Ultrathin Terahertz Dual-Band Perfect Metamaterial Absorber Using Asymmetric Double-Split Rings Resonator
Abstract
:1. Introduction
2. Design and Simulation
3. Results and Discussions
4. The Effects of the Width of the Gaps and the Middle Arm
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lan, C.; Bi, K.; Li, B.; Cui, X.; Zhou, J.; Zhao, Q. Hyperbolic metamaterial based on anisotropic Mie-type resonance. Opt. Express 2013, 21, 29592–29600. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewar, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef] [PubMed]
- Fang, N.; Zhang, X. Imaging properties of a metamaterial superlens. Appl. Phys. Lett. 2003, 82, 161–163. [Google Scholar] [CrossRef]
- Hwang, R.B.; Liu, H.W.; Chin, C.Y. A metamaterial-based E-plane horn antenna. Prog. Electromagn. Res. 2009, 93, 275–289. [Google Scholar] [CrossRef]
- Islam, M.M.; Islam, M.T.; Samsuzzaman, M.; Faruque, M.R.I. Compact metamaterial antenna for UWB applications. Electron. Lett. 2015, 51, 1222–1224. [Google Scholar] [CrossRef]
- Lu, M.; Li, W.; Brown, E.R. Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures. Opt. Lett. 2011, 36, 1071–1073. [Google Scholar] [CrossRef] [PubMed]
- Melik, R.; Unal, E.; Perkgoz, N.K.; Puttlitz, C.; Demir, H.V. Metamaterial-based wireless strain sensors. Appl. Phys. Lett. 2009, 95, 011106. [Google Scholar] [CrossRef] [Green Version]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Vier, D.C.; Koschny, T.; Soukoulis, C.M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 2005, 71, 036617. [Google Scholar] [CrossRef] [PubMed]
- Savinov, V.; Fedotov, V.A.; de Groot, P.A.; Zheludev, N.I. Radiation-harvesting resonant superconducting sub-THz metamaterial bolometer. Supercond. Sci. Technol. 2013, 26, 084001. [Google Scholar] [CrossRef]
- Singh, L.; Xie, L.; Chen, M.; Xu, N.; Singh, R.; Zhang, W. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials. Opt. Express 2017, 25, 14089–14097. [Google Scholar]
- Gu, Y.; Kwak, E.S.; Lensch, J.L.; Allen, J.E.; Odom, T.W.; Lauhon, L.J. Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl. Phys. Lett. 2005, 87, 043111. [Google Scholar] [CrossRef]
- Yang, J.; Huang, M.; Yang, C.; Peng, J.; Zong, R. Metamaterial electromagnetic super absorber with arbitrary geometries. Energies 2010, 3, 1335–1343. [Google Scholar] [CrossRef]
- Tao, H.; Landy, N.I.; Bingham, C.M.; Zhang, X.; Averitt, R.D.; Padilla, W.J. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt. Express 2008, 16, 7181–7188. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Bingham, C.; Tyler, T.; Palit, S.; Hand, T.H.; Padilla, W.J.; Jokerst, N.M.; Cummer, S.A. A dual-resonant terahertz metamaterial based on single-particle electric-filed-couple resonators. Appl. Phys. Lett. 2008, 93, 1991110. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.; Chang, S. A thermally tunable terahertz metamaterial absorber. Optoelectron. Lett. 2015, 11, 18–21. [Google Scholar] [CrossRef]
- Kollatou, T.M.; Dimitriadis, A.I.; Assimonis, S.D.; Kantartzis, N.V.; Antonopoulos, C.S. Mulit-Band, Highly Absorbing, Microwave Metamaterial Structures. Appl. Phys. A 2014, 115, 555–561. [Google Scholar] [CrossRef]
- Li, H.; Yuan, L.H.; Zhou, B.; Shen, X.; Cheng, P.Q.; Cui, T.J. Ultrathin multiband gigahertz metamaterial absorbers. J. Appl. Phys. 2011, 110, 014909. [Google Scholar] [CrossRef]
- Sun, J.; Liu, L.; Dong, G.; Zhou, J. An extremely broad band metamaterial absorber based on destructive interference. Opt. Express 2011, 19, 21155–21162. [Google Scholar] [CrossRef] [PubMed]
- Manjappa, M.; Chiam, S.Y.; Cong, L.; Bettiol, A.A.; Zhang, W.; Singh, R. Tailoring the slow light behavior in terahertz metasurfaces. Appl. Phys. Lett. 2015, 106, 181101. [Google Scholar] [CrossRef] [Green Version]
- Bingham, C.; Tao, M.H.; Liu, X.; Averitt, R.D.; Zhang, X.; Padilla, W.J. Planar wallpaper group metamaterials for novel terahertz applications. Opt. Express 2008, 16, 18565–18575. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Strikwerda, A.C.; Fan, K.; Padilla, W.J.; Zhang, X.; Averitt, R.D. Reconfigurable Terahertz Metamaterials. Phys. Rev. Lett. 2009, 103, 147401. [Google Scholar] [CrossRef] [PubMed]
- Akosman, A.E.; Serebryannikov, A.E.; Ozbay, E.; Mutlu, M. Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. Opt. Lett. 2011, 36, 1653–1655. [Google Scholar]
- Singh, R.; Alnaib, I.A.; Koch, M.; Zhang, W. Asymmetric planar terahertz metamaterials. Opt. Soc. Am. 2010, 18, 13044–13050. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Bingham, C.M.; Strikwerda, A.C.; Pilon, D.; Shrekenhamer, D.; Landy, N.I.; Fan, K.; Zhang, X.; Padilla, W.J.; Averitt, R.D. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization. Phys. Rev. B 2008, 78, 1879–1882. [Google Scholar] [CrossRef]
- Wen, Q.Y.; Zhang, H.W.; Xie, Y.S.; Yang, Q.H.; Liu, Y.L. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization. Appl. Phys. Lett. 2009, 95, 241111. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, R.; Cong, L.; Zhu, Z.; Gu, J.; Tian, Z.; Singh, R.; Zhang, S.; Han, J.; Zhang, W. Modulating the fundamental inductive-capacitive resonance in asymmetric double-split ring terahertz metamaterials. Appl. Phys. Lett. 2011, 98, 121114. [Google Scholar] [CrossRef]
- Seo, M.A.; Park, H.R.; Koo, S.M.; Park, D.J.; Kang, J.H.; Suwal, O.K.; Choi, S.S.; Planken, P.C.M.; Park, G.S.; Park, N.K.; et al. Terahertz field enhancement by a metallic nano slit operating beyond the depth limit. Nat. Photonics 2009, 3, 152–156. [Google Scholar] [CrossRef]
- Lee, J.; Lim, S. Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance. Electron. Lett. 2011, 47, 8–9. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Y.; Huang, R.; Singh, R.; Gu, J.; Tian, Z.; Han, J.; Zhang, W. Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt. Express 2011, 19, 8912–8919. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.F.; Liu, S.J.; Cheng, Q.Q.; Xie, J.Y.; Zhu, Y.M.; Wang, Y.J. Lower-ordersymmetry induced bandwidth controllable terahertz polarization converter. J. Opt. 2017, 19, 115103. [Google Scholar] [CrossRef]
- Li, T.Q.; Liu, H.; Li, T.; Wang, S.M.; Cao, J.X.; Zhu, Z.H.; Dong, Z.G.; Zhu, S.N.; Zhang, X. Suppression of radiation loss by hybridization effect in two coupled split-ring resonators. Phys. Rev. B 2009, 80, 115113. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; Zhang, D.; Qiu, P.; Lian, J.; Jing, M.; Yu, B.; Wen, J. Ultrathin Terahertz Dual-Band Perfect Metamaterial Absorber Using Asymmetric Double-Split Rings Resonator. Symmetry 2018, 10, 293. https://doi.org/10.3390/sym10070293
Lu T, Zhang D, Qiu P, Lian J, Jing M, Yu B, Wen J. Ultrathin Terahertz Dual-Band Perfect Metamaterial Absorber Using Asymmetric Double-Split Rings Resonator. Symmetry. 2018; 10(7):293. https://doi.org/10.3390/sym10070293
Chicago/Turabian StyleLu, Taiguo, Dawei Zhang, Peizhen Qiu, Jiqing Lian, Ming Jing, Binbin Yu, and Jing Wen. 2018. "Ultrathin Terahertz Dual-Band Perfect Metamaterial Absorber Using Asymmetric Double-Split Rings Resonator" Symmetry 10, no. 7: 293. https://doi.org/10.3390/sym10070293
APA StyleLu, T., Zhang, D., Qiu, P., Lian, J., Jing, M., Yu, B., & Wen, J. (2018). Ultrathin Terahertz Dual-Band Perfect Metamaterial Absorber Using Asymmetric Double-Split Rings Resonator. Symmetry, 10(7), 293. https://doi.org/10.3390/sym10070293