The Breaking of Symmetry Leads to Chirality in Cucurbituril-Type Hosts
Abstract
:1. Introduction
2. Chiral Cucurbituril-Type Hosts
3. Breaking Symmetry through Complex Formation with Achiral Compounds
4. Breaking Symmetry through Complex Formation with Chiral Compounds
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Freeman, W.A.; Mock, W.L.; Shih, N.Y. Cucurbituril. J. Am. Chem. Soc. 1981, 103, 7367–7368. [Google Scholar] [CrossRef]
- Flinn, A.; Hough, G.C.; Stoddart, J.F.; Williams, D.J. Decamethylcucurbit[5]uril. Angew. Chem. Int. Ed. 1992, 31, 1475–1477. [Google Scholar] [CrossRef]
- Kim, J.; Jung, I.-S.; Kim, S.-Y.; Lee, E.; Kang, J.-K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 2000, 122, 540–541. [Google Scholar] [CrossRef]
- Day, A.; Arnold, A.P.; Blanch, R.J.; Snushall, B. Controlling Factors in the Synthesis of Cucurbituril and Its Homologues. J. Org. Chem. 2001, 66, 8094–8100. [Google Scholar] [CrossRef] [PubMed]
- Aav, R.; Kaabel, S.; Fomitšenko, M. Cucurbiturils: Synthesis, Structures, Formation Mechanisms, and Nomenclature. In Comprehensive Supramolecular Chemistry II; Atwood, J.L., Ed.; Elsevier: Oxford, UK, 2017; Volume 3, pp. 203–220. ISBN 978-0-12-803199-5. [Google Scholar]
- Lisbjerg, M.; Pittelkow, M. Hemicucurbit[n]urils. In Comprehensive Supramolecular Chemistry II; Atwood, J.L., Ed.; Elsevier: Oxford, UK, 2017; Volume 3, pp. 221–236. ISBN 978-0-12-803199-5. [Google Scholar]
- Ganapati, S.; Isaacs, L. Acyclic Cucurbit[n]uril-type Receptors: Preparation, Molecular Recognition Properties and Biological Applications. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Andersen, N.N.; Lisbjerg, M.; Eriksen, K.; Pittelkow, M. Hemicucurbit[n]urils and Their Derivatives—Synthesis and Applications. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Masson, E.; Raeisi, M.; Kotturi, K. Kinetics Inside, Outside and Through Cucurbiturils. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Ouari, O.; Bardelang, D. Nitroxide Radicals with Cucurbit[n]urils and Other Cavitands. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Shen, J.; Dearden, D.V. Recent Progress in Gas Phase Cucurbit[n]uril Chemistry. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Kaifer, A.E. Portal Effects on the Stability of Cucurbituril Complexes. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Hou, C.; Zeng, X.; Gao, Y.; Qiao, S.; Zhang, X.; Xu, J.; Liu, J. Cucurbituril As A Versatile Tool to Tune the Functions of Proteins. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Kaabel, S.; Aav, R. Templating Effects in the Dynamic Chemistry of Cucurbiturils and Hemicucurbiturils. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Wiemann, M.; Jonkheijm, P. Stimuli-Responsive Cucurbit[n]uril-Mediated Host-Guest Complexes on Surfaces. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Vícha, R.; Jelínková, K.; Rouchal, M. Cucurbit[n]urils-related Multitopic Supramolecular Components: Design, Properties, and Perspectives. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Koc, A.; Tuncel, D. Supramolecular Assemblies of Cucurbiturils with Photoactive, π-conjugated Chromophores. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Robinson-Duggon, J.; Pérez-Mora, F.; Dibona-Villanueva, L.; Fuentealba, D. Potential Applications of Cucurbit[n]urils Inclusion Complexes in Photodynamic Therapy. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Barooah, N.; Khurana, R.; Bhasikuttan, A.C.; Mohanty, J. Stimuli-responsive Supra-biomolecular Nanoassemblies of Cucurbit[7]uril with Bovine Serum Albumin: Drug Delivery and Sensor Applications. Isr. J. Chem. 2018. [Google Scholar] [CrossRef]
- Macartney, D.H. Cucurbit[n]uril Host-Guest Complexes of Acids, Photoacids, and Super Photoacids. Isr. J. Chem. 2018. [Google Scholar] [CrossRef]
- Masson, E.; Ling, X.; Joseph, R.; Kyeremeh-Mensah, L.; Lu, X. Cucurbituril chemistry: A tale of supramolecular success. RSC Adv. 2012, 2, 1213–1247. [Google Scholar] [CrossRef]
- Tomas, L.; Vladimir, S. Bambusuril Anion Receptors. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Reany, O.; Amar, M.; Ehud, K. Hetero-Bambusurils. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Barrow, S.J.; Kasera, S.; Rowland, M.J.; del Barrio, J.; Scherman, O.A. Cucurbituril-Based Molecular Recognition. Chem. Rev. 2015, 115, 12320–12406. [Google Scholar] [CrossRef] [PubMed]
- Sinn, S.; Biedermann, F. Chemical Sensors Based on Cucurbit[n]uril Macrocycles. Isr. J. Chem. 2018, 58. [Google Scholar] [CrossRef]
- Ni, X.-L.; Xiao, X.; Cong, H.; Liang, L.-L.; Cheng, K.; Cheng, X.-J.; Ji, N.-N.; Zhu, Q.-J.; Xue, S.-F.; Tao, Z. Cucurbit[n]uril-based coordination chemistry: From simple coordination complexes to novel poly-dimensional coordination polymers. Chem. Soc. Rev. 2013, 42, 9480–9508. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.-L.; Xiao, X.; Cong, H.; Zhu, Q.-J.; Xue, S.-F.; Tao, Z. Self-Assemblies Based on the “Outer-Surface Interactions” of Cucurbit[n]urils: New Opportunities for Supramolecular Architectures and Materials. Acc. Chem. Res. 2014, 47, 1386–1395. [Google Scholar] [CrossRef] [PubMed]
- Pattabiraman, M.; Sivaguru, J.; Ramamurthy, V. Cucurbiturils as Reaction Containers for Photocycloaddition of Olefins. Isr. J. Chem. 2017, 57. in print. [Google Scholar] [CrossRef]
- Mandadapu, V.; Day, A.I.; Ghanem, A. Cucurbituril: Chiral Applications. Chirality 2014, 26, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-H.; Zavalij, P.Y.; Isaacs, L. Chiral Recognition inside a Chiral Cucurbituril. Angew. Chem. Int. Ed. 2007, 46, 7425–7427. [Google Scholar] [CrossRef] [PubMed]
- Kozerski, L.; Hansen, P.E. Aggregation of amphiphilic molecules in water. I. α-phenylethylamine: 1H and 13C NMR study. J. Phys. Org. Chem. 1991, 4, 58–66. [Google Scholar] [CrossRef]
- Parve, O.; Reile, I.; Parve, J.; Kasvandik, S.; Kudrjašova, M.; Tamp, S.; Metsala, A.; Villo, L.; Pehk, T.; Jarvet, J.; et al. An NMR and MD Modeling Insight into Nucleation of 1,2-Alkanediols: Selective Crystallization of Lipase-Catalytically Resolved Enantiomers from the Reaction Mixtures. J. Org. Chem. 2013, 78, 12795–12801. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-H.; Zavalij, P.Y.; Isaacs, L. Metal-Ion-Induced Folding and Dimerization of a Glycoluril Decamer in Water. Org. Lett. 2009, 11, 3918–3921. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.-J.; Liang, L.-L.; Chen, K.; Ji, N.-N.; Xiao, X.; Zhang, J.-X.; Zhang, Y.-Q.; Xue, S.-F.; Zhu, Q.-J.; Ni, X.-L.; et al. Twisted Cucurbit[14]uril. Angew. Chem. Int. Ed. 2013, 52, 7252–7255. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.-C.; Chen, K.; Wang, Y.; Hua, Z.; Li, F.; Huang, Y.; Tao, Z.; Zhang, Y.; Wei, G. Crystal structure analysis of twisted cucurbit [14]uril conformations. Inorg. Chem. Commun. 2017, 86, 49–53. [Google Scholar] [CrossRef]
- Li, Q.; Qiu, S.-C.; Zhang, J.; Chen, K.; Huang, Y.; Xiao, X.; Zhang, Y.; Li, F.; Zhang, Y.-Q.; Xue, S.-F.; et al. Twisted Cucurbit[n]urils. Org. Lett. 2016, 18, 4020–4023. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Isaacs, L. Synthesis and Recognition Properties of Enantiomerically Pure Acyclic Cucurbit[n]uril-Type Molecular Containers. Org. Lett. 2015, 17, 4038–4041. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Hettiarachchi, G.; Briken, V.; Isaacs, L. Cucurbit[7]uril Containers for Targeted Delivery of Oxaliplatin to Cancer Cells. Angew. Chem. Int. Ed. 2013, 52, 12033–12037. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.; Mao, D.; Ma, D. Acyclic cucurbit[n]uril conjugated dextran for drug encapsulation and bioimaging. Chem. Commun. 2017, 53, 8739–8742. [Google Scholar] [CrossRef] [PubMed]
- Herges, R. Topology in Chemistry: Designing Möbius Molecules. Chem. Rev. 2006, 106, 4820–4842. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Qiu, S.-C.; Chen, K.; Zhang, Y.; Wang, R.; Huang, Y.; Tao, Z.; Zhu, Q.-J.; Liu, J.-X. Encapsulation of alkyldiammonium ions within two different cavities of twisted cucurbit[14]uril. Chem. Commun. 2016, 52, 2589–2592. [Google Scholar] [CrossRef] [PubMed]
- Miyahara, Y.; Goto, K.; Oka, M.; Inazu, T. Remarkably Facile Ring-Size Control in Macrocyclization: Synthesis of Hemicucurbit[6]uril and Hemicucurbit[12]uril. Angew. Chem. Int. Ed. 2004, 43, 5019–5022. [Google Scholar] [CrossRef] [PubMed]
- Svec, J.; Necas, M.; Sindelar, V. Bambus[6]uril. Angew. Chem. Int. Ed. 2010, 49, 2378–2381. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Solel, E.; Keinan, E.; Reany, O. Aza-Bambusurils En Route to Anion Transporters. Chem. Eur. J. 2016, 22, 8848–8854. [Google Scholar] [CrossRef] [PubMed]
- Aav, R.; Shmatova, E.; Reile, I.; Borissova, M.; Topić, F.; Rissanen, K. New Chiral Cyclohexylhemicucurbit[6]uril. Org. Lett. 2013, 15, 3786–3789. [Google Scholar] [CrossRef] [PubMed]
- Lisbjerg, M.; Jessen, B.M.; Rasmussen, B.; Nielsen, B.E.; Madsen, A.Ø.; Pittelkow, M. Discovery of a cyclic 6 + 6 hexamer of D-biotin and formaldehyde. Chem. Sci. 2014, 5, 2647–2650. [Google Scholar] [CrossRef]
- Prigorchenko, E.; Öeren, M.; Kaabel, S.; Fomitšenko, M.; Reile, I.; Järving, I.; Tamm, T.; Topić, F.; Rissanen, K.; Aav, R. Template-controlled synthesis of chiral cyclohexylhemicucurbit[8]uril. Chem. Commun. 2015, 51, 10921–10924. [Google Scholar] [CrossRef] [PubMed]
- Öeren, M.; Shmatova, E.; Tamm, T.; Aav, R. Computational and ion mobility MS study of (all-S)-cyclohexylhemicucurbit[6]uril structure and complexes. Phys. Chem. Chem. Phys. 2014, 16, 19198–19205. [Google Scholar] [CrossRef] [PubMed]
- Kaabel, S.; Adamson, J.; Topić, F.; Kiesilä, A.; Kalenius, E.; Öeren, M.; Reimund, M.; Prigorchenko, E.; Lõokene, A.; Reich, H.J.; et al. Chiral hemicucurbit[8]uril as an anion receptor: Selectivity to size, shape and charge distribution. Chem. Sci. 2017, 8, 2184–2190. [Google Scholar] [CrossRef] [PubMed]
- Lisbjerg, M.; Nielsen, B.E.; Milhøj, B.O.; Sauer, S.P.A.; Pittelkow, M. Anion binding by biotin[6]uril in water. Org. Biomol. Chem. 2014, 13, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Lisbjerg, M.; Valkenier, H.; Jessen, B.M.; Al-Kerdi, H.; Davis, A.P.; Pittelkow, M. Biotin[6]uril Esters: Chloride-Selective Transmembrane Anion Carriers Employing C–H···Anion Interactions. J. Am. Chem. Soc. 2015, 137, 4948–4951. [Google Scholar] [CrossRef] [PubMed]
- Leong, W.L.; Vittal, J.J. One-Dimensional Coordination Polymers: Complexity and Diversity in Structures, Properties, and Applications. Chem. Rev. 2011, 111, 688–764. [Google Scholar] [CrossRef] [PubMed]
- Whang, D.; Kim, K. Helical polyrotaxane: Cucurbituril ‘beads’ threaded onto a helical one-dimensional coordination polymer. Chem. Commun. 1997, 2361–2362. [Google Scholar] [CrossRef]
- Park, K.-M.; Whang, D.; Lee, E.; Heo, J.; Kim, K. Transition Metal Ion Directed Supramolecular Assembly of One- and Two-Dimensional Polyrotaxanes Incorporating Cucurbituril. Chem. Eur. J. 2002, 8, 498–508. [Google Scholar] [CrossRef]
- Zeng, J.-P.; Cong, H.; Chen, K.; Xue, S.-F.; Zhang, Y.-Q.; Zhu, Q.-J.; Liu, J.-X.; Tao, Z. A Novel Strategy to Assemble Achiral Ligands to Chiral Helical Polyrotaxane Structures. Inorg. Chem. 2011, 50, 6521–6525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yajima, T.; Li, Y.-Z.; Xu, G.-Z.; Chen, H.-L.; Liu, Q.-T.; Yamauchi, O. Iodine-Assisted Assembly of Helical Coordination Polymers of Cucurbituril and Asymmetric Copper(II) Complexes. Angew. Chem. Int. Ed. 2005, 44, 3402–3407. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Hu, Y.-F.; Xiao, X.; Xue, S.-F.; Tao, Z.; Zhang, Y.-Q.; Zhu, Q.-J.; Liu, J.-X. Homochiral 1D-helical coordination polymers from achiral cucurbit[5]uril: Hydroquinone-induced spontaneous resolution. RSC Adv. 2012, 2, 3217–3220. [Google Scholar] [CrossRef]
- Chen, K.; Liang, L.-L.; Liu, H.-J.; Zhang, Y.-Q.; Xue, S.-F.; Tao, Z.; Xiao, X.; Zhu, Q.-J.; Lindoy, L.F.; Wei, G. Hydroquinone-assisted assembly of coordination polymers from lanthanides and cucurbit[5]uril. CrystEngComm 2012, 14, 7994–7999. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, J.-X.; Fan, Z.-F.; Chen, K.; Zhu, Q.-J.; Xue, S.-F.; Tao, Z. Chirality from achiral components: N,N′-bis(4-dimethylaminobenzyl)dodecane-1,12-diammonium in cucurbit[8]uril. Chem. Commun. 2010, 46, 3741–3743. [Google Scholar] [CrossRef] [PubMed]
- Hembury, G.A.; Borovkov, V.V.; Inoue, Y. Chirality-Sensing Supramolecular Systems. Chem. Rev. 2008, 108, 1–73. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, L.; Wang, T. Supramolecular Chirality in Self-Assembled Systems. Chem. Rev. 2015, 115, 7304–7397. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Ko, Y.H.; Kim, K.; Inoue, Y. Circular Dichroism of Intra- and Intermolecular Charge-Transfer Complexes. Enhancement of Anisotropy Factors by Dimer Formation and by Confinement. J. Org. Chem. 2006, 71, 3232–3247. [Google Scholar] [CrossRef] [PubMed]
- Rekharsky, M.V.; Yamamura, H.; Inoue, C.; Kawai, M.; Osaka, I.; Arakawa, R.; Shiba, K.; Sato, A.; Ko, Y.H.; Selvapalam, N.; et al. Chiral Recognition in Cucurbituril Cavities. J. Am. Chem. Soc. 2006, 128, 14871–14880. [Google Scholar] [CrossRef] [PubMed]
- Green, M.M.; Reidy, M.P.; Johnson, R.D.; Darling, G.; O’Leary, D.J.; Willson, G. Macromolecular stereochemistry: The out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment. J. Am. Chem. Soc. 1989, 111, 6452–6454. [Google Scholar] [CrossRef]
- Wu, W.; Cronin, M.P.; Wallace, L.; Day, A.I. An Exploration of Induced Supramolecular Chirality Through Association of Chiral Ammonium Ions and Tartrates with the Achiral Host Cucurbit[7]uril. Isr. J. Chem. 2018, 58. in print. [Google Scholar] [CrossRef]
- Biedermann, F.; Nau, W.M. Noncovalent Chirality Sensing Ensembles for the Detection and Reaction Monitoring of Amino Acids, Peptides, Proteins, and Aromatic Drugs. Angew. Chem. Int. Ed. 2014, 53, 5694–5699. [Google Scholar] [CrossRef] [PubMed]
- Nau, W.; Biedermann, F. A Method for Detecting a Chiral Analyte. Patent DE102013021899A1, 2015. Available online: https://patents.google.com/patent/DE102013021899A1/en (accessed on 2 February 2018).
- Zheng, L.; Sonzini, S.; Ambarwati, M.; Rosta, E.; Scherman, O.A.; Herrmann, A. Turning Cucurbit[8]uril into a Supramolecular Nanoreactor for Asymmetric Catalysis. Angew. Chem. Int. Ed. 2015, 54, 13007–13011. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Natarajan, R.; Ko, Y.H.; Kim, K. Cucurbit[7]uril: A High-Affinity Host for Encapsulation of Amino Saccharides and Supramolecular Stabilization of Their α-Anomers in Water. Angew. Chem. Int. Ed. 2014, 53, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.L.; Kim, H.I. Supramolecular Analysis of Monosaccharide Derivatives Using Cucurbit[7]uril and Electrospray Ionization Tandem Mass Spectrometry. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Zhang, B.; Isaacs, L. Acyclic Cucurbit[n]uril-type Molecular Containers: Influence of Aromatic Walls on their Function as Solubilizing Excipients for Insoluble Drugs. J. Med. Chem. 2014, 57, 9554–9563. [Google Scholar] [CrossRef] [PubMed]
- Gilberg, L.; Zhang, B.; Zavalij, P.Y.; Sindelar, V.; Isaacs, L. Acyclic cucurbit[n]uril-type molecular containers: Influence of glycoluril oligomer length on their function as solubilizing agents. Org. Biomol. Chem. 2015, 13, 4041–4050. [Google Scholar] [CrossRef] [PubMed]
- Sigwalt, D.; Moncelet, D.; Falcinelli, S.; Mandadapu, V.; Zavalij, P.Y.; Day, A.; Briken, V.; Isaacs, L. Acyclic Cucurbit[n]uril-Type Molecular Containers: Influence of Linker Length on Their Function as Solubilizing Agents. ChemMedChem 2016, 11, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.A.; González-Delgado, J.A.; Mendoza, J.; Arteaga, J.F.; Basílio, N.; Pischel, U. Terpenes Show Nanomolar Affinity and Selective Binding with Cucurbit[8]uril. Isr. J. Chem. 2018. in print. [Google Scholar] [CrossRef]
- Gavvala, K.; Sengupta, A.; Hazra, P. Modulation of Photophysics and pKa Shift of the Anti-cancer Drug Camptothecin in the Nanocavities of Supramolecular Hosts. ChemPhysChem 2013, 14, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; Xue, S.-F.; Zhu, Q.-J.; Tao, Z.; Zhao, Y.; Yang, L.-X. Cucurbit[n]urils (n = 7, 8) binding of camptothecin and the effects on solubility and reactivity of the anticancer drug. Supramol. Chem. 2008, 20, 663–671. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Z.; Niu, Y.; Chen, X.; Lee, S.M.Y.; Wang, R. Influence of supramolecular encapsulation of camptothecin by cucurbit[7]uril: Reduced toxicity and preserved anti-cancer activity. Med. Chem. Comm. 2016, 7, 1392–1397. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, B.; Hoffmann, U.; Sundrup, M.G.; Eikermann, M.; Isaacs, L. Acyclic Cucurbit[n]uril-Type Molecular Containers Bind Neuromuscular Blocking Agents In Vitro and Reverse Neuromuscular Block In Vivo. Angew. Chem. Int. Ed. 2012, 51, 11358–11362. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Feng, J.; Ju, H. Supramolecular interaction of labetalol with cucurbit[7]uril for its sensitive fluorescence detection. Analyst 2014, 140, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Minami, T.; Esipenko, N.A.; Akdeniz, A.; Zhang, B.; Isaacs, L.; Anzenbacher, P. Multianalyte Sensing of Addictive Over-the-Counter (OTC) Drugs. J. Am. Chem. Soc. 2013, 135, 15238–15243. [Google Scholar] [CrossRef] [PubMed]
- Danylyuk, O.; Fedin, V.P.; Sashuk, V. Kinetic trapping of the host–guest association intermediate and its transformation into a thermodynamic inclusion complex. Chem. Commun. 2013, 49, 1859–1861. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Jang, M.; Kim, H.; Lee, S.J.; Jin, E.; Koo, J.Y.; Hwang, I.-C.; Kim, Y.; Ko, Y.H.; Hwang, I.; et al. Point-of-Use Detection of Amphetamine-Type Stimulants with Host-Molecule-Functionalized Organic Transistors. Chem 2017, 3, 641–651. [Google Scholar] [CrossRef]
- Wyman, I.W.; Macartney, D.H. Host–guest complexations of local anaesthetics by cucurbit[7]uril in aqueous solution. Org. Biomol. Chem. 2010, 8, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Soni, V.K.; Choudhary, G.; Sharma, P.R.; Sharma, R.K. Understanding behaviour of vitamin-C guest binding with the cucurbit[6]uril host. Supramol. Chem. 2017, 29, 387–394. [Google Scholar] [CrossRef]
- Saleh, N.; Al-Handawi, M.B.; Al-Kaabi, L.; Ali, L.; Salman Ashraf, S.; Thiemann, T.; al-Hindawi, B.; Meetani, M. Intermolecular interactions between cucurbit[7]uril and pilocarpine. Int. J. Pharm. 2014, 460, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Shcherbakova, E.G.; Zhang, B.; Gozem, S.; Minami, T.; Zavalij, P.Y.; Pushina, M.; Isaacs, L.D.; Anzenbacher, P. Supramolecular Sensors for Opiates and Their Metabolites. J. Am. Chem. Soc. 2017, 139, 14954–14960. [Google Scholar] [CrossRef] [PubMed]
- Saleh, N.; Meetani, M.A.; Al-Kaabi, L.; Ghosh, I.; Nau, W.M. Effect of cucurbit[n]urils on tropicamide and potential application in ocular drug delivery. Supramol. Chem. 2011, 23, 650–656. [Google Scholar] [CrossRef]
- Minami, T.; Esipenko, N.A.; Zhang, B.; Isaacs, L.; Anzenbacher, P. “Turn-on” fluorescent sensor array for basic amino acids in water. Chem. Commun. 2014, 50, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, H.H.L.; Ko, Y.H.; Kim, K.; Kim, H.I. Deciphering the Specific High-Affinity Binding of Cucurbit[7]uril to Amino Acids in Water. J. Phys. Chem. B 2015, 119, 4628–4636. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.M.; Hennig, A.; Uzunova, V.D.; Nau, W.M. Supramolecular Tandem Enzyme Assays for Multiparameter Sensor Arrays and Enantiomeric Excess Determination of Amino Acids. Chem. Eur. J. 2008, 14, 6069–6077. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.-Z.; Kan, J.-L.; Chen, L.-X.; Bai, D.; Wang, H.-Y.; Tao, Z.; Xiao, X. Binding and Selectivity of Essential Amino Acid Guests to the Inverted Cucurbit[7]uril Host. ACS Omega 2017, 2, 5633–5640. [Google Scholar] [CrossRef]
- Kovalenko, E.; Vilaseca, M.; Díaz-Lobo, M.; Masliy, A.N.; Vicent, C.; Fedin, V.P. Supramolecular Adducts of Cucurbit[7]uril and Amino Acids in the Gas Phase. J. Am. Soc. Mass Spectrom. 2016, 27, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Hang, C.; Tau, L.-L.; Yu, Y.-H.; Yang, F.; Du, Y.; Xue, S.-F.; Tao, Z. Molecular Recognition of Amino acid by Cucurbiturils. Acta Chim. Sin. 2006, 64, 989–996. [Google Scholar]
- Bush, M.E.; Bouley, N.D.; Urbach, A.R. Charge-Mediated Recognition of N-Terminal Tryptophan in Aqueous Solution by a Synthetic Host. J. Am. Chem. Soc. 2005, 127, 14511–14517. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ruspic, C.; Mukhopadhyay, P.; Chakrabarti, S.; Zavalij, P.Y.; Isaacs, L. The Cucurbit[n]uril Family: Prime Components for Self-Sorting Systems. J. Am. Chem. Soc. 2005, 127, 15959–15967. [Google Scholar] [CrossRef] [PubMed]
- Ghale, G.; Ramalingam, V.; Urbach, A.R.; Nau, W.M. Determining Protease Substrate Selectivity and Inhibition by Label-Free Supramolecular Tandem Enzyme Assays. J. Am. Chem. Soc. 2011, 133, 7528–7535. [Google Scholar] [CrossRef] [PubMed]
- Thuéry, P. Supramolecular assemblies built from lanthanide ammoniocarboxylates and cucurbit[6]uril. CrystEngComm 2012, 14, 8128–8136. [Google Scholar] [CrossRef]
- Joseph, R.; Masson, E. Cucurbit[8]uril recognition of rapidly interconverting diastereomers. Supramol. Chem. 2014, 26, 632–641. [Google Scholar] [CrossRef]
- Tang, H.; Fuentealba, D.; Ko, Y.H.; Selvapalam, N.; Kim, K.; Bohne, C. Guest Binding Dynamics with Cucurbit[7]uril in the Presence of Cations. J. Am. Chem. Soc. 2011, 133, 20623–20633. [Google Scholar] [CrossRef] [PubMed]
- Danylyuk, O.; Fedin, V.P. Solid-State Supramolecular Assemblies of Tryptophan and Tryptamine with Cucurbit[6]Uril. Cryst. Growth Des. 2012, 12, 550–555. [Google Scholar] [CrossRef]
- Ling, Y.; Wang, W.; Kaifer, A.E. A new cucurbit[8]uril-based fluorescent receptor for indole derivatives. Chem. Commun. 2007, 610–612. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, L.M.; Taylor, A.B.; Hart, P.J.; Urbach, A.R. Sequence-specific recognition and cooperative dimerization of n-terminal aromatic peptides in aqueous solution by a synthetic host. J. Am. Chem. Soc. 2006, 128, 12574–12581. [Google Scholar] [CrossRef] [PubMed]
- Danylyuk, O. Exploring cucurbit[6]uril–peptide interactions in the solid state: Crystal structure of cucurbit[6]uril complexes with glycyl-containing dipeptides. CrystEngComm 2017, 19, 3892–3897. [Google Scholar] [CrossRef]
- Biedermann, F.; Rauwald, U.; Cziferszky, M.; Williams, K.A.; Gann, L.D.; Guo, B.Y.; Urbach, A.R.; Bielawski, C.W.; Scherman, O.A. Benzobis(imidazolium)–Cucurbit[8]uril Complexes for Binding and Sensing Aromatic Compounds in Aqueous Solution. Chem. Eur. J. 2010, 16, 13716–13722. [Google Scholar] [CrossRef] [PubMed]
- Sonzini, S.; Ryan, S.T.J.; Scherman, O.A. Supramolecular dimerisation of middle-chain Phe pentapeptides via CB[8] host–guest homoternary complex formation. Chem. Commun. 2013, 49, 8779–8781. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, L.A.; Urbach, A.R. Sequence-Specific Inhibition of a Nonspecific Protease. J. Am. Chem. Soc. 2013, 135, 11414–11416. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.A.; Basílio, N.; Moro, A.J.; Domingues, M.; González-Delgado, J.A.; Arteaga, J.F.; Pischel, U. Photocaged Competitor Guests: A General Approach Toward Light-Activated Cargo Release from Cucurbiturils. Chem. Eur. J. 2017, 23, 13105–13111. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Isaacs, L. Absolute and relative binding affinity of cucurbit[7]uril towards a series of cationic guests. Supramol. Chem. 2014, 26, 251–258. [Google Scholar] [CrossRef]
Legend | Structure of Guest, Name of Host and Reference Number | ||
---|---|---|---|
G | |||
H | CB[8] | CB[8] | CB[7] |
Ref. | [66] | [66] | [69] |
G | |||
H | CB[7] | ||
Ref. | [69] | ||
G | |||
H | CB[7] | ||
Ref. | [70] | ||
G | |||
H | CB[7] | ||
Ref. | [70] | ||
G | |||
H | CB[7] | ||
Ref. | 70 | ||
G | |||
H | CB[7] | ||
Ref. | [70] |
Legend | Structure of Guest, Name of Host and Reference Number | ||
---|---|---|---|
G | |||
Paclitaxel | Docetaxel | Fulvestrant | |
H | Acyclic CB | ||
Ref. | [71] | ||
G | |||
Itraconazole | Voriconazole | ||
H | Acyclic CB | ||
Ref. | [71] | ||
G | |||
α-ethynylestradiol | Estradiol | PBS 1086 | |
H | Acyclic CB | ||
Ref. | [71,72,73] | ||
G | |||
S-camptothecin | Melphalan | 2-methoxyestradiol | |
H | Acyclic CB, CB[7], CB[8] | Acyclic CB | Acyclic CB |
Ref. | [71,72,73,74,75,76,77] | [71,72,73] | [73] |
G | |||
Rocuronium | Vecuronium | Pancuronium | |
H | Acyclic CB | ||
Ref. | [78] | ||
G | |||
Cisatracurium | Tubocurarine | ||
H | Acyclic CB | ||
Ref. | [78] | ||
G | |||
Labetalol | Phenylephrine | ||
H | CB[7] | CB[6], Acyclic CB | |
Ref. | [79] | [80] | |
G | |||
Pseudoephedrine | Adrenaline | Amphetamine hydrochloride | |
H | CB[6], Acyclic CB | CB[6] | CB[7] |
Ref. | [80] | [81] | [82] |
G | |||
Methamphetamine hydrochloride | Prilocaine | Sodium ascorbate | |
H | CB[7] | CB[7] | CB[6] |
Ref. | [82] | [83] | [84] |
G | |||
Pilocarpine | 6-monoacetymorphine | Noroxycodone | |
H | CB[7] | Acyclic CB | Acyclic CB |
Ref. | [85] | [86] | [86] |
G | |||
Morphine | Heroin | Oxycodone | |
H | Acyclic CB | ||
Ref. | [86] | ||
G | |||
Normorphine | Morphine-6-glucuronide | Oxymorphone | |
H | Acyclic CB | ||
Ref. | [86] | ||
G | |||
Penicillin G | (S)-propranolol | Ampicillin | |
H | CB[8] | ||
Ref. | [66] | ||
G | |||
(S)-1-phenylethanol | Tropicamide | ||
H | CB[8] | CB[7], CB[8] | |
Ref. | [66] | [87] |
Legend | Structure of Guest, Name of Host and Reference Number | ||
---|---|---|---|
G | |||
H | CB[6], Acyclic CB | CB[6], Acyclic, CB[7], iCB[7] | CB[6], Acyclic, CB[7], iCB[7] |
Ref. | [88] | [82,89,90,91,92] | [82,89,90,91,92] |
G | |||
H | CB[6], CB[7], CB[8], iCB[7] | CB[6], CB[7], CB[8], iCB[7] | CB[6], CB[7], CB[8], iCB[7] |
Ref. | [82,89,91,93,94] | [89,91,92,93,94,95,96] | [89,92,93,94] |
G | |||
H | iCB[7], CB[6] | iCB[7] | iCB[7] |
Ref. | [91,97] | [91] | [91] |
G | |||
H | iCB[7], CB[7] | iCB[7], CB[7] | CB[7] |
Ref. | [91,92] | [91,92] | [92] |
G | |||
H | CB[7] | ||
Ref. | [92] | ||
G | R = H , CH3 ; R´ = CH3 , Cl | ||
H | CB[7] | CB[8] | |
Ref. | [92] | [98] | |
G | |||
H | CB[7] | ||
Ref. | [66] | ||
G | |||
H | CB[6], Acyclic CB | CB[6], Acyclic CB | CB[8] |
Ref. | [88] | [88] | [94] |
G | |||
H | CB[8] | CB[7], CB[6] | CB[6],CB[8], iCB[7] |
Ref. | [94] | [99] | [91,94,100,101] |
G | Phe-Gly Phe-Ala Phe-Val Gly-Ala Asp-Phe Hippuryl-Phe | TrpPro Trp-OMe NAc-Trp Aspartame NAcTrp-NH2 Trp(Pro)6-NH2 Trp(Gly)6-NH2 | Trp(Ala)6-NH2 Trp(Val)6-NH2 Trp(Leu)6-NH2 Trp(Asp)6-NH2 Trp(Glu)6-NH2 5-F-Trp(Gly)6-NH2 5-F-Trp(Asn)6-NH2 |
H | CB[8] | ||
Ref. | [66] | ||
G | Phe-Gly-Gly Gly-Phe-Gly Gly-Gly-Phe Gly-Gly-Trp-Gly-Gly | His-Gly-Gly Gly-His-Gly Gly-Gly-His Gly-Gly-Tyr Tyr-Gly-Gly | Gly-Tyr Gly-Trp Gly-Gly |
H | CB[8] | CB[8] | CB[6] |
Ref. | [102] | [102] | [103] |
G | Gly-Tyr-Gly | Trp-Gly-Gly | Gly-Gly-Trp |
H | CB[8] | CB[8] | CB[8] |
Ref. | [102,104] | [94,102,104] | [94,102] |
G | Thr-Gly-Ala-Phe-Met Thr-Gly-Ala-AMPhe-Met | Phe-Leu Phe-Met-NH2 Phe-Leu-NH2 Thr-Gly-Ala-Phe-Leu Thr-Gly-Ala-Phe-Met-NH2 Thr-Gly-Ala-Phe-Leu-NH2 Thr-Gly-Ser-Phe-Met-NH2 Thr-Gly-Gly-Phe-Met-NH2 Thr-Gly-DAla-Phe-Met-NH2 | |
H | CB[8] | CB[7] | CB[7] |
Ref. | [105] | [106] | [96] |
G | Gly-Phe | ||
H | CB[8], CB[6] | ||
Ref. | [51,88] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aav, R.; Mishra, K.A. The Breaking of Symmetry Leads to Chirality in Cucurbituril-Type Hosts. Symmetry 2018, 10, 98. https://doi.org/10.3390/sym10040098
Aav R, Mishra KA. The Breaking of Symmetry Leads to Chirality in Cucurbituril-Type Hosts. Symmetry. 2018; 10(4):98. https://doi.org/10.3390/sym10040098
Chicago/Turabian StyleAav, Riina, and Kamini A. Mishra. 2018. "The Breaking of Symmetry Leads to Chirality in Cucurbituril-Type Hosts" Symmetry 10, no. 4: 98. https://doi.org/10.3390/sym10040098
APA StyleAav, R., & Mishra, K. A. (2018). The Breaking of Symmetry Leads to Chirality in Cucurbituril-Type Hosts. Symmetry, 10(4), 98. https://doi.org/10.3390/sym10040098