,y)⇒τ+F(d(Tx,Ty))≤F(A(x,y))








where,


A(x,y)=A1(k+1)kd(x,y)+A2[d(x,Tx)+d(y,Ty)]+A3d(x,Ty)+d(y,Tx)3k+A4d(x,x)+d(y,y)4k








here A1,A2,A3,A4≥0, A1(k+1)k+2(A2+A3+A4)<1 and F:R+→R is a mapping satisfying the following conditions:

	1.

	
F is an order embedding. i.e., for all t1,t2∈R+ we have t1≤t2⇒F(t1)≤F(t2).




	2.

	
F is sub-additive, i.e., for t1,t2,s1,s2∈R+ we have


F(s1t1+s2t2)≤s1F(t1)+s2F(t2)












	3.

	
For every sequence {t1n}n∈N of positive numbers


limn→∞t1n=0ifandonlyiflimn→∞F(t1n)=−∞;














Let F denote the family of all functions F:R+→R which satisfy conditions (1),(2) and (3).





Under this new scenario, we will prove below theorem.



Theorem 1.

Let (X,d) be a complete b-dislocated metric space such that d is a continuous function. If T is an Extended F-contraction then T has a unique fixed point.





Proof. 

Now, take x∈X and build a sequence {xn} as follows:


xn=Txn−1=Tnx,foralln∈Nwherex0=x.











If there exists n⋆∈N such that d(xn⋆,Txn⋆)=0 then x⋆=xn⋆ turn into a fixed point which completes the proof. As a result, we assume for every n∈N,


0<d(xn,Txn).



(1)







Therefore, from (1), we have


12kd(xn,Txn)<d(xn,Txn)=d(xn,xn+1),foralln∈N



(2)







Since T is Extended F-contraction,


τ+F(d(Txn,Txn+1))≤F(A(xn,xn+1))≤F{A1(k+1)kd(xn,xn+1)+A2[d(xn,Txn)+d(xn+1,Txn+1)]+A3d(xn,Txn+1)+d(xn+1,Txn)3k+A4d(xn,xn)+d(xn+1,xn+1)4k}≤F{A1(k+1)kd(xn,xn+1)+A2[d(xn,xn+1)+d(xn+1,xn+2)]+A3d(xn,xn+2)+d(xn+1,xn+1)3k+A4d(xn,xn)+d(xn+1,xn+1)4k}



(3)







From triangle inequality, we have,


d(xn,xn+2)≤k[d(xn,xn+1)+d(xn+1,xn+2)]



(4)




and


d(xn+1,xn+1)≤2kd(xn+2,xn+1)≤2k[d(xn+1,xn+2)+d(xn,xn+1)]



(5)







By using (4) and (5),


d(xn,xn+2)+d(xn+1,xn+1)3k≤d(xn,xn+1)+d(xn+1,xn+2).



(6)







Also,


d(xn,xn)≤2kd(xn,xn+1)≤2k[d(xn,xn+1)+d(xn+1,xn+2)]



(7)







From (5) and (7),


d(xn,xn)+d(xn+1,xn+1)4k≤d(xn,xn+1)+d(xn+1,xn+2).



(8)







From (3),(7) and (8) we get


τ+F(d(Txn,Txn+1))≤F{A1(k+1)kd(xn,xn+1)+A2[d(xn,xn+1)+d(xn+1,xn+2)]+A3d(xn,xn+1)+d(xn+1,xn+2)+A4d(xn,xn+1)+d(xn+1,xn+2)}



(9)







Since F∈F,


τ+F(d(xn+1,xn+2))≤A1(k+1)kF(d(xn,xn+1))+A2F(d(xn,xn+1))+A2F(d(xn+1,xn+2))+A3F(d(xn,xn+1))+A3F(d(xn+1,xn+2))+A4F(d(xn,xn+1))+A4F(d(xn+1,xn+2))≤A1(k+1)k+A2+A3+A4F(d(xn,xn+1))+(A2+A3+A4)F(d(xn+1,xn+2))



(10)






⇒(1−A2−A3−A4)F(d(xn+1,xn+2))≤A1(k+1)k+A2+A3+A4F(d(xn,xn+1)−τ










⇒F(d(xn+1,xn+2))≤A1(k+1)k+A2+A3+A4(1−A2−A3−A4)F(d(xn,xn+1)−τ1−(A2+A3+A4)










F(d(xn+1,xn+2))≤ΥF(d(xn,xn+1)−τ1−(A2+A3+A4)



(11)




where Υ=A1(k+1)k+A2+A3+A4(1−A2−A3−A4)<1.



Thus,


F(d(xn+1,xn+2))≤F(d(xn,xn+1)−τ1−(A2+A3+A4)



(12)







If we continue same scenario, we get,


F(d(xn,Txn))=F(d(xn,xn+1))≤F(d(xn−1,xn))−τ1−(A2+A3+A4)≤F(d(xn−2,xn−1))−2τ1−(A2+A3+A4)≤F(d(xn−3,xn−2))−3τ1−(A2+A3+A4)⋮≤F(d(x0,x1))−nτ≤F(d(x0,Tx0))−nτ



(13)







From (13), we obtain,


limn→∞F(d(xn,Txn))=−∞



(14)







From (15) and from the hypothesis, we have


limn→∞F(d(xn,Txn))=limn→∞F(d(xn,xn+1))=0.



(15)







Now, we claim that


limn→∞F(d(xn,xm))=0.



(16)




i.e., {xn} is a Cauchy sequence. Let us suppose that {xn} is not a Cauchy sequence, then there exist ϵ>0 and sequence {a(n)}n=1∞ and {b(n)}n=1∞ of natural numbers such that a(n)>b(n)>n, d(xa(n),xb(n))≥ϵ,


d(xa(n)−1,xb(n))<ϵk,foralln∈N.



(17)







From the triangle inequality, we get,


ϵ≤d(xa(n),xb(n))≤k[d(xa(n),xa(n)−1)+d(xa(n)−1,xb(n))]≤kd(xa(n),xa(n)−1)+ϵ=kd(xa(n)−1,Txa(n)−1)+ϵ



(18)







From (15) and (18) and the sandwich theorem, we get,


limn→∞d(xa(n),xb(n))=ϵ,foralln∈N.



(19)







From Extended F-contraction, we have


τ+F(d(Txa(n),Txb(n)))≤F{A1(k+1)kd(xa(n),xb(n))+A2[d(xa(n),Txa(n))+d(xb(n),Txb(n))]+A3d(xa(n),Txb(n))+d(xb(n),Txa(n))3k+A4d(xa(n),xa(n))+d(xb(n),xb(n))4k}≤F{A1(k+1)kd(xa(n),xb(n))+A2[d(xa(n),xa(n)+1)+d(xb(n),xb(n)+1)]+A3d(xa(n),xb(n)+1)+d(xb(n),xa(n)+1)3k+A4d(xa(n),xa(n))+d(xb(n),xb(n))4k}



(20)







Letting n→∞,


τ+F(ϵ)≤FA1(k+1)kϵ+A3k(ϵ)+k(ϵ)3k≤FA1(k+1)kϵ+2A3ϵ3,



(21)




which is a contradiction.



Hence limm,n→∞d(xn,xm)=0. Thus, the sequence {xn}n=1∞ is a Cauchy in X.



Since (X,d) is a Complete b-dislocated metric space, there exists ω∈X such that


d(ω,ω)=limn→∞d(xn,ω)=limm,n→∞d(xn,xm)=0.



(22)







From (22)


d(xn+1,Tω)≤k[d(xn+1,ω)+d(ω,Tω)]








letting n→∞,


limn→∞d(xn+1,Tω)=kbd(ω,Tω)



(23)







We now prove that for every n∈N


12kd(xn,Txn)<d(xn,ω)or12kd(Txn,T2xn)<d(Txn,ω)∀n∈N



(24)




Arguing by contradiction, we assume that there exists e∈N such that


12kd(xe,Txe)≥d(xe,ω)and12kd(Txe,T2xe)≥d(Txe,ω)



(25)







Now from (12),


d(Txe,T2xe)<d(xe,Txe)



(26)







From (25) and (26),


d(xe,Txe)≤k[d(xe,ω)+d(ω,Txe)]≤k12kd(xe,Txe)+12kd(Txe,T2xe)<k12kd(xe,Txe)+12kd(xe,Txe)=d(xe,Txe),



(27)




which is a contradiction. Hence (24) holds.



Suppose 12kd(xn,Txn)<d(xn,ω) is satisfied and d(ω,Tω)>0. From (23) there exists N1∈N such that d(Txn,Tω)=d(xn+1,Tω)>0 for n≥N1. Then from Extended F-contraction (with n≥N1), we have,


τ+F(d(xn+1,Tω))=τ+F(d(Txn,Tω))≤F{A1(k+1)kd(xn,ω)+A2[d(xn,Txn)+d(ω,Tω)]+A3d(xn,Tω)+d(ω,Txn)3k+A4d(xn,xn)+d(ω,ω)4k}≤F{A1(k+1)kd(xn,ω)+A2[d(xn,xn+1)+d(ω,Tω)]+A3d(xn,Tω)+d(ω,xn+1)3k+A4d(xn,xn)+d(ω,ω)4k}



(28)







From (23) there exists Nk∈N with (Nk≥N1) such that for all n≥Nk.


τ+F(d(xn+1,Tω))≤F{A1(k+1)kd(xn+1,ω)+A2d(ω,Tω)+A3kd(xn+1,Tω)+d(ω,xn+1)3k+A42sd(ω,Tω)4k}≤FA2[d(ω,Tω)+A33d(xn+1,Tω)+A4d(ω,Tω)2,



(29)




which implies, (1−A33)F(d(xn+1,Tω))≤(A3+A42)F(d(ω,Tω))−τ



Letting n→∞,


F(d(ω,Tω))≤A2+A421−A33F(d(ω,Tω))−τ1−A33<A2+A421−A33F(d(ω,Tω))<F(d(ω,Tω))∀n≥Nk,



(30)




which is a contradiction.



Now suppose 12kd(Txn,T2xn)<d(Txn,ω) of (24) is true with d(ω,Tω)>0. Noted from (23), there exists Np∈N such that d(T(Txn),Tω)=d(xn+2,Tω)>0 for n≥Np. Then from our assumption with n≥Np, we have


τ+F(d(xn+2,Tω))=τ+F(d(T2xn,Tω))≤F{A1(k+1)kd(Txn,ω)+A2[d(Txn,T2xn)+d(ω,Tω)]+A3d(Txn,Tω)+d(ω,T2xn)3k+A4d(Txn,Txn)+d(ω,ω)4k}≤F{A1(k+1)kd(xn+1,ω)+A2[d(xn+1,xn+2)+d(ω,Tω)]+A3d(xn+1,Tω)+d(ω,xn+2)3k+A4d(xn+1,xn+1)+d(ω,ω)4k}≤F(A2d(ω,Tω)+A33kkbd(ω,Tω))≤A2F(d(ω,Tω))+A33F(d(ω,Tω))



(31)







Letting n→∞,


τ+F(d(ω,Tω)≤A2+A33F(d(ω,Tω)










F(d(ω,Tω)≤A2+A33F(d(ω,Tω))−τ<A2+A33F(d(ω,Tω))<F(d(ω,Tω)),



(32)




which is a contradiction.



Hence we conclude that d(ω,Tω)=0, which gives ω=Tω. Therefore, ω is a fixed point of T.



To prove uniqueness, let ω and ω* are two fixed points of T such that ω≠ω*, which means,


12kd(ω,Tω*)<d(ω,Tω*)=d(ω,ω*)



(33)







Thus, from, Extended F-contraction,


τ+F(d(Tω,Tω*))≤F(A(ω,ω*))≤F{A1(k+1)kd(ω,ω*)+A2[d(ω,Tω)+d(ω*,Tω*)]+A3d(ω,Tω*)+d(ω*,Tω)3k+A4d(ω,ω*)+d(ω*,ω*)4k}≤F{A1(k+1)kd(ω,ω*)+A2[d(ω,ω)+d(ω*,ω*)]+A3d(ω,ω*)+d(ω*,ω)3k}



(34)







From (22), d(ω,ω)=d(ω*,ω*)=0. Therefore (34) becomes:


τ+F(d(ω,ω*))≤F{A1(k+1)kd(ω,ω*)+2A3d(ω,ω*)3k}≤A1(k+1)k+2A33kF(d(ω,ω*))=3A1(k+1)+2A3kkF(d(ω,ω*))<F(d(ω,ω*))



(35)







Thus, F(d(ω,ω*))<F(d(ω,ω*))−τ, this gives a contradiction. Hence ω=ω*. ☐





Example 1.

Consider X={0,1,2}. Let d:X×X→[0,∞) be a mapping defined by


d(0,0)=d(1,1)=0,d(2,2)=2.5;










d(0,2)=d(2,0)=2,d(1,2)=d(2,1)=3;










d(0,1)=d(1,0)=1.5.








We can easily prove that (X,d) is a b-dislocated metric space with k=2. Clearly (X,d) is a complete b-dislocated metric space.





Let T:X→X be given by T0=T1=0 and T2=1. Suppose that F(ν)=−1ν+ν.



Case-1: Let x=0, now d(T0,T0)=d(T0,T1)=d(0,0)=0.



So, we need to consider y=2. Then we have 0.25d(0,T0)<d(0,2).



Consider,


A(0,2)=A11.5d(0,2)+A2[d(0,T0)+d(2,T2)]+A3d(0,T2)+d(2,T0)6+A4d(0,0)+d(2,2)8=A11.5×2+A2[d(0,0)+d(2,1)]+A3d(0,1)+d(2,0)6+A4d(0,0)+d(2,2)8=3A1+A2[0+3]+A31.5+26+A40+2.58=3A1+3A2+0.58A3+0.31A4



(36)







Let A1=0.56,A2=A3=A4=0 such that 1.5A1+2(A2+A3+A4)<1.



Now, A(0,2)=1.68.



Consider,


F(d(T0,T2))−F(A(0,2))=F(d(0,1))−F(A(0,2))=F(1.5)−F(1.68)=−0.66+1.5+0.59−1.68=−0.25=−τ



(37)







In this case, for τ=0.25,T satisfies all the conditions of Theorem 1 and 0 is the unique fixed point.



Case-2: Let x=1, now d(T0,T1)=d(T1,T1)=d(0,0)=0. So, we must consider y=2.


d(1,T1)=d(1,0)=1.5,d(1,2)=3.








Therefore 14d(1,T1)<d(1,2).


A(1,2)=A11.5d(1,2)+A2[d(1,T1)+d(2,T2)]+A3d(1,T2)+d(2,T1)6+A4d(1,1)+d(2,2)8=A11.5×3+A2[d(1,0)+d(2,1)]+A3d(1,1)+d(2,0)6+A4d(1,1)+d(2,2)8=4.5A1+A2[1.5+3]+A30+26+A40+2.58=4.5A1+4.5A2+0.33A3+0.31A4



(38)




Let A1=0.56,A2=A3=A4=0 such that 1.5A1+2(A2+A3+A4)<1.



Consider,


F(d(T1,T2))−F(A(1,2))=F(d(0,1))−F(A(1,2))=F(1.5)−F(2.52)=−1.29=−τ



(39)




In this case, for τ=1.29,T satisfies all the conditions of Theorem 1 and 0 is the unique fixed point.



Case-3: Let x=2, now d(T2,T2)=0. So, we need only consider the case y∈{0,1}.



Subcase-I: If y=0. Please note that 0.25d(2,T2)<d(2,0) as 0.75=0.25d(2,1)<d(2,0)=2.


τ+F(d(T2,T0))≤F(A(2,0)),








follows as in Case-1.



Subcase-II: If y=1, note that 0.25d(2,T2)<d(2,1) as 0.75=0.25d(2,1)<d(2,1)=3.


τ+F(d(T2,T1))≤F(A(2,1)),








follows as in Case-2.



Hence T is an extended F-contraction and it is clear that 0 is the fixed point of T.



If we take k=1, then the above theorem reduces to below corollary.



Corollary 1.

Let (X,d) be a dislocated metric space such that d is a continuous function. If T is an extended F-contraction, i.e., there exists F∈F and τ>0 such that for all x,y∈X with d(Tx,Ty)>0,


12d(x,Tx)<d(x,y)⇒τ+F(d(Tx,Ty))≤F(A(x,y))








where,


A(x,y)=2A1d(x,y)+A2[d(x,Tx)+d(y,Ty)]+A3d(x,Ty)+d(y,Tx)3+A4d(x,x)+d(y,y)4








here A1,A2,A3,A4≥0, 2A1+2(A2+A3+A4)<1. Then T has a unique fixed point.



If we take A2=A3=A4=0 and A1<12 in above theorem, we get below corollary.





Corollary 2.

Let (X,d) be a b-dislocated metric space. If T is an extended F-contraction, i.e., there exists F∈F and τ>0 such that for all x,y∈X with d(Tx,Ty)>0,12d(x,Tx)<d(x,y)⇒τ+F(d(Tx,Ty))≤F(A(x,y)), here, A(x,y)=2A1d(x,y)). Then T has a unique fixed point.






3. Weak-Generalized F-Contraction


Definition 6.

Let (X,d) be a b-dislocated metric space and T:X→X be a mapping. Then T is said to be a Weak-generalized F-contraction if F along with C1,C2,C3 and there exists τ>0 such that ∀x,y∈X,


d(Tx,Ty)>0⇒τ+F(d(Tx,Ty))≤F(S(x,y))



(40)




where


S(x,y)=max{d(x,y),d(x,Tx),d(y,Ty),d(x,Tx)+d(y,Ty)2,d(x,Tx)d(y,Ty)1+d(x,y),d(y,Ty)[1+d(x,Tx)]1+d(x,y),d2(x,Tx)d(y,Ty)1+d2(x,y)}



(41)









Theorem 2.

Let (X,d) be a b-dislocated metric space such that d is continuous functional. If T is a Weak-generalized F-contraction, then T has a unique fixed point.





Proof. 

Choose an arbitrary point x0∈X and define a sequence {xn} in X by xn=Txn−1 for n∈{1,2,3…}.



i.e., x1=Tx0,x2=Tx1=T(Tx0)=T2x0,…xn=Txn−1=Tnx0. If d(xn0,xn0+1)=0 for some n0∈{0,1,2…}, then xn0=xn0+1, which yields xn0=Txn0, and so T has a fixed point. Then there is nothing left to prove, and our proof is complete.



Thus, let us assume d(xn,xn+1)>0 for every n∈{0,1,2…}. i.e., d(Txn−1,Txn)>0.



Now using (36), we get,


τ+F(kbd(Txn−1,Txn))≤F(S(xn−1,xn))



(42)




where


S(xn−1,xn)=max{d(xn−1,xn),d(xn−1,Txn−1),d(xn,Txn),d(xn−1,Txn−1)+d(xn,Txn)2,d(xn,Txn)[1+d(xn−1,Txn−1)]1+d(xn−1,xn),d(xn−1,Txn−1)d(xn,Txn)1+d(xn−1,xn),d2(xn−1,Txn−1)d(xn,Txn)1+d2(xn−1,xn)}=max{d(xn−1,xn),d(xn−1,xn),d(xn,xn+1),d(xn−1,xn)+d(xn,xn+1)2,d(xn,xn+1)[1+d(xn−1,xn)]1+d(xn−1,xn),d(xn−1,xn)d(xn+1,xn)1+d(xn−1,xn),d2(xn−1,xn)d(xn,xn+1)1+d2(xn−1,xn)}≤max{d(xn−1,xn),d(xn,xn+1)}



(43)







This yields,


τ+F(kBd(xn,xn+1))≤F(max{d(xn−1,xn),d(xn,xn+1)})



(44)







If max{d(xn−1,xn),d(xn,xn+1)}=d(xn,xn+1) then τ+F(kbd(xn,xn+1))≤F(d(xn,xn+1)), which is a contradiction, since τ>0.



Hence max{d(xn−1,xn),d(xn,xn+1)}=d(xn−1,xn). Thus, (40) reduces to τ+F(kBd(xn,xn+1))≤F(d(xn−1,xn)). Therefore, we obtain,


F(knd(xn,xn+1))≤F(kn−1d(xn−1,xn))−τ≤F(kn−2d(xn−2,xn−1))−2τ⋮≤F(k0d(x0,x1))−nτ



(45)







Applying limn→∞ in above, we get,


limn→∞F(knd(xn,xn+1))=−∞.











Thus, by using (F2) of Wardowski, we get,


limn→∞knd(xn,xn+1))=0.











Thus, from (F3) there exists ϑ∈(0,1) such that


limn→∞[knd(xn,xn+1)]ϑF(d(xn,xn+1))=0.











By (41), the following holds good for all n∈{1,2,3…},


[knd(xn,xn+1)]ϑF(d(xn,xn+1))−[knd(xn,xn+1)]ϑF(d(x0,x1))≤−[knd(xn,xn+1)]ϑnτ≤0



(46)







Letting n→∞ in (42), we get


limn→∞n[knd(xn,xn+1)]ϑ=0.



(47)







From (43), there exists N1∈{1,2,3…} such that n[d(xn,xn+1)]ϑ≤1 for all n≥N1. Therefore, we have for all n≥N1.


knd(xn,xn+1)≤1n1ϑ



(48)







Now to prove that {xn} is a Cauchy sequence, consider m,n∈N such that m>n≥N1. Using the triangle inequality and from (44), we have,


d(xn,xm)≤k[d(xn,xn+1)+d(xn+1,xm)]≤kd(xn,xn+1)+k[k(d(xn+1,xn+2)+d(xn+2,xm))]≤kbd(xn,xn+1)+k2d(xn+1,xn+2)+k2d(xn+2,xm)⋮≤kbd(xn,xn+1)+k2d(xn+1,xn+2)+k3d(xn+2,xn+3)+...+km−1d(xm−1,xm)



(49)







Thus,


d(xn,xm)≤∑e=nm−1ked(xe,xe+1)≤∑e=n∞ked(xe,xe+1)≤∑e=n∞1e1ϑ



(50)




which is convergent, passing to limit n→∞, then we get limn→∞d(xn,xm)=0. This yields that {xn} is a Cauchy sequence in (X,d).



Since (X,d) is a complete b-dislocated metric space, the sequence {xn} converges to some point ϱ∈X, that is limn→∞xn=ϱ, and d(ϱ,ϱ)=0. As d(ϱ,ϱ)=limn→∞d(xn,ϱ)=limn,m→∞d(xn,xm)=0.



Case-I: If T is continuous. Then we have,


ϱ=limn→∞xn+1=limn→∞Txn=T(limn→∞xn)=Tϱ








and so, ϱ is a fixed point of T.



Case-II: If F is continuous. In this case, we will prove that ϱ=Tϱ. Let us assume that ϱ≠Tϱ.



In this case, there exists an n0∈N and a subsequence {xne} of {xn} such that d(Txne,Tϱ)>0 for all ne≥n0.



Otherwise, if not, there exist n1∈N such that xn=Tϱ for all n≥n1, which yields that xn→Tϱ. This is a contradiction, since ϱ≠Tϱ. Being d(Txne,Tϱ)>0 for all ne≥n0, then from hypothesis, we have,


τ+F(d(xne+1,Tϱ))=τ+F(d(Txne+1,Tϱ))≤F(A(xne,ϱ))



(51)




where,


A(xne,ϱ)=max{d(xne,ϱ),d(xne,Txne),d(ϱ,Tϱ),d(xne,Txne)+d(ϱ,Tϱ)2,d(ϱ,Tϱ)[1+d(xne,Txne)]1+d(xne,ϱ),d(xne,Txne)d(ϱ,Tϱ)1+d(xne,ϱ),d2(xne,Txne)d(ϱ,Tϱ)1+d2(xne,ϱ)}



(52)







From (47),


τ+F(d(xne+1,Tϱ))=max{d(xne,ϱ),d(xne,xne+1),d(ϱ,Tϱ),d(xne,xne+1)+d(ϱ,Tϱ)2,d(ϱ,Tϱ)[1+d(xne,xne+1)]1+d(xne,ϱ),d(xne,xne+1)d(ϱ,Tϱ)1+d(xne,ϱ),d2(xne,xne+1)d(ϱ,Tϱ)1+d2(xne,ϱ)}



(53)







Taking the limit ne→∞ and using the continuity of F, we get,


τ+F(d(ϱ,Tϱ))≤maxd(ϱ,ϱ),d(ϱ,Tϱ),d(ϱ,ϱ)+d(ϱ,Tϱ)2≤max{d(ϱ,ϱ),d(ϱ,Tϱ)}



(54)







Case-A: If max{d(ϱ,ϱ),d(ϱ,Tϱ)}=d(ϱ,Tϱ).



Then from (50), we get,


τ+F(d(ϱ,Tϱ))≤d(ϱ,Tϱ),








which is a contradiction as τ>0.



Case-B: If max{d(ϱ,ϱ),d(ϱ,Tϱ)}=d(ϱ,ϱ).



Then from (50), we get,


τ+F(d(ϱ,Tϱ))≤d(ϱ,ϱ),










⇒τ+F(d(ϱ,Tϱ))≤F(0),








which is a contradiction.



Thus, in the both cases, we get the contradiction due to d(xne+1,Tϱ)>0. Therefore, xne+1=Tϱ, which implies Txne=Tϱ. Thus, Tϱ=ϱ. This gives, ϱ is a fixed point of T. To prove uniqueness, let ϱ and ϱ* are two fixed points of T, i.e. Tϱ=ϱ and Tϱ*=ϱ*.



Let us assume that ϱ≠ϱ*.


⇒d(ϱ,ϱ*)>0










⇒d(Tϱ,Tϱ*)>0











From hypothesis, we get,


τ+F(d(Tϱ,Tϱ*))≤F(A(ϱ,ϱ*))



(55)




where,


A(ϱ,ϱ*)=max{d(ϱ,ϱ*),d(ϱ,Tϱ),d(ϱ*,Tϱ*),d(ϱ,Tϱ)+d(ϱ*,Tϱ*)2,d(ϱ*,Tϱ*)[1+d(ϱ,Tϱ)]1+d(ϱ,ϱ*),d(ϱ,Tϱ)d(ϱ*,Tϱ*)1+d(ϱ,ϱ*),d2(ϱ,Tϱ)d(ϱ*,Tϱ*)1+d2(ϱ,ϱ*)}=max{d(ϱ,ϱ*),d(ϱ,ϱ),d(ϱ*,ϱ*),d(ϱ,ϱ)+d(ϱ*,ϱ*)2,d(ϱ*,ϱ*)[1+d(ϱ,ϱ)]1+d(ϱ,ϱ*),d(ϱ,ϱ)d(ϱ*,ϱ*)1+d(ϱ,ϱ*),d2(ϱ,ϱ)d(ϱ*,ϱ*)1+d2(ϱ,ϱ*)}=max{d(ϱ,ϱ*)}=d(ϱ,ϱ*)



(56)







From hypothesis, we get,


τ+F(d(Tϱ,Tϱ*))≤F(d(ϱ,ϱ*))










⇒τ+F(d(ϱ,ϱ*))≤F(d(ϱ,ϱ*)),








which is a contradiction. Hence ϱ=ϱ*, this completes the proof of the theorem. ☐





Corollary 3.

Let (X,d) be a dislocated metric space such that d is continuous functional. If T is a Weak-generalized F-contraction, i.e., there exist F along with C1,C2,C3 and τ>0 such that ∀x,y∈X,


d(Tx,Ty)>0⇒τ+F(d(Tx,Ty))≤F(O(x,y))








where


O(x,y)=max{d(x,y),d(x,Tx),d(y,Ty),d(x,Tx)+d(y,Ty)2,d(x,Tx)d(y,Ty)1+d(x,y),d(y,Ty)[1+d(x,Tx)]1+d(x,y),d2(x,Tx)d(y,Ty)1+d2(x,y)}.








Then T has a unique fixed point.






4. Application to Non-linear Integral Equation


Now we study the existence of unique solutions for non-linear integral equations as an application using the Theorem 1.



Let us consider the non-linear integral equation:


Ξ(i)=∫0tΛ(i,j)Γ(j,Ξ(j))dj



(57)




for all i,j∈[0,T], where the unknown function Ξ(i) takes real values.



Let X=C([0,T]) be the space of all real continuous functions defined on [0,T]. We endow X with the d-metric d:X×X→R by


d(Ξ,Θ)=supt∈[0,T](|Ξ(i)+Θ(i)|)2








for all Ξ,Θ∈X.



Clearly (X,d,2) is a complete b-dislocated metric space.



Let for all j∈[0,T], Γ(j,.) be a decreasing function, that is:


x,y∈R,x≥y⇒Γ(j,x)≤Γ(j,y)











Define a mapping T:X→X by


TΞ(i)=∫0iΛ(i,j)Γ(j,Ξ(j))dj;foralli∈[0,T].











Furthermore, we assume the following conditions:

	N1:

	
Λ(i,j)≤ejτ2 where τ>0 and j∈[0,T]




	N2:

	
For all j∈[0,T] and Ξ(j),Θ(j)∈X


|Γ(j,Ξ(j))|+|Γ(j,Θ(j))|≤[3A12(Ξ(j)+Θ(j))2+A2[(Ξ(j)+TΞ(j))2+(Θ(j)+TΘ(j))2]+A3(Ξ(j)+TΞ(j))2+(Θ(j)+TΘ(j))26+A4(2Ξ(j))2+(2Θ(j))28]12τ2e−τ2








where A1,A2,A3,A4≥0 and 3A12+2(A2+A3+A4)<1.









For Ξ∈X, we define a norm ||Ξ||τ=supi∈[0,T]|Ξ(i)|e−τi. It is easy to check that ||.||τ is equivalent to the supremum norm ||.|| in X, and X is endowed with the d-metric d defined by


d(Ξ,Θ)=||Ξ+Θ||τ=supi∈[0,T]{(|Ξ(i)|+|Θ(i)|)2e−iτ};forΞ,Θ∈X.



(58)




Then (X,d) is a complete b-dislocated metric space.



Now we will prove the existence of unique solution of the non-linear integral Equation (53).



Theorem 3.

Let (X,d) be a b-dislocated metric space as defined above with assuming the above conditions N1 and N2. Then the non-linear integral Equation (53) have a unique solution.



Proof: Let Ξ,Θ∈X and i∈[0,T] then consider,







[|TΞ(i)|+|TΘ(i)|]2=|∫0iΛ(i,j)Γ(j,Ξ(j))dj|+|∫0iΛ(i,j)Γ(j,Θ(j))dj|2=∫0iΛ(i,j)|Γ(j,Ξ(j))|dj+∫0iΛ(i,j)|Γ(j,Θ(j))|dj2=∫0iΛ(i,j)(|Γ(j,Ξ(j))|+|Γ(j,Θ(j))|)dj2≤(∫0i[3A12(Ξ(j)+Θ(j))2+A2[(Ξ(j)+TΞ(j))2+(Θ(j)+TΘ(j))2]+A3(Ξ(j)+TΞ(j))2+(Θ(j)+TΘ(j))26+A4(2Ξ(j))2+(2Θ(j))28]12τ2e−τ2dj)2≤(∫0iΛ(i,j)[3A12(|Ξ(j)|+|Θ(j)|)2+A2[(|Ξ(j)|+|TΞ(j)|)2+(|Θ(j)|+|TΘ(j)|)2]+A3(|Ξ(j)|+|TΞ(j)|)2+(|Θ(j)|+|TΘ(j)|)26+A4(2|Ξ(j)|+2|Θ(j)|)28]12τ2e−τ2dj)2≤(∫0iΛ(i,j)ejτ(e−jτ[3A12(|Ξ(j)|+|Θ(j)|)2+A2[(|Ξ(j)|+|TΞ(j)|)2+(|Θ(j)|+|TΘ(j)|)2]+A3(|Ξ(j)|+|TΞ(j)|)2+(|Θ(j)|+|TΘ(j)|)26+A4(2|Ξ(j)|+2|Θ(j)|)28]12τ2e−τ2dj))2≤(∫0iΛ(i,j)ejτ[3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8]12τ2e−τ2dj))2≤τ24e−τ(∫0iΛ(i,j)[3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8]12dj)2=τ24e−τ[3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8]∫0iΛ(i,j)dj2



(59)






[|TΞ(i)|+|TΘ(i)|]2≤τ24e−τ[3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8]∫0iejτ2dj2=τ24e−τ[3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8]ejτ2τ20i2<τ24e−τ[3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8]eiτ2×2τ2=τ24e−τ[3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8]eiτ4τ2=e−τ(1−i)[3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8]



(60)




which implies,


(|TΞ(i)|+|TΘ(i)|)2≤e−τ(1−i)[3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8]



(61)






⇒(|TΞ(i)|+|TΘ(i)|)2e−iτ≤e−τ[3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8]



(62)




this gives,


d(TΞ,TΘ)≤e−τ[3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8]



(63)







Applying logarithms on both sides, we get,


ln(d(TΞ,TΘ))≤ln(e−τ[3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8])≤lne−τ+ln([3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8])≤−τ+ln([3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8])



(64)






τ+ln(d(TΞ,TΘ))≤ln([3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8])



(65)







Define F:R+→R by F(α)=ln(α),α>0. Then from (61), we get


τ+F(d(TΞ,TΘ))≤F([3A12d(Ξ,Θ)+A2[d(Ξ,TΞ)+d(Θ,TΘ)]+A3d(Ξ,TΘ)+d(Θ,TΞ)6+A4d(Ξ,Ξ)+d(Θ,Θ)8])



(66)







Thus, T is an Extended F-contraction and satisfied all the conditions of the Theorem 1. Thus, T has a unique fixed point which is the unique solution of the non-linear integral equation.




5. Application to Fractional Calculus


In this section, we will start with the existence of solution for the non-linear fractional differential equation.


CDϖ(x(κ))=Λ(κ,x(κ)),(0<κ<1,1<ϖ≤2)



(67)




via the integral boundary conditions


x(0)=0,x(1)=∫0ξx(s)ds,(0<ξ<1)



(68)




where CDϖ denotes the Caputo fractional derivative of order ϖ and Λ:[0,1]×R→R is a continuous function. Let the space X=C([0,1],R) be the set of real continuous functions on [0,1]. We confer X with the dislocated metric


DM(∞)(x,y)=supκ∈[0,1](|x(κ)|+|y(κ)|),forallx,y∈x.








Then (X,DM(∞)) is a complete dislocated metric space. It is very well known that, for a continuous function Θ:[0,∞]→R, the Caputo derivative of fractional order ϖ is defined as:


CDϖ(Θ(κ))=1Γ(n−ϖ)∫0κ(κ−s)n−ϖ−1Θn(s)ds;n−1<ϖ<n,n=[ϖ]+1,








where [ϖ] is represented as integer part of the real number ϖ and Γ is a gamma function.



Now, we consider the following conditions:

	C1:

	
For u,v∈R,τ>0 and A1<12


(|Λ(κ,u)|+|Λ(κ,v)|)≤e−τ2A1Γ(ϖ+1)5(|u|+|v|)












	C2:

	
Define T:X→X by


Tx(κ)=1Γϖ∫0κ(κ−s)ϖ−1Λ(s,x(s))ds−2κ(2−ξ2)Γ(ϖ)∫01(1−s)ϖ−1Λ(s,x(s))ds+2κ(2−ξ2)Γ(ϖ)∫0ξ(∫0s(s−m)ϖ−1Λ(ℓ,x(ℓ))dℓ)ds;forκ∈[0,1].

















Theorem 4.

If C1&C2 are satisfied then the problem (67) has at least one solution.





Proof. 

It is very well known that x∈X is a solution of (67) if and only if x∈X is a solution of the integral equation.


x(κ)=1Γ(ϖ)∫0κ(κ−s)ϖ−1Λ(s,x(s))ds−2κ(2−ξ2)Γ(ϖ)∫01(1−s)ϖ−1Λ(s,ϖ(s))ds+2κ(2−ξ2)Γ(ϖ)∫0ξ(∫0s(s−m)ϖ−1Λ(ℓ,x(ℓ))dℓ)ds;forκ∈[0,1].








Then, the problem (67) is equivalent to find x⋆∈X which is a fixed point of T.



Now, let x,y∈X for all t∈[0,1].



Consider,


|Tx(κ)|+|Ty(κ)|=|1Γ(ϖ)∫0κ(κ−s)ϖ−1Λ(s,x(s))ds−2κ(2−ξ2)Γ(ϖ)∫01(1−s)ϖ−1Λ(s,x(s))ds+2κ(2−ξ2)Γ(ϖ)∫0ξ(∫0s(s−m)ϖ−1Λ(ℓ,x(ℓ))dℓ)ds|+|1Γ(ϖ)∫0κ(κ−s)ϖ−1Λ(s,y(s))ds−2κ(2−ξ2)Γ(ϖ)∫01(1−s)ϖ−1Λ(s,y(s))ds+2κ(2−ξ2)Γ(ϖ)∫0ξ(∫0s(s−m)ϖ−1Λ(ℓ,y(ℓ))dℓ)ds|=|1Γ(ϖ)∫0κ(κ−s)ϖ−1[Λ(s,x(s))+Λ(s,y(s))]ds−2κ(2−ξ2)Γ(ϖ)∫01(1−s)ϖ−1[Λ(s,x(s)+Λ(s,y(s))]ds+2κ(2−ξ2)Γ(ϖ)∫0ξ(∫0s(s−m)ϖ−1[Λ(ℓ,x(ℓ))+Λ(ℓ,y(ℓ))]dℓ)ds|≤1Γ(ϖ)∫0κ(κ−s)ϖ−1[|Λ(s,x(s))+Λ(s,y(s))|]ds−2κ(2−ξ2)Γ(ϖ)∫01(1−s)ϖ−1[|Λ(s,x(s)+Λ(s,y(s))|]ds+2κ(2−ξ2)Γ(ϖ)∫0ξ(∫0s(s−m)ϖ−1[|Λ(ℓ,x(ℓ))+Λ(ℓ,y(ℓ))|]dℓ)ds≤1Γ(ϖ)∫0κ(κ−s)ϖ−1[|Λ(s,x(s))|+|Λ(s,y(s))|]ds−2κ(2−ξ2)Γ(ϖ)∫01(1−s)ϖ−1[|Λ(s,x(s)|+|Λ(s,y(s))|]ds+2κ(2−ξ2)Γ(ϖ)∫0ξ(∫0s(s−m)ϖ−1[|Λ(ℓ,x(ℓ))|+|Λ(ℓ,y(ℓ))|]dℓ)ds≤Γϖ+15[|x(s)|+|y(s)|]e−τsup{1Γϖ∫0κ(κ−s)ϖ−1ds−2κ(2−ξ2)Γ(ϖ)∫01(1−s)ϖ−1ds+2κ(2−ξ2)Γ(ϖ)∫0ξ(∫0s(s−m)ϖ−1dℓ)ds}≤e−τ2A1|x(s)|+|y(s)|











By taking supremum on both sides, we get,


DM(∞)(Tx,Ty)≤e−τ2A1DM(∞)(x,y).











Taking logarithms on both sides, ln(DM(∞)(Tx,Ty))≤−τ+ln(2A1DM(∞)(x,y)), which implies, F(DM(∞)(Tx,Ty))+τ≤F(2A1DM(∞)(x,y)).



By taking F(α)=lnα for α>0 and A1<12,A2,A3,A4=0, all the conditions of Corollary 2 satisfied. Hence T has a unique fixed point. i.e., Tx⋆=x⋆. Hence x⋆ is a solution of (67). ☐
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