Nonclassical Symmetries of a Power Law Harry Dym Equation
Abstract
:1. Introduction
2. Classical Symmetries of the Harry Dym Equation
3. Nonclassical Symmetries of the Power Law Harry Dym Equation
4. Nonclassical Method Extension
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lie, S. Klassifikation und Integration von gewohnlichen Differentialgleichen zwischen x, y die eine Gruppe von Transformationen gestatten. Math. Ann. 1888, 32, 213–281. [Google Scholar] [CrossRef]
- Arrigo, D.J. Symmetries Analysis of Differential Equations—An Introduction; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Bluman, G.; Kumei, S. Symmetries and Differential Equations; Springer: Berlin, Germany, 1989. [Google Scholar]
- Cherniha, R.; Mykola, S.; Pliukhin, O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: Berlin, Germany, 1993. [Google Scholar]
- Ovsiannikov, L.V. Gruppovye Svoystva Uravnenya Nelinaynoy Teploprovodnosty. Dok. Akad. Nauk. CCCP 1959, 125, 492. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Chapovsky, Y., Translator; Ames, W.F., Ed.; Academic Press: New York, NY, USA; London, UK, 1982. [Google Scholar]
- Bluman, G.W.; Reid, G.J.; Kumei, S. New classes of symmetries for partial differential equations. J. Math. Phys. 1988, 29, 806–811. [Google Scholar] [CrossRef]
- Arrigo, D.J. Group Properties of a Monge-Ampere Equation. Ph.D. Thesis, Georgia Tech, Atlanta, GA, USA, 1991. [Google Scholar]
- Ames, W.F.; Lohner, R.J.; Adams, E. Group properties of utt = [f(u)ux]x. Int. J. Non-Linear Mech. 1981, 16, 439–447. [Google Scholar] [CrossRef]
- Bluman, G.; Cheviakov, A.F.; Anco, S.C. Application of Symmetry Methods to Partial Differential Equations; Springer: Berlin, Germany, 2010. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F. Framework for potential systems and nonlocal symmetries: Algorithmic approach. J. Math. Phys. 2005, 46, 123506. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cheviakov, A.F.; Ivanova, N.M. Framework for nonlocally related partial differential equation systems and nonlocal symmetries: Extension, simplification, and examples. J. Math. Phys. 2006, 47, 113505. [Google Scholar] [CrossRef]
- Bluman, G.W.; Temuerchaolu; Sahadevan, R. Local and nonlocal symmetries for nonlinear telegraph equation. J. Math. Phys. 2005, 46, 023505. [Google Scholar] [CrossRef]
- Cheviakov, A.F.; Bluman, G.W. On locally and nonlocally related potential systems. J. Math. Phys. 2010, 51, 073502. [Google Scholar] [CrossRef]
- Yang, Z.; Cheviakov, A.F. Some realations between symmetries of nonlocally related systems. J. Math. Phys. 2014, 55, 083514. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cheviakov, A.F. Nonlocally related systems, linearization and nonlocal symmetries for the nonlinear wave equation. Math. Anal. Appl. 2007, 333, 93–111. [Google Scholar] [CrossRef]
- Bluman, G.W.; Doran-Wu, P. The use of factors to discover potential systems or linearizations. Acta Appl. Math. 1995, 41, 21–43. [Google Scholar] [CrossRef]
- Bluman, G.; Kumei, S. On invariance properties of the wave equation. J. Math. Phys. 1987, 28, 307–319. [Google Scholar] [CrossRef]
- Akhatov, S.; Gazizov, R.K.; Ibragimov, N.K. Nonlocal symmetries. Heuristic approach. J. Sov. Math. 1991, 55, 1401–1450. [Google Scholar] [CrossRef]
- Sjöberg, A.; Mahomed, F.M. Non-local symmetries and conservation laws for one-dimensional gas dynamics equations. Appl. Math. Comput. 2004, 150, 379–397. [Google Scholar] [CrossRef]
- Bluman, G.; Cheviakov, A.; Ganghoffer, J.F. On the nonlocal symmetries, group invariant solutions and conservation laws of the equations of nonlinear dynamical compressible elasticitiy. In Proceedings of the IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics, Erlangen, Germany, 20–24 October 2008; Steinmann, P., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 107–120. [Google Scholar]
- Arrigo, D.J.; Ashley, B.P.; Bloomberg, S.J.; Deatherage, T.W. Nonclassical Symmetries of a Nonlinear. Diffusion-Convection/Wave Equation and Equivalents Systems. Symmetry 2016, 8, 140. [Google Scholar] [CrossRef]
- Bruzon, M.S.; Gandarias, M.L.; Gonzalex, G.A.; Hansen, R. The K(m,n) equation with a generalized evolution term studied by symmetry reductions and qualitative anslysis. Appl. Math. Comp. 2012, 218, 10094–10105. [Google Scholar] [CrossRef]
- Tychynin, V.A. Non-local symmetry and generating solutions for Harry-Dym type equations. J. Phys. A Math. Gen. 1994, 27, 4549–4556. [Google Scholar] [CrossRef]
- Bruzon, M.S.; Gandarias, M.L. Classical potential symmetries of the K(m,n) equation with generalized evolution term. WSEAS Trans. Math. 2010, 4, 275–284. [Google Scholar]
- Bluman, G.; Kumei, S. When nonlinear differential equations are equivalent to linear differential equations. SIAM J. Appl. Math. 1982, 42, 1157–1173. [Google Scholar]
- Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Phys. 1969, 18, 1025–1042. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrigo, D.J.; Weaver, A.N. Nonclassical Symmetries of a Power Law Harry Dym Equation. Symmetry 2018, 10, 100. https://doi.org/10.3390/sym10040100
Arrigo DJ, Weaver AN. Nonclassical Symmetries of a Power Law Harry Dym Equation. Symmetry. 2018; 10(4):100. https://doi.org/10.3390/sym10040100
Chicago/Turabian StyleArrigo, Daniel J., and Andrea N. Weaver. 2018. "Nonclassical Symmetries of a Power Law Harry Dym Equation" Symmetry 10, no. 4: 100. https://doi.org/10.3390/sym10040100
APA StyleArrigo, D. J., & Weaver, A. N. (2018). Nonclassical Symmetries of a Power Law Harry Dym Equation. Symmetry, 10(4), 100. https://doi.org/10.3390/sym10040100