Vacuum Constraints for Realistic Strongly Coupled Heterotic M-Theories
Abstract
:1. Introduction
2. The Compactification Vacuum
2.1. The d = 11 → d = 5 Compactification
2.1.1. The Calabi-Yau Threefold
2.1.2. The Observable Sector Gauge Bundle
2.1.3. The Hidden Sector Gauge Bundle
- Hidden Sector Factor
- Hidden Sector Line Bundles
2.1.4. Bulk Space Five-Branes
2.1.5. Anomaly Cancellation
2.2. The d = 5→ d = 4 Compactification
The Linearized Double Domain Wall
3. The d = 4 Effective Theory
3.1. The Lagrangian
- Stability of the Observable Sector Vector Bundle
- Poly-Stability of the Hidden Sector Vector Bundle
- :In this case, since for a single vector bundle slope-stability implies poly-stability, one need only check that is slope-stable. For example, one could choose to be identical to the bundle in the observable sector, , presented above. Note that, since we are restricting all hidden sector non-Abelian bundles to have structure group , it follows that must vanish. As with the observable sector bundle bundle, stability of a generic non-Abelian vector bundle will only occur within a specific region of Kähler moduli space.
- :In this case, one need only check that the line bundle L is slope-stable, which will imply poly-stability. Fortunately, every line bundle is trivially slope-stable, so any line bundle can be used. It is important to note that the slope of a line bundle which appears as a lone factor in the Whitney sum has–a priori–no further constraints. Using (65), (26) and (4), it follows that the slope of an arbitrary line bundle specified by is given by
- As specified above, the non-Abelian vector bundle must be slope-stable in a region of Kähler moduli space. Furthermore, since we are restricting the structure group in our discussion to be , it follows that . As we just indicated, any line bundle L will be slope-stable everywhere in Kähler moduli space. However, the full Whitney sum will be poly-stable–and, hence, preserve supersymmetry–if and only if . That is, because of the existence of a non-Abelian factor, the line bundle L now has the additional constraint that its slope vanish identically. It is clear from (67) that this will be the case only in a restricted region of Kähler moduli space. It follows that the full Whitney sum will only be a viable hidden sector bundle if the region of stability of has a non-vanishing intersection with the region where the slope of L vanishes. This is a very non-trivial requirement. To give a concrete example, let us choose , where is the observable sector bundle specified above. Recall that the region of slope-stability of this bundle in Kähler moduli space is delineated by the inequalities in (66) and shown in Figure 1. Plotted in 3-dimensions, this region of slope-stability over a limited region of Kähler moduli space is shown in Figure 2a. Furthermore, let us specify that . Note that L satisfies condition (23), as it must. It follows from (67) that the region of moduli space in which is given by the equation
3.2. The Lagrangian
3.2.1. Corrections to a Fayet-Iliopoulos Term
3.2.2. Gauge Threshold Corrections
3.3. A Specific Class of Examples
Funding
Acknowledgments
Conflicts of Interest
References
- Gross, D.J.; Harvey, J.A.; Martinec, E.J.; Rohm, R. Heterotic String Theory. 1. The Free Heterotic String. Nucl. Phys. B 1985, 256, 253–284. [Google Scholar] [CrossRef]
- Gross, D.J.; Harvey, J.A.; Martinec, E.J.; Rohm, R. Heterotic String Theory. 2. The Interacting Heterotic String. Nucl. Phys. B 1986, 267, 75–124. [Google Scholar] [CrossRef]
- Witten, E. Strong coupling expansion of Calabi-Yau compactification. Nucl. Phys. B 1996, 471, 135–158. [Google Scholar] [CrossRef] [Green Version]
- Horava, P.; Witten, E. Heterotic and type I string dynamics from eleven dimensions. Nucl. Phys. B 1996, 460, 506–524. [Google Scholar] [CrossRef]
- Horava, P.; Witten, E. Eleven-dimensional supergravity on a manifold with boundary. Nucl. Phys. B 1996, 475, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Greene, B.R.; Kirklin, K.H.; Miron, P.J.; Ross, G.G. A Superstring Inspired Standard Model. Phys. Lett. B 1986, 180, 69–76. [Google Scholar] [CrossRef]
- Greene, B.R.; Kirklin, K.H.; Miron, P.J.; Ross, G.G. A Three Generation Superstring Model. 1. Compactification and Discrete Symmetries. Nucl. Phys. 1986, B278, 667–693. [Google Scholar] [CrossRef]
- Greene, B.R.; Kirklin, K.H.; Miron, P.J.; Ross, G.G. A Three Generation Superstring Model. 2. Symmetry Breaking and the Low-Energy Theory. Nucl. Phys. B 1987, 292, 606–652. [Google Scholar] [CrossRef]
- Matsuoka, T.; Suematsu, D. Realistic Models From The E8 × Superstring Theory. Prog. Theor. Phys. 1986, 76, 886–900. [Google Scholar] [CrossRef]
- Greene, B.R.; Kirklin, K.H.; Miron, P.J.; Ross, G.G. 273 Yukawa Couplings For a Three Generation Superstring Model. Phys. Lett. B 1987, 192, 111. [Google Scholar] [CrossRef]
- Anderson, L.B.; Gray, J.; Lukas, A.; Ovrut, B. Stabilizing All Geometric Moduli in Heterotic Calabi-Yau Vacua. Phys. Rev. D 2011, 83, 106011. [Google Scholar] [CrossRef]
- Braun, V.; He, Y.H.; Ovrut, B.A.; Pantev, T. The Exact MSSM spectrum from string theory. J. High Energy Phys. 2006, 2006, 043. [Google Scholar] [CrossRef]
- Braun, V.; Ovrut, B.A.; Pantev, T.; Reinbacher, R. Elliptic Calabi-Yau threefolds with Z(3) × Z(3) Wilson lines. J. High Energy Phys. 2004, 2004, 062. [Google Scholar] [CrossRef]
- Braun, V.; He, Y.H.; Ovrut, B.A.; Pantev, T. Vector Bundle Extensions, Sheaf Cohomology, and the Heterotic Standard Model. Adv. Theor. Math. Phys. 2006, 10, 525–529. [Google Scholar] [CrossRef]
- Braun, V.; He, Y.H.; Ovrut, B.A. Stability of the minimal heterotic standard model bundle. J. High Energy Phys. 2006, 2006, 032. [Google Scholar] [CrossRef]
- Braun, V.; He, Y.H.; Ovrut, B.A. Yukawa couplings in heterotic standard models. J. High Energy Phys. 2006, 2006, 019. [Google Scholar] [CrossRef]
- Barger, V.; Fileviez Perez, P.; Spinner, S. Minimal gauged U(1)(B-L) model with spontaneous R-parity violation. Phys. Rev. Lett. 2009, 102, 181802. [Google Scholar] [CrossRef]
- Fileviez Perez, P.; Spinner, S. Spontaneous R-Parity Breaking in SUSY Models. Phys. Rev. D 2009, 80, 015004. [Google Scholar] [CrossRef]
- Ambroso, M.; Ovrut, B. The B-L/Electroweak Hierarchy in Heterotic String and M-Theory. J. High Energy Phys. 2009, 2009, 011. [Google Scholar] [CrossRef]
- Ambroso, M.; Ovrut, B.A. The B-L/Electroweak Hierarchy in Smooth Heterotic Compactifications. Int. J. Mod. Phys. A 2010, 25, 2631–2677. [Google Scholar] [CrossRef]
- Ambroso, M.; Ovrut, B.A. The Mass Spectra, Hierarchy and Cosmology of B-L MSSM Heterotic Compactifications. Int. J. Mod. Phys. A 2011, 26, 1569–1627. [Google Scholar] [CrossRef]
- Ovrut, B.A.; Purves, A.; Spinner, S. Wilson Lines and a Canonical Basis of SU(4) Heterotic Standard Models. J. High Energy Phys. 2012, 2012, 026. [Google Scholar] [CrossRef]
- Ovrut, B.A.; Purves, A.; Spinner, S. The minimal SUSY B − L model: From the unification scale to the LHC. J. High Energy Phys. 2015, 2015, 182. [Google Scholar] [CrossRef]
- Fileviez Perez, P.; Spinner, S. TeV Scale Spontaneous R-Parity Violation. AIP Conf. Proc. 2010, 1200, 529–532. [Google Scholar] [CrossRef]
- Fileviez Perez, P.; Spinner, S. The Minimal Theory for R-parity Violation at the LHC. J. High Energy Phys. 2012, 1204, 118. [Google Scholar] [CrossRef]
- Brelidze, T.; Ovrut, B.A. B-L Cosmic Strings in Heterotic Standard Models. J. High Energy Phys. 2010, 2010, 077. [Google Scholar] [CrossRef]
- Battarra, L.; Koehn, M.; Lehners, J.L.; Ovrut, B.A. Cosmological Perturbations Through a Non-Singular Ghost-Condensate/Galileon Bounce. J. Cosmol. Astropart. Phys. 2014, 1407, 007. [Google Scholar] [CrossRef]
- Koehn, M.; Lehners, J.L.; Ovrut, B.A. Cosmological super-bounce. Phys. Rev. D 2014, 90, 025005. [Google Scholar] [CrossRef]
- Koehn, M.; Lehners, J.L.; Ovrut, B.A. Higher-Derivative Chiral Superfield Actions Coupled to N = 1 Supergravity. Phys. Rev. D 2012, 86, 085019. [Google Scholar] [CrossRef]
- Marshall, Z.; Ovrut, B.A.; Purves, A.; Spinner, S. Spontaneous R-Parity Breaking, Stop LSP Decays and the Neutrino Mass Hierarchy. Phys. Lett. B 2014, 732, 325–329. [Google Scholar] [CrossRef]
- Marshall, Z.; Ovrut, B.A.; Purves, A.; Spinner, S. LSP Squark Decays at the LHC and the Neutrino Mass Hierarchy. Phys. Rev. D 2014, 90, 015034. [Google Scholar] [CrossRef]
- Dumitru, S.; Ovrut, B.A.; Purves, A. The R-parity Violating Decays of Charginos and Neutralinos in the B-L MSSM. arXiv, 2018; arXiv:1810.11035. [Google Scholar]
- Dumitru, S.; Ovrut, B.A.; Purves, A. R-parity Violating Decays of Wino Chargino and Wino Neutralino LSPs and NLSPs at the LHC. arXiv, 2018; arXiv:1811.05581. [Google Scholar]
- Candelas, P.; de la Ossa, X.; He, Y.H.; Szendroi, B. Triadophilia: A Special Corner in the Landscape. Adv. Theor. Math. Phys. 2008, 12, 429–473. [Google Scholar] [CrossRef]
- Anderson, L.B.; Gray, J.; Lukas, A.; Palti, E. Two Hundred Heterotic Standard Models on Smooth Calabi-Yau Threefolds. Phys. Rev. D 2011, 84, 106005. [Google Scholar] [CrossRef]
- Anderson, L.B.; Gray, J.; Lukas, A.; Palti, E. Heterotic Line Bundle Standard Models. J. High Energy Phys. 2012, 2012, 113. [Google Scholar] [CrossRef]
- Anderson, L.B.; Gray, J.; Lukas, A.; Palti, E. Heterotic standard models from smooth Calabi-Yau three-folds. PoS 2011, CORFU2011, 096. [Google Scholar]
- Kachru, S.; Kallosh, R.; Linde, A.D.; Trivedi, S.P. De Sitter vacua in string theory. Phys. Rev. D 2003, 68, 046005. [Google Scholar] [CrossRef]
- Gray, J.; Lukas, A.; Ovrut, B. Perturbative anti-brane potentials in heterotic M-theory. Phys. Rev. D 2007, 76, 066007. [Google Scholar] [CrossRef]
- Gray, J.; Lukas, A.; Ovrut, B. Flux, gaugino condensation and anti-branes in heterotic M-theory. Phys. Rev. D 2007, 76, 126012. [Google Scholar] [CrossRef]
- Braun, V.; Ovrut, B.A. Stabilizing moduli with a positive cosmological constant in heterotic M-theory. J. High Energy Phys. 2006, 2006, 035. [Google Scholar] [CrossRef]
- Bogomolov, F.A. Holomorphic tensors and vector bundles on projective manifolds. Izvestiya Rossiiskoi Akademii Nauk Seriya Matematicheskaya 1978, 42, 1227–1287, 1439. [Google Scholar]
- Douglas, M.R.; Reinbacher, R.; Yau, S.T. Branes, bundles and attractors: Bogomolov and beyond. arXiv, 2006; arXiv:math/0604597. [Google Scholar]
- Andreas, B.; Curio, G. Spectral Bundles and the DRY-Conjecture. J. Geom. Phys. 2012, 62, 800–803. [Google Scholar] [CrossRef]
- Andreas, B.; Curio, G. On the Existence of Stable bundles with prescribed Chern classes on Calabi-Yau threefolds. arXiv, 2011; arXiv:1104.3435. [Google Scholar]
- Braun, V.; He, Y.H.; Ovrut, B.A. Supersymmetric Hidden Sectors for Heterotic Standard Models. J. High Energy Phys. 2013, 2013, 008. [Google Scholar] [CrossRef]
- Blumenhagen, R.; Honecker, G.; Weigand, T. Loop-corrected compactifications of the heterotic string with line bundles. J. High Energy Phys. 2005, 2005, 020. [Google Scholar] [CrossRef]
- Blumenhagen, R.; Honecker, G.; Weigand, T. Non-Abelian brane worlds: The Heterotic string story. J. High Energy Phys. 2005, 2005, 086. [Google Scholar] [CrossRef]
- Blumenhagen, R.; Moster, S.; Weigand, T. Heterotic GUT and standard model vacua from simply connected Calabi-Yau manifolds. Nucl. Phys. B 2006, 751, 186–221. [Google Scholar] [CrossRef]
- Weigand, T. Compactifications of the heterotic string with unitary bundles. Fortsch. Phys. 2006, 54, 963–1077. [Google Scholar] [CrossRef] [Green Version]
- Blumenhagen, R.; Moster, S.; Reinbacher, R.; Weigand, T. Massless Spectra of Three Generation U(N) Heterotic String Vacua. J. High Energy Phys. 2007, 2007, 041. [Google Scholar] [CrossRef]
- Blumenhagen, R.; Honecker, G.; Weigand, T. Supersymmetric (non-)Abelian bundles in the Type I and SO(32) heterotic string. J. High Energy Phys. 2005, 2005, 009. [Google Scholar] [CrossRef]
- Lukas, A.; Ovrut, B.A.; Waldram, D. Nonstandard embedding and five-branes in heterotic M theory. Phys. Rev. D 1999, 59, 106005. [Google Scholar] [CrossRef]
- Donagi, R.; Ovrut, B.A.; Waldram, D. Moduli spaces of five-branes on elliptic Calabi-Yau threefolds. J. High Energy Phys. 1999, 1999, 030. [Google Scholar] [CrossRef]
- Lukas, A.; Ovrut, B.A.; Waldram, D. Five-branes and supersymmetry breaking in M theory. J. High Energy Phys. 1999, 1999, 009. [Google Scholar] [CrossRef]
- Lukas, A.; Ovrut, B.A.; Waldram, D. On the four-dimensional effective action of strongly coupled heterotic string theory. Nucl. Phys. B 1998, 532, 43–82. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.B.; Gray, J.; Lukas, A.; Ovrut, B. Stability Walls in Heterotic Theories. J. High Energy Phys. 2009, 2009, 026. [Google Scholar] [CrossRef]
- Schoen, C. On fiber products of rational elliptic surfaces with section. Math. Z. 1988, 197, 177–199. [Google Scholar] [CrossRef]
- Lukas, A.; Ovrut, B.A.; Stelle, K.; Waldram, D. Heterotic M theory in five-dimensions. Nucl. Phys. B 1999, 552, 246–290. [Google Scholar] [CrossRef]
- Donagi, R.; Lukas, A.; Ovrut, B.A.; Waldram, D. Nonperturbative vacua and particle physics in M theory. J. High Energy Phys. 1999, 1999, 018. [Google Scholar] [CrossRef]
- Lukas, A.; Ovrut, B.A.; Stelle, K.; Waldram, D. The Universe as a domain wall. Phys. Rev. D 1999, 59, 086001. [Google Scholar] [CrossRef]
- Donagi, R.; Lukas, A.; Ovrut, B.A.; Waldram, D. Holomorphic vector bundles and nonperturbative vacua in M theory. J. High Energy Phys. 1999, 1999, 034. [Google Scholar] [CrossRef]
- Uhlenbeck, K.; Yau, S.T. On the existence of hermitian-Yang-Mills connections in stable vector bundles. Commun. Pure Appl. Math. 1986, 39, S257–S293. [Google Scholar] [CrossRef]
- Donaldson, S.K. Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. 1985, 50, 1–26. [Google Scholar] [CrossRef]
- Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory. Volume 2: Loop Amplitudes, Anomalies and Phenomenology; Cambridge Monographs on Mathematical Physics; University Press: Cambridge, UK, 1987; 596p. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovrut, B.A. Vacuum Constraints for Realistic Strongly Coupled Heterotic M-Theories. Symmetry 2018, 10, 723. https://doi.org/10.3390/sym10120723
Ovrut BA. Vacuum Constraints for Realistic Strongly Coupled Heterotic M-Theories. Symmetry. 2018; 10(12):723. https://doi.org/10.3390/sym10120723
Chicago/Turabian StyleOvrut, Burt A. 2018. "Vacuum Constraints for Realistic Strongly Coupled Heterotic M-Theories" Symmetry 10, no. 12: 723. https://doi.org/10.3390/sym10120723
APA StyleOvrut, B. A. (2018). Vacuum Constraints for Realistic Strongly Coupled Heterotic M-Theories. Symmetry, 10(12), 723. https://doi.org/10.3390/sym10120723