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Abstract: Approximating continuous functions by polynomials is vital to scientific computing and
numerous numerical techniques. On the other hand, polynomials can be characterized in several ways
using different bases, where every form of basis has its advantages and power. By a proper choice
of basis, several problems will be removed; for instance, stability and efficiency can be improved,
and numerous complications can be resolved. In this paper, we provide an explicit formula of
the generalized shifted Chebyshev Koornwinder’s type polynomial of the first kind, T

∗(K0,K1)
r (x),

using the Bernstein basis of fixed degree. Moreover, a Bézier’s degree elevation was used to rewrite
T
∗(K0,K1)

r (x) in terms of a higher degree Bernstein basis without altering the shapes. In addition,
explicit formulas of conversion matrices between generalized shifted Chebyshev Koornwinder’s type
polynomials and Bernstein polynomial bases were given.

Keywords: transformation; basis; Bernstein; Bézier curves

1. Introduction

Bernstein polynomials Bm
j (x) = m!

j!(m−j)! xj(1− x)m−j, j = 0, 1, . . . , m, form a standard basis for
Bézier surfaces and curves [1]. Farouki in [2] examined Bernstein basis properties and described key
characteristics and algorithms related to the Bernstein basis. Remarkable properties and features of
Bernstein polynomials [2] make them essential in the development of Bézier surfaces and curves in
many areas of computer-aided and geometric designs (CAGDs). They have been studied thoroughly
(see [2] for more details), and there exist great enduring works (see [3] and references therein).

Though higher order Bézier curves need extra time to process, their bases are optimally stable,
and flexible in designing shapes. In addition, numerous applications (see [1,4]) contain two or more
Bézier curves of different degrees that require an equal or higher degree for all involved Bézier curves.
Knowing that the degree elevation of Bézier curves defined by [4] does not alter the shapes, the degree
elevation can be used to express all comprised Bézier curves and Bernstein polynomials of deg ≤ n in
respect of the nth-degree Bernstein polynomials using

Bv
j (x) =

n−v+j

∑
i=j

(v
j)(

n−v
i−j )

(n
i )

Bn
i (x), j = 0, 1, . . . , v. (1)

For extra information, see [1,5,6].
However, Bernstein polynomials are not orthogonal, so they cannot be used efficiently and

effectively in approximation problems [7]. Therefore, calculations performed [7–9] to obtain the least
squares polynomial of deg = m using Bernstein polynomials do not reduce the calculations to obtain
the least squares approximation polynomial of deg = m + 1.
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For example [9], for g(t) ∈ C[0, 1], the least squares approximation requires finding a least squares
polynomial, Bg∗m(t) = ∑m

k=0 ckφk(t), such that {φk(t)}m
k=0 is a basis that minimizes the error

E(c0, c1, . . . , cm) =
∫ 1

0
[g(t)−

m

∑
k=0

ckφk(t)]2dt. (2)

Now, ∂E
∂ck

= 0, for k = 0, . . . , m, is the necessary condition for Equation (2) to have a minimum
over all ci. Thus, for i = 0, 1, . . . , m, the values ci that minimize ‖g(t)−∑m

k=0 ckφk(t)‖2 satisfy

∫ 1

0
g(t)φi(t)dt =

m

∑
k=0

ck

∫ 1

0
φk(t)φi(t)dt, (3)

which leads to a system of (m + 1) normal equations defined using (m + 1) unknown coefficients
of Bg∗m(t), namely, ci, i = 0, . . . , m. By choosing natural powers φi(t) = ti, i = 0, . . . , m as a basis,

Equation (3) equals
m

∑
k=0

ck
i + k + 1

, and the resulting coefficients form a Hilbert matrix, which has a

notoriously ill condition for even modest values of m, and possess round-off error difficulties.
Therefore, approximations accompanied with an orthogonal polynomials basis, where many

computations have been simplified, have been introduced instead [7,8], and they have turned out to
be effective.

For instance, such calculations can be made computationally effective by using orthogonal
polynomials [9], such as generalized shifted Chebyshev polynomials of the first kind. Thus, choosing
our basis, φi(t), to act as orthogonal polynomials will simplify the approximation problem, where the
resulting matrix will be diagonal. Since then, approximation using orthogonal polynomials has been
introduced and has received more attention. Moreover, knowing Bg∗m(t) is enough to compute cm+1 to
obtain Bg∗m+1(t). Using orthogonal polynomials has shown to be computationally effective (see [7,9]
for more details).

Characterization using the Bernstein basis of generalized shifted Chebyshev Koornwinder’s
type polynomials of the first and second kind was discussed in [10,11], respectively. Rababah [8]
considered the transformation of the Bernstein polynomial basis with classical Chebyshev polynomials.
A preliminary abstract of this manuscript was presented in [12], where a generalization of the work
in [8] is given by providing an explicit formula of the generalized shifted Chebyshev Koornwinder’s
type polynomials of the first kind. We will refer to these as generalized shifted Chebyshev-I
polynomials throughout this article. Then, we write the generalized shifted Chebyshev-I polynomials
of degree r ≤ n using the Bernstein basis of degree n, and an explicit form of the transformation and
the inverse transformation of the generalized shifted Chebyshev-I polynomials to Bernstein polynomial
bases are presented.

The Generalized Shifted Chebyshev-I Koornwinder’s Type Polynomials

Chebyshev’s polynomials of the first kind Tk(x) of degree k ≥ 0 in x, are defined as Tk(x) =

cos(k arccos x) = 1
2

[(
x + i
√

1− x2
)k

+
(

x− i
√

1− x2
)k
]

, x ∈ [−1, 1]. They are solutions of the

well-known Chebyshev’s differential equation,

(1− x2)
d2y
dx2 − x

dy
dx

+ k2y = 0, k = 0, 1, 2, . . . ,

and form a set of orthogonal polynomials [13,14], except for a constant factor, on −1 ≤ x ≤ 1 with
respect to W(x) = 1√

1−x2 . They are a special case of the classical Jacobi polynomials P(α,β)
k (x), and the

interrelation is given by [13]

Tk(x) =
22k(k!)2

(2k)!
P(− 1

2 ,− 1
2 )

k (x). (4)
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For more details, see [13,14] and references therein.
Although these polynomials are traditionally defined for −1 ≤ x ≤ 1, for analysis and numerical

computational purposes, it is more convenient to use the interval 0 ≤ x ≤ 1. Thus, shifted Chebyshev
polynomials of the first kind, T∗k (x), which is defined [15] as T∗k (x) = cos[k arccos(2x− 1)] = Tk(2x− 1)
for x ∈ [0, 1]. The shifted Chebyshev polynomials of the first kind, T∗k (x), are orthogonal on the support
interval 0 ≤ x ≤ 1 with (x− x2)−1/2 as a weight function.

Generalized orthogonal polynomials were first considered by [16] and developed by [17].
For K0, K1 ≥ 0, a characterization of the orthogonal generalized shifted Chebyshev-I polynomials of
degree j are defined on the interval 0 ≤ x ≤ 1 in [10] by

T
∗(K0,K1)

j (x) =
(2j− 1)!!
(2j)!!

T∗j (x) +
j

∑
i=0

(2i)!λi

22i(i!)2 T∗i (x), j = 0, . . . , (5)

with respect to the measure
1
π
(1− x2)−1/2 + K0δ0 + K1δ1, where δx is a singular Dirac measure, T∗j (x)

is the jth degree shifted Chebyshev-I polynomial, and

λk =

[
2K0Γ(k + 1

2 )

Γ(k− 1
2 )

+
2K1Γ(k + 1

2 )

Γ(k− 1
2 )

+ 4K0K1

]
. (6)

The double factorial, j!!, of an integer j is defined in [18] as (2j− 1)!! = (2j− 1)(2j− 3)(2j−
5) . . . (3)(1) when j is odd and as j!! = (j)(j− 2)(j− 4) . . . (4)(2) when j is even, which can be written as

j!! =

 2
j
2 ( j

2 )! if j is even
j!

2
j−1

2 (
j−1

2 )!
if j is odd (7)

where 0!! = (−1)!! = 1. From the double factorial definition [18] and the fact that Γ( 3
2 ) =

√
π

2 , we can

write Γ(j + 1
2 ) =

(2j−1)!!
2j

√
π and Γ( 1

2 − j) = (−2)j

(2j−1)!!

√
π. In addition, from Equation (7), we can derive

(2j)!! = [2(j)][2(j− 1)] . . . [2.1] = 2j j! (8)

and
(2j)! = [(2j− 1)(2j− 3) . . . (1)]. ([2(j)][2(j− 1)][2(j− 2)] . . . [2(1)]) = (2j− 1)!!2j j!. (9)

Theorem 1 [10] illustrates how generalized shifted Chebyshev-I polynomials T
∗(K0,K1)

r (x) of
deg = r can be expressed as a span of Bernstein polynomial basis.

Theorem 1 ([10]). For K0, K1 ≥ 0, the rth degree generalized shifted Chebyshev-I polynomials T
∗(K0,K1)

r (x)
have the next representation using Bernstein polynomial basis,

T
∗(K0,K1)

r (x) =
(2r− 1)!!
(2r)!!

r

∑
i=0

(−1)r−iηi,rBr
i (x) +

r

∑
j=0

(2j)!λj

22j(j!)2

j

∑
l=0

(−1)j−lηl,jB
j
l(x) (10)

where λj is defined in (6), and ηi,r =
(2r

r )(
2r
2i)

22r(r
i)

, i = 0, 1, . . . , r. Furthermore, we can write (2r−1)!!
(2r)!! = (2r)!

22r(r!)2 using
Equations (8) and (9).

Interestingly, it is worth mentioning that the above representation is related to the semicircular
law of the random matrix distribution [19].

In this section, explicit forms of the transformation matrix for the generalized shifted Chebyshev-I
polynomials basis into the Bernstein polynomials basis, and the inverse transformation matrix that
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converts the Bernstein polynomials basis into the generalized shifted Chebyshev-I polynomials basis
were provided.

2. Results: Bases Transformations

At the beginning, we provide the matrix transformation of the generalized shifted Chebyshev-I
to the Bernstein basis in Section 2.1, and in Section 2.2 we provide the transformation matrix of the
Bernstein basis to the generalized shifted Chebyshev-I basis.

2.1. Generalized Shifted Chebyshev-I to Bernstein

In the following, we generalize the technique introduced by A. Rababah in [8], where some results
concerning the classical Chebyshev case were provided. Theorem 2 will be needed to associate the
superb performance of the least squares of the generalized shifted Chebyshev-I polynomials with the
geometric perceptions of the Bernstein polynomials basis.

Theorem 2. The entries AAAn
i,r, r, i = 0, 1, . . . , n of the transformation matrix of the generalized shifted

Chebyshev-I polynomials basis into the nth degree Bernstein polynomial basis is given by

AAAn
i,r =

(2r)!
22r(r

i)(r!)2

min(i,r)

∑
l=max(0,i+r−n)

(−1)r−l
(

n− r
i− l

)(
r− 1

2
l

)(
r− 1

2
r− l

)

+
r

∑
j=0

λj
(2j)!

22j(j
i)(j!)2

min(i,j)

∑
k=max(0,i+j−n)

(−1)j−k
(

n− j
i− k

)(
j− 1

2
k

)(
j− 1

2
j− k

)
.

(11)

Proof. Express an nth degree polynomial, gn(x), as a span of the Bernstein polynomial basis as
gn(x) = ∑n

r=0 crBn
r (x), and as a linear combination of the generalized shifted Chebyshev-I polynomials

as gn(x) = ∑n
i=0 diT

∗(K0,K1)
i (x).

We want to obtain a matrix, AAA, which converts the coefficients {di}n
i=0 of the generalized

shifted Chebyshev-I polynomials into Bernstein coefficients {cr}n
r=0, in gn(x) = ∑n

r=0 crBn
r (x) =

∑n
i=0 diT

∗(K0,K1)
i (x), i.e., ci = ∑n

r=0 AAAn
i,rdr. Further, express T

∗(K0,K1)
r (x) with respect to the nth degree

Bernstein polynomial basis as

T
∗(K0,K1)

r (x) =
n

∑
i=0

DDDn
r,iB

n
i (x), for r = 0, 1, . . . , n, (12)

where DDDn
r,i denote the entries of conversion matrix DDD, of dimension (n + 1)× (n + 1). Thus, we can

write the elements of vector d as di = ∑n
r=0 crDDDn

r,i, where it is clear that DDDT = AAA by comparing
di = ∑n

r=0 crDDDn
r,i and ci = ∑n

r=0 AAAn
i,rdr.

Use values of ηi,r and ηl,j defined in Theorem 1 to rewrite Equation (10) as

T
∗(K0,K1)

r (x) =
(2r)!

22r(r!)2

r

∑
i=0

(−1)r−i (
2r
r )(

2r
2i)

22r(r
i)

Br
i (x) +

r

∑
j=0

(2j)!λj

22j(j!)2

j

∑
l=0

(−1)j−l
(2j

j )(
2j
2l)

22j(j
l)

Bj
l(x)

and then apply the combinatorial identity (
r− 1

2
r−l )(

r− 1
2

l ) =
(2r

r )(
2r
2l)

22r and the Bernstein symmetry relation
Bn

i (x) = Bn
n−i(1− x) to obtain
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T
∗(K0,K1)

r (x) =
(2r)!

22r(r!)2

r

∑
i=0

(−1)r−i (
r− 1

2
i )(

r− 1
2

r−i )

(r
i)

Br
i (x) +

r

∑
j=0

(2j)!λj

22j(j!)2

j

∑
l=0

(−1)j−l
(

j− 1
2

l )(
j− 1

2
j−l )

(j
l)

Bj
l(x)

=
(2r)!

22r(r!)2

r

∑
i=0

(
r− 1

2
r−i )(

r− 1
2

i )

( r
r−i)

Br
r−i(x) +

r

∑
j=0

(2j)!λj

22j(j!)2

j

∑
l=0

(
j− 1

2
j−l )(

j− 1
2

l )

( j
j−l)

Bj
j−l(x).

Now, use degree elevation defined in Equation (1) introduced in [4] to exchange Bernstein
polynomials Br

r−i(x) and Bj
j−l(x) of degrees r, j, respectively, to the nth degree Bernstein polynomial,

reorder the summations, and compare it with Equation (12) to attain the entries of the matrix DDD as

DDDn
r,i =

(2r)!
22r(r

i)(r!)2

min(i,r)

∑
l=max(0,i+r−n)

(−1)r−l
(

n− r
i− l

)(
r− 1

2
l

)(
r− 1

2
r− l

)

+
r

∑
j=0

λj
(2j)!

22j(j
i)(j!)2

min(i,j)

∑
k=max(0,i+j−n)

(−1)j−k
(

n− j
i− k

)(
j− 1

2
k

)(
j− 1

2
j− k

)
.

Transposing will get the desired entries AAAn
i,r of the matrix AAA.

Many applications in the numerical analysis [1,4] might have Bézier curves of different degrees or
require a Bézier curve of a higher degree. Corollary 1 uses Bézier’s degree elevation defined by [4] to
express the rth degree, r ≤ n, T

∗(K0,K1)
r (x) with respect to the Bernstein basis of a higher degree, say n,

which will help in improving the numerical stability and the efficiency of calculations.

Corollary 1. The generalized shifted Chebyshev-I polynomials T
∗(K0,K1)

r (x) of degree r where 0 ≤ r ≤ n can
be written with respect to nth degree Bernstein basis as

T
∗(K0,K1)

r (x) =
n

∑
i=0

DDDn
r,iB

n
i (x), r = 0, 1, . . . , n,

where DDDn
r,i = µn

r,i + ∑r
l=0 λlµ

n
l,i and µn

r,i is defined as

µn
r,i =

(2r)!
22r(r!)2

min(i,r)

∑
l=max(0,i+r−n)

(−1)r−l (
n−r
i−l )(

2r
r )(

2r
2l)

22r(n
i )

.

Proof. From Equation (12) and the proof of Theorem 2, the generalized shifted Chebyshev-I
polynomials T

∗(K0,K1)
r (x) of degree r, where r ≤ n can be stated with respect to the fixed nth

degree Bernstein polynomial basis as T
∗(K0,K1)

r (x) = ∑n
i=0 DDDn

r,iB
n
i (x), for r = 0, . . . , n; such that the

entries of the matrix AAA can be obtained by transposing the matrix DDD defined in (11). Note that(
r− 1

2
r− l

)(
r− 1

2
l

)
=

(2r− 1)!!
2r(r− l)!

2l

(2l − 1)!!
(2r− 1)!!

2rl!
2r−l

(2(r− l)− 1)!!

=
1

2r(r− l)!l!
(2r− 1)!!
(2l − 1)!!

(2r− 1)!!
(2(r− l)− 1)!!

.

and using (2r)! = (2r− 1)!!2rr!, we attain

(n−r
i−l )(

r− 1
2

r−l )(
r− 1

2
l )

(n
i )

=
(n−r

i−l )(
2r
r )(

2r
2l)

22r(n
i )

. (13)
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Therefore, entries DDDn
r,i can be rewritten as

DDDn
r,i = µn

r,i +
r

∑
l=0

λlµ
n
l,i

where

µn
r,i =

(2r)!
22r(r!)2

min(i,r)

∑
l=max(0,i+r−n)

(−1)r−l (
n−r
i−l )(

2r
r )(

2r
2l)

22r(n
i )

.

2.2. Bernstein to Generalized Shifted Chebyshev-I

In the introduction, significant analytical and geometrical properties for Bernstein polynomials
are discussed. It is noteworthy that

∫ 1
0 Bn

v(t)dt = 1
n+1 , v = 0, 1, . . . , n, and the product of two

Bernstein polynomials Bn
i (x) ∗ Bm

j (x) is a Bernstein polynomial that equals
(n

i )(
m
j )

(n+m
i+j )

Bn+m
i+j (x). Now,

Theorem 3 provides the orthogonality relation between the Bernstein basis and the generalized shifted
Chebyshev-I polynomials, which will be used in the proof of the next conclusion (Theorem 4).

Theorem 3 ([10]). Let Bn
r (x) be the nth degree Bernstein polynomial and T

∗(K0,K1)
i (x) be the ith degree

generalized shifted Chebyshev-I polynomials. For r, i = 0, 1, . . . , n, we obtain

∫ 1

0
(x− x2)−

1
2 Bn

r (x)T ∗(K0,K1)
i (x)dx

=

(
n
r

)
(2i)!

22i(i!)2

i

∑
l=0

(−1)i−l
(

i− 1
2

l

)(
i− 1

2
i− l

)
Γ(r + l + 1

2 )Γ(n + i− r− l + 1
2 )

Γ(n + i + 1)

+
i

∑
d=0

λd

(
n
r

)
(2d)!

22d(d!)2

d

∑
j=0

(−1)d−j
(

d− 1
2

j

)(
d− 1

2
d− j

)
Γ(r + j + 1

2 )Γ(n + d− r− j + 1
2 )

Γ(n + d + 1)
.

Proof. For the proof, see [10].

Now, Theorem 4, we find the entries of AAA−1, the inverse of the transformation matrix AAA found in
Theorem 2.

Theorem 4. The entries AAAn−1

i,r , i, r = 0, 1, . . . , n of the inverse of the transformation matrix, AAA−1, which
converts the Bernstein polynomial basis into the nth degree generalized shifted Chebyshev-I polynomials, are
written as

AAAn−1

i,r =
Φi

(1 + λi)2

(
n
r

)[
22i(i!)2

(2i)!
Ψn,r

l,i +

(
22i(i!)2

(2i)!

)2 i

∑
d=0

(2d)!λd

22d(d!)2 Ψn,r
j,d

]
(14)

where λi defined in (6), Φi =

{
2/π if i = 0
1/π if i 6= 0

,

Ψn,r
l,i =

i

∑
l=0

(−1)i−l

22i

(
2i
i

)(
2i
2l

)
Γ(r + l + 1

2 )Γ(n + i− r− l + 1
2 )

Γ(n + i + 1)
.

Proof. To be able to transform the Bernstein polynomial basis to the nth degree generalized shifted
Chebyshev-I polynomials basis, we invert the transformation c = AAA.d. Let AAAn−1

i,r , DDDn−1

i,r , r, i = 0, 1, . . . , n
be the entries of the matrices AAA−1 and DDD−1, respectively. Then, the change in basis transformation of
the Bernstein polynomial into the nth degree generalized shifted Chebyshev-I polynomials is written as
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Bn
r (x) =

n

∑
i=0

DDDn−1

r,i T
∗(K0,K1)

i (x). (15)

The entries DDDn−1

r,i , i, r = 0, 1, . . . , n can be set by multiplying (15) by (x− x2)−
1
2 T
∗(K0,K1)

i (x) and
integrating over [0, 1] to obtain

∫ 1

0
(x− x2)−

1
2 Bn

r (x)T ∗(K0,K1)
i (x)dx =

n

∑
i=0

DDDn−1

r,i

∫ 1

0
(x− x2)−

1
2 T
∗(K0,K1)

i (x)T ∗(K0,K1)
i (x)dx (16)

where T
∗(K0,K1)

j (x) defined in (5) by T
∗(K0,K1)

j (x) = (2j)!
22j(j!)2 T∗j (x) + ∑

j
i=0

(2i)!λi
22i(i!)2 T∗i (x).

Substituting T
∗(K0,K1)

i (x) into Equation (16), and using the orthogonality relation [13,20] of the
univeriate shifted Chebyshev’s polynomials of the first kind, T∗i (x) = cos[i arccos(2x− 1)] given as

∫ 1

0
(x− x2)−

1
2 T∗i (x)T∗j (x)dx =


0 if j 6= i
π if j = i = 0
π
2 if j = i = 1, 2, . . .

.

We then obtain

∫ 1

0
(x− x2)−

1
2 Bn

r (x)T ∗(K0,K1)
i (x)dx =

 πDDDn−1

r,i

(
(2i)!

22i(i!)2

)2
(1 + λi)

2 if i = 0

π
2 DDDn−1

r,i

(
(2i)!

22i(i!)2

)2
(1 + λi)

2 if i 6= 0
.

Thus, by using Theorem 3, we obtain

DDDn−1

r,i =
Φi(

n
r)

(1 + λi)2 [
22i(i!)2

(2i)!

i

∑
l=0

(−1)i−l

22i

(
2i
i

)(
2i
2l

)
Γ(r + l + 1

2 )Γ(n + i− r− l + 1
2 )

Γ(n + i + 1)

+

(
22i(i!)2

(2i)!

)2 i

∑
d=0

(2d)!λd

22d(d!)2

d

∑
j=0

(−1)d−j

22d

(
2d
d

)(
2d
2j

)
Γ(r + j + 1

2 )Γ(n + d− r− j + 1
2 )

Γ(n + d + 1)
].

The terms can be rearranged to obtain the entries of the matrix DDD−1 in the form

DDDn−1

r,i =
Φi

(1 + λi)2

(
n
r

)[
22i(i!)2

(2i)!
Ψn,r

l,i +

(
22i(i!)2

(2i)!

)2 i

∑
d=0

(2d)!λd

22d(d!)2 Ψn,r
j,d

]
, (17)

where Φi =

{
1/π if i = 0
2/π if i 6= 0

, λi defined in (6), and

Ψn,r
l,i =

i

∑
l=0

(−1)i−l

22i

(
2i
i

)(
2i
2l

)
Γ(r + l + 1

2 )Γ(n + i− r− l + 1
2 )

Γ(n + i + 1)
.

The desired entries AAAn−1

i,r , i, r = 0, 1, . . . , n of the matrix AAA−1 are then found by transposing the
matrix DDD−1.

Hence, we applied Theorem 2, the matrix transformation, AAA, of the generalized shifted
Chebyshev-I polynomials basis to a fixed nth degree Bernstein polynomial basis. Moreover, Corollary 1
will enable us to improve stability and efficiency by rewriting T

∗(K0,K1)
r (x) in terms of a Bézier curve

of higher degrees. We conclude the section with Theorem 4, with the entries AAAn−1

i,r , i, r = 0, 1, . . . , n of
the inverse of AAA.
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3. Discussion

Research in the area of orthogonal polynomials has gained great attention. They are vital to
the efficiency and stability of numerical techniques. In this article, an interrelation between ordinary
Chebyshev polynomials Tr(x), ordinary shifted Chebyshev polynomials T∗r (x), and Jacobi polynomials
P(α,β)

r (x) are given. In addition, an explicit form of generalized shifted Chebyshev-I polynomials
T
∗(K0,K1)

r (x) using ordinary Chebyshev polynomials is provided. In addition, the definition of the
orthogonal polynomials using cosine function leads to new discoveries in trigonometry identities.
Moreover, a characterization of the generalized shifted Chebyshev-I polynomials of degree r using the
Bernstein basis of degree r ≤ n is discussed, where degree elevation can be used to rewrite T

∗(K0,K1)
r (x)

in terms of a higher degree Bernstein basis, since applications (see [1,4]) might have two or more Bézier
curves of different degrees that require equal degree or higher degree Bézier curves. In addition, an
explicit form of the entries of the transformation matrix, AAA, AAAn

i,r, i, r = 0, 1, . . . , n, can transform the
generalized shifted Chebyshev-I polynomials basis into the Bernstein polynomials basis (Theorem 2).
However, Bernstein polynomials are not orthogonal and cannot be used efficiently in approximation
problems [7]. Therefore, approximations using orthogonal polynomials as bases have an advantage.
An explicit form of the entries of the transformation matrix, AAA−1, AAAn−1

i,r , i, r = 0, 1, . . . , n, can transform
the Bernstein polynomial basis into the basis of the generalized shifted Chebyshev-I polynomials of
deg = n.

Applications

Exploring new systems of orthogonal polynomials helps in the discovery of applications in many
areas, such as integro-differential and Fredholm integral equations, spectral element methods for ODEs
and PDEs, splines, computation probability and data integration, fractional differential equations,
stochastic differential equations, and stochastic dynamics. Future developments and numerous ideas
to expand the scope of this article exist. Some ideas are mentioned at the end of Section 1: constructing
bivariate generalized shifted Jacobi polynomials on a simplex, formulating basis transformations for
generalized Jacobi Koornwinder’s type polynomials, constructing various degree elevation/reductions
of Bézier surfaces and curves, and computing numerical differentiations/integrations, integral
transforms, cubature formulas, and Fourier integrals/transforms.
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