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Abstract: The thermoelastic dynamic response of a clamped Bernoulli beam was studied when it
was irradiated by a movable, temporally non-Gaussian, laser pulse. Both the energy absorption
depth and the time decaying effects were considered. The temperature distribution, deflection,
vibration acceleration, and stress of the beam were derived analytically, and the variations of them
with time and space were illustrated. It was shown that the vibration frequency is independent of the
scanning speed of the laser pulse. It is important to notice that, although the deflection of the beam
is small, high vibration acceleration can be induced in microbeams, which is important for failure
and fracture of the beam. Moreover, compressive stress is induced in the beam, but the importance
of temperature-induced stress and deformation-induced stress may be different according to the
duration time and moving speed of the laser pulse.
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1. Introduction

The thermoelastic process with a movable heat source is commonly employed in modern
manufacturing processes and tribological applications, such as cutting, welding, and surface
laser treatment [1]. During this process, the local surface of the substrate material, including
biological tissues, metallic and nonmetallic materials, is suddenly irradiated by the laser beam; as a
consequence, the temperature of the inner region nearby the heated surface sharply rises. Due to the
thermo-mechanical coupling effect, high stress will occur in regions with a high-temperature gradient.
Therefore, it is of great significance to delve into the effect of moving sources in the thermoelastic
process. Regarding conduction-limited heating, the surface of the substrate material is heated beneath
its melting temperature and the high rate of cooling on the surface modifies the microhardness and
stress levels in the heated surface vicinity [2].

Many research works have been performed to evaluate the process of laser heating on metal
or diode surfaces [3]. Among them, considerable numerical simulations have been carried out by
utilizing finite element software. For example, Guan et al. [4] carried out numerical simulations of
laser bonding of preloaded sheet metals. They pointed out that sheet deformation depends on the
integration of the thermal and the pre-stresses when the sheet metal surface is irradiated by laser
beams. Abbas [5] analyzed the nonlinear transient thermal stress distribution of a thick-walled FGM
cylinder by considering the heat conduction model with one relaxation time. The influences of several
parameters on the behaviors of physical quantities were evaluated, such as the thermal relaxation time,
the temperature-dependent parameters, and the volume fraction parameter.

Though it is easy to carry out the numerical simulation of the heating process, the analytical
solution provides a functional relationship between the material responses and the parameters of the
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pulse [6]. This can help people to deeply understand the physical mechanism of laser irradiation.
Cui et al. [3] presented a 3D analytic model to study the thermal response of rectangular µ-ILEDs in a
pulsed operation. Zhou et al. [7] proposed a thermal wave model of bioheat conduction to investigate
thermal damage in biological tissues. Zhang et al. [8] established a coupled thermomechanical model
with the C-V heat conduction law employed to delve into the thermoelastic behavior of a metal
substrate with oxide layer and ceramic coating.

Most of the available literature considers the laser pulse as a uniform heat source. As far as we
know, few works are related to time-decaying laser pulses. For example, Yilbas et al. [6] presented
an analytic solution for thermal stresses in the short-pulse heating of a metallic surface subjected
to an exponentially time-decaying laser. Zenkour and Abbas [9] conducted an analysis of transient
thermal stress for a temperature-dependent hollow cylinder, which was exposed to a time-decaying
temperature field.

Thermoelastic responses of the elastic medium subjected to moving heat sources have attracted
much attention [10]. Yevtushenko and Ukhanska [11] studied displacements and thermal stresses in a
2D half-space induced by a movable heating source. Sarbani and Amitava [12] incorporated movable
heating sources into generalized thermoelasticity theory. Abbas [13] investigated the thermoelastic
behavior of a micro-scale beam irradiated by a movable heating source using Green and Naghdi
theory Type III. Lotfy [14] studied the generalized thermoelastic behavior of an isotropic material
by introducing an internal heat source that moves at a uniform speed. The magnetic-thermal-elastic
behavior of a rod, whose properties were dependent on temperature, was investigated by Xiong and
Guo [15]. In their work, the rod was assumed to be clamped on two ends and suffered from an initial
magnetic field and a heat source moving along the axial direction. Distributions of non-dimensional
temperature, displacement, and stress were obtained, and the effects of the material properties and the
heat source velocity were discussed.

In summary, the existing literature has mainly focused on the temperature, displacement,
and stress wave behavior of the medium during laser irradiation. However, when a substrate is
irradiated by a laser pulse, vibration takes place because of the lack of damping. This phenomenon has
been found in pulsed laser applications, such as laser forming, laser micro welding, and laser trimming
of micro devices [16]. Consequently, the deformations and dynamic behaviors of microstructures
under modern manufacturing techniques are increasingly becoming important.

Unfortunately, vibration behavior in laser-assisted manufacturing processes has hardly been
discussed. Philip et al. [17] studied the vibration behavior in the elastic medium irradiated by a single
laser pulse. Widlaszewski [18] reported related experimental work. Chen et al. [19] investigated
the bending angle of laser forming under a line-shaped heating source both numerically and
experimentally. Castellini et al. [20] calculated the laser-induced elastic vibration with an implicit
algorithm of FEM.

This paper focuses on the thermoelastic response of a clamped beam subjected to a movable
time-decaying laser pulse. The temperature is derived using Green’s function approach, and the
deflection is derived using Duhamel’s method. The vibration acceleration is also obtained, which is
important in inducing the stress. In addition, the importance of the two components of stress, i.e.,
the stress induced by deformation and the stress induced by temperature increment, is discussed.

2. Basic Formulations for This Problem

Consider a Bernoulli beam with Cartesian coordinates x(0 ≤ x ≤ L), y(−b/2 ≤ y ≤ b/2),
and z(−h/2 ≤ z ≤ h/2), where the coordinate plane Oxy coincides with the neutral surface of the
beam. The length, width, and thickness of the beam are L, b, and h, respectively. A laser pulse is
moving along the top surface of the beam towards right from the left edge at uniform speed v.

The two-dimensional heat conduction equation based on Fourier’s law is [21]

∂2T
∂x2 +

∂2T
∂z2 +

1
k

Q(x, z, t) =
1
α

∂T
∂t

(1)
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where Q(x, z, t) denotes the heat energy absorbed by the beam, which is expressed as [22,23]

Q(x, z, t) =
Ra

B
L0t
tp2 exp

(
z− h/2

B
− t

tp

)
δ(x− vt) (2)

where T is the temperature increment, k the thermal conductivity, α the thermal diffusivity, t the time,
Ra the energy absorption coefficient, B the energy absorption depth, L0 the power intensity of the laser
pulse, tp the time duration of the laser pulse, and δ( ) the Dirac delta function.

The vibration equation of the beam is [24]

EI
∂4w
∂x4 + ρA

∂2w
∂t2 + EIαT

∂2MT

∂x2 = 0 (3)

where E is the Young’s modulus, I the moment of inertial, w the displacement, ρ the density, A the cross
section, and αT the linear thermal expansion coefficient. MT = 12

h3

∫ h/2
−h/2 Tzdz is the thermal moment.

The boundary conditions for heat conduction are

T|x=0 = Tx=L = 0,
∂T
∂z

∣∣∣∣
z=− h

2

=
∂T
∂z

∣∣∣∣
z= h

2

= 0. (4)

The beam is fixed at the left and right edges, namely, the deflection and the slope are both 0 at the
two ends, which are given as

w|x=0 = w|x=L = 0,
∂w
∂x

∣∣∣∣
x=0

=
∂w
∂x

∣∣∣∣
x=L

= 0. (5)

The initial conditions are set to be
T|t=0 = 0 (6)

w|t=0 = 0,
∂w
∂t

∣∣∣∣
t=0

= 0. (7)

3. Solutions to the Governing Equations

3.1. Solution to the Heat Conduction Equation

The Green’s function approach is applied in solving the heat conduction equation. First, the auxiliary
problem for the same beam can be considered [21]:

∂2G(x,z,t/x′ ,z′ ,τ)
∂x2 + ∂2G(x,z,t/x′ ,z′ ,τ)

∂z2

+ 1
α δ(x− x′)δ(z− z′)δ(t− τ) = 1

α
∂G(x,z,t/x′ ,z′ ,τ)

∂t , t > τ
(8)

G|x=0 = G|x=L = 0,
∂G
∂z

∣∣∣∣
z=− h

2

=
∂G
∂z

∣∣∣∣
z= h

2

= 0, t > τ (9)

and subjected to the condition

G
(

x, z, t/x′, z′, τ
)
= 0 if t < τ. (10)

Considering the thermal boundary conditions Equation (4), the eigenfunctions of the problem are{
Xm(x) = sin(ηmx)
Zn(z) = cos(γ1nz) and sin(γ2nz)

(11)

where ηm = mπ
L , γ1n = 2nπ

h , γ2n = (2n−1)π
h , m, n = 1, 2, . . ..
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It is important to notice that Z0(z) = 1 is an eigenfunction as well.
Green’s function of the heat conduction problem of Equations (1), (2), (4), and (6) is derived as

G(x, z, t/x′, z′, τ) =
∞
∑

m=1

∞
∑

n=1

4
Lh sin(ηmx′) cos(γ1nz′)e−µ1(t−τ) sin(ηmx) cos(γ1nz)

+
∞
∑

m=1

∞
∑

n=1

4
Lh sin(ηmx′) sin(γ2nz′)e−µ2(t−τ) sin(ηmx) sin(γ2nz)

+
∞
∑

m=1

2
Lh sin(ηmx′)e−µ3(t−τ) sin(ηmx)

(12)

where µ1 = α
(
η2

m + γ2
1n
)
, µ2 = α

(
η2

m + γ2
2n
)
, µ3 = αη2

m.
Since the initial condition and boundary conditions of heat conduction problem are all 0, based

on the method of Green’s function, the temperature is obtained as [21]

T(x, y, t) =
α

k

∫ t

τ=0

∫ L

x′=0

∫ h/2

z′=−h/2
G
(
x, z, t/x′, z′, τ

)
Q
(
x′, z′, τ

)
dx′dz′dτ. (13)

By substituting Equations (2) and (12) into Equation (13), one can obtain the temperature as

T(x, z, t) =
∞
∑

m=1

∞
∑

n=1

4αA1
kLh sin(ηmx) cos(γ1nz)G1nF1mn(t)

+
∞
∑

m=1

∞
∑

n=1

4αA1
kLh sin(ηmx) sin(γ2nz)G2nF2mn(t) +

∞
∑

m=1

2αA1
kLh sin(ηmx)HKm(t)

(14)

where

G1n =
∫ h

2

z′=− h
2

cos
(
γ1nz′

)
e

z′−h/2
B dz′,F1mn(t) =

∫ t

τ=0
sin(ηmvτ)e−µ1(t−τ)τ exp

(
− τ

tp

)
dτ

G2n =
∫ h

2

z′=− h
2

sin
(
γ2nz′

)
e

z′−h/2
B dz′,F2mn(t) =

∫ t

τ=0
sin(ηmvτ)e−µ2(t−τ)τ exp

(
− τ

tp

)
dτ

A1 =
RaL0

Btp2 ,H =
∫ h

2

z′=− h
2

e
z′−h/2

B dz′, Km(t) =
∫ t

τ=0
sin(ηmvτ)e−µ3(t−τ)τ exp

(
− τ

tp

)
dτ.

3.2. Solution of the Vibration Equation

By substituting the expression of temperature into the thermal moment MT, one can obtain

MT =
∞

∑
m=1

∞

∑
n=1

96(−1)nαA1

h4γ2
2nkL

G2nF2mn(t) sin(ηmx). (15)

Vibration Equation (3) can be rewritten as

EI
∂4w
∂x4 + ρA

∂2w
∂t2 = f (x, t) (16)

where f (x, t) = −EIαT
∂2 MT
∂x2 .

By using the technique of separating variables, the deflection w may be written as [25]

w =
∞

∑
s=1

Ws(x)qs(t). (17)

The vibration mode Ws(x) should satisfy the equation

EIW(4)
s (x)−Ω2

s ρAWs(x) = 0. (18)
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For the beam with both ends fixed, the expression of Ws(x) is

Ws(x) =
cos(βsx)− cosh(βsx)
cos(βsL)− cosh(βsL)

− sin(βsx)− sinh(βsx)
sin(βsL)− sinh(βsL)

(19)

where Ωs =
√

ϕβ2
s , and ϕ = Eh2/(12ρ). βs (s = 1, 2, . . .) are the roots of the equation

cos(βsL) cosh(βsL) = 1.
Using the boundary conditions and the orthogonality relationships of the eigenfunctions,

one obtains the following differential equation for qs(t) [25]

Ms

[ ..
qs(t) + Ω2

s qs(t)
]
= Fs(t), s = 1, 2, 3, . . . (20)

where Ms =
∫ L

0 ρAW2
s (x)dx is the modal mass, and Fs is the modal forcing function defined as

Fs =
∫ L

0
f (x, t)Ws(x)dx. (21)

For the problem under consideration, the beam is static and at free status, namely, the initial
deflection and velocity are 0, so Equation (20) is solved to yield

qs(t) =
1

MsΩs

t∫
0

Fs(τ) sin(Ωs(t− τ))dτ. (22)

Therefore, the deflection of the beam with both ends fixed is

w(x, t) =
∞

∑
s=1

1
MsΩs

Ws(x)
t∫

0

Fs(τ) sin[Ωs(t− τ)]dτ. (23)

It is obtained from Equations (14), (15), (21), and (23) that the expression of deflection is

w(x, t) =
∞

∑
m=1

∞

∑
n=1

∞

∑
s=1

96(−1)n ϕαTη2
mαA1G2n

Ωs Msγ2
2nh4kL

∆msWs(x)Ψmns(t) (24)

where

∆ms =
∫ L

0
Ws
(
x′
)

sin
(
ηmx′

)
dx′ (25)

Ψmns(t) =
∫ t

0
F2mn(τ) sin[Ωs(t− τ)]dτ. (26)

4. Calculation Results and Discussions

A beam made of gold is used in the following analysis. The parameters of the material are [26]
ρ = 19, 300 kg m−3, α = 1.285× 10−4 m2/s, E = 82 GPa, αT = 1.5× 10−5 /K, and k = 320 J /kg/ K.
The other parameters are L0 = 440 J /m, tp = 1× 10−4 s, Ra = 0.93,B = 1.53× 10−8 m, L = 0.1 m,
and h = 0.01 m.

4.1. Temperature Variation

Figure 1 illustrates the variations in temperature increments on the surface of z = 0.005 m at
three axial locations at the laser pulse velocity of 20 m s−1. It is shown that the temperature increment
vibrates around 0 at the beginning. After some time, it increases in peak value and then drops to near
zero very fast. Moreover, because of the motion of the laser pulse, it takes more time to reach the peak



Symmetry 2018, 10, 139 6 of 15

value of T at the locations farther away from the left edge. It is clear that the peak T arrives at the
maximum value at the location of 0.002 m, which is equal to vtp.
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Figure 1. Temporal variations of T at different axial locations on the surface of z = 0.005 m (v = 20 m/s).

Figure 2 compares the time histories of temperature increments for three different moving velocity
of laser pulse on the surface of z = 0.005 m at the location of x = vtp. It is obvious that the maximum
temperature drops with the rise in laser speed. In the case of higher speed of the laser pulse, less energy
is absorbed at a specified location. Therefore, T increases to a lower value. On the contrary, the heat
energy is absorbed by a smaller region in the case of lower speed motion and the heat source intensity
becomes stronger. Consequently, the temperature is higher.
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4.2. Deflection Variation

Figures 3–6 illustrate the deflection of the beam as the motion speeds of laser pulse are 20, 100,
and 200 m s−1, respectively. Figure 3 shows the deflections at the midspan of the beam (x = 0.05 m) for
the three speeds of laser pulse. It is shown that the beam is vibrating and that the vibration behaviors
are quite different for the three moving speeds of laser pulse.
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Figures 4–6 show the variations of deflections along the beam span. The influence of the laser
speed on the beam vibration is obvious. The vibration amplitude differs along the axis, first rising to
a peak value and then dropping to 0. Moreover, the vibration mode is not symmetrical around the
midspan. The zero deflection at the two edges is due to the fact that the beam is clamped. The laser
pulse leads to temperatures that are higher on the left part than on the right, which indicates a
non-symmetric thermal load on the beam. Consequently, the unsymmetry behavior of deflection
occurs, and the peak amplitude is higher on the left part. Furthermore, when the laser pulse moves
faster, both the deflection and the vibration amplitude increase.

4.3. Frequency Spectra of Deflection

The fast Fourier transformation technique was adopted to obtain the vibration frequency.
The frequency spectra for the beam at different velocities of the laser pulse are given in Figure 7.
There are two frequencies: The first frequency is 0, which means the deflection takes the value of the
equilibrium position of the vibration. The second one is the dynamic vibration frequency. The vibration
frequencies for the three scanning velocities of the laser pulse are identical, the value being 2197.8 Hz.Symmetry 2018, 10, x FOR PEER REVIEW  9 of 15 
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For the free-vibration of the beam, the natural frequency of is given by
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f0 =
Ωs

2π
=

h
2π

(
4.73

L

)2
√

E
12ρ

. (27)

The value of f0 for the beam under consideration is 2118.8 Hz. The frequency increases a little
when the beam is irradiated by a laser pulse. However, the frequency is independent with the scanning
speed of the laser pulse.

According to vibration theory, it is high-frequency vibration when the frequency is over 1000 Hz,
and the acceleration is taken as the vibration criterion [6]. Therefore, in the following, we will study
the variation in the acceleration of the beam.

4.4. Vibration Behaviors and Properties of the Beam

Figure 8 shows the deflection, velocity, and acceleration of the beam at the mispan point at a laser
speed of 20 m/s. To make the values of comparative magnitude, the units of the deflection, velocity
and acceleration are changed into µm, mm/s, and g, respectively, where g = 9.8 m/s2 is the gravity
acceleration. It is shown that the phases of deflection, velocity, and acceleration are different. It is
important to notice that the vibration acceleration of the beam can reach a value of nearly 20 g at a
laser speed of 20 m/s, which is quite high. It is known that the peak value of acceleration represents
the impact force exerted on the beam, which can lead to failure and fracture of the beam. This implies
that the probability of failure of the beam is highest under laser pulses at low moving speeds.
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Figures 9–11 show the vibration accelerations along the beam span under laser pulses at different
motion velocities. It is clear that the peak value of acceleration decreases as moving velocity rises.
It is shown that the vibration acceleration is not symmetric about the midpoint of the beam, due to
the unsymmetric heat source. However, there is something different among the three cases. When
the velocity of laser pulses is low, say, v = 20 m s−1, the peak value of vibration acceleration occurs
near the midpoint. However, when v = 100 m s−1, the peak value occurs at the right part of the beam
and the value of a is lower at the left part than that at the right part. In the case of v = 200 m s−1,
this tendency is more obvious.
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4.5. Behaviors of Stress

The temporal distributions of stress on the top surface of the beam when the laser speeds are
20 and 200 m/s, respectively, are shown in Figures 12 and 13. Two locations along the beam span are
considered: (1) the location that has the maximum temperature, namely, x = vtp; (2) the midspan of
the beam, namely, x = 0.05 m. It can be found that the stress shows quite different behaviors at these
two laser speeds.
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At a low laser speed (v = 20 m/s), great compression stress occurs at the location
x = vtp = 0.002 m, and it drops quickly as time passes. This tendency is similar to that of temperature.
However, at the midspan of the beam, the stress is much lower and it vibrates with time. In other
words, the stress is determined by temperature at the beginning but depends on the deflection after a
while. However, in the case of a high speed (v = 200 m/s), the temperature increment is low, so the
peak value of compression stress is low. At both locations, the stresses are determined by temperature
at the beginning but vibrate with small magnitudes after a while. It is interesting that the vibration
amplitude of stress is higher at the midspan than at the location of x = vtp. This is because the
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vibration acceleration at the location of x = vtp is much lower than that at the midspan, which leads to
a smaller impact force on the beam. Generally, the peak compression stress is higher at lower speeds.
That is to say, at a low laser pulse speed, the temperature increment is dominant in the stress field;
however, stress is mainly determined by the deflection of the beam at high speeds.

Finally, the effect of the duration time of the laser pulse, tp, on stress and vibration acceleration is
discussed. Suppose that a laser pulse moves at a speed of v = 20 m/s. The stresses at the midspan on
the top surface when tp takes the values of 0.1, 0.5, and 1 ms are shown in Figures 14–16. Total stress
and its two components, the stress induced by deformation and the stress induced by temperature
increment, are also shown in these figures. The vibration accelerations in the three cases are shown
in Figure 17. As tp increases, the magnitude of the compression stress increases, and vibration
acceleration decreases. When tp = 1 ms, stress is mainly determined by temperature increment.
However, in the case of tp = 0.1 ms, the influence of temperature increment is obvious only at the
beginning of irradiation.
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5. Conclusions

The thermoelastic behaviors and properties of a clamped beam that was applied to a time-decaying
laser pulse were investigated. Considering both the energy absorption depth and the time-decaying
profile of the laser pulse, the governing equations of this problem were established, and the analytical
expressions of the temperature, deflection, vibration acceleration, and stress of the beam were derived.
The following findings were obtained.

The heat propagation along the axis was obvious. The temperature increment reached a peak
value at x = vtp. When the laser speed decreased, the peak temperature increment increased.

The vibration frequency was independent of the scanning velocity of the laser pulse.
Although the deflection of the beam was small, high vibration acceleration was induced in

the microbeams.
Compressive stress was induced in the beam, and the peak compression stress was higher at

lower laser speeds. However, the importance of temperature-induced stress and deformation-induced
stress may be different according to the scanning velocity and duration time of the laser pulses.
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