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Abstract

:

The recently introduced technique, namely the generalized exponential rational function method, is applied to acquire some new exact optical solitons for the generalized Benjamin–Bona–Mahony (GBBM) equation. Appropriately, we obtain many families of solutions for the considered equation. To better understand of the physical features of solutions, some physical interpretations of solutions are also included. We examined the symmetries of obtained solitary waves solutions through figures. It is concluded that our approach is very efficient and powerful for integrating different nonlinear pdes. All symbolic computations are performed in Maple package.
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1. Introduction


The Benjamin–Bona–Mahony (BBM) equation has been studied by Benjamin, Bona, and Mahony in 1972 as the improved KdV equation for the description of long surface gravity waves having a small amplitude. They have also investigated the stability and uniqueness of solutions to the BBM equation [1]. The description of the drift of waves in plasma physics, the propagation of wave in semi-conductors and optical devices [2], and the behavior of Rossby waves in rotating fluids [3] are some other phenomena that are modeled by this equation.



Let us consider the dimensionless form of the (1 + 1) the generalized Benjamin–Bona–Mahony (GBBM) equation as follows [4]:


ut+αux+(βuϑ+γu2ϑ)ux−δuxxt=0,



(1)




with the unknown function u and the constants of α, δ, n, β and ϑ.



It is also known that the multi-soliton solutions for the Equation (1) only exist with the conditions γ=0 and ϑ=1, i.e., whenever we have


ut+αux+(βu)ux−δuxxt=0.



(2)







The main application of the BBM equation is related to model the hydromagnetic waves in cold plasma, the acoustic waves in anharmonic crystals and the acoustic-gravity waves in compressible fluids [5,6].



Recently, the investigation of exact solutions of nonlinear PDEs has begun to attract mathematicians and physicists’ attention because of the onset of soliton [7,8,9]. Therefore, several efficient techniques for handling NPDEs have been developed. Among them, we can list the traditional methods: the Hirotas bilinear method [10] and the Darboux transformation method [11]. There are also some recent direct and algebraic methods: the variational iteration method [12], the exp-function method [13], various extended tanh-function methods [14] and Lie symmetry analysis [15,16,17].



The relatively new technique called the generalized exponential rational function method (or GERFM in short) was firstly suggested by Ghanbari et al. in Ref. [18] to solve the resonance nonlinear Schrödinger equation as


iψt+αψxx+βF|ψ|2ψ+γ|ψ|xx|ψ|ψ=0,i=−1.



(3)







Another application of the method has been carried out in Ref. [19] where the authors have implemented the method to solve the Fokas–Lenells equation in the presence of the perturbation terms, as follows:


i∂ψ∂t+∂2ψ∂x2+α|ψ|2ψ+iγ1∂ψ3∂x3+γ2∂ψ∂x|ψ|2+γ3∂|ψ|2∂xψ=0.



(4)







The method also has been successfully implemented to retrieve traveling wave solutions to the nonlinear Schrödinger’s equation in the presence of Hamiltonian perturbations [20] as


iψt+aψxx+b1|ψ|+b2|ψ|2ψ=i{αψx+λ|ψ|2ψx+θ|ψ|2xψ}.



(5)







In all cases, the authors have declared that the method introduces some new solutions that have not been reported in previous works. In addition, it deduces that the method can be applied to study many other nonlinear PDEs in many branches of physics, biology, engineering. This research aims to integrate the GBBM Equation (1) using the GERFM. For this reason, our paper is organized as below: Section 2 deals with the presentation of the method. Section 3 is devoted to the application of GERFM to the GBBM equation. Eventually, the conclusion of the present research is outlined in the last section.




2. The Main Steps of GERFM


In this subsection, we review the routine description of GERFM.

	
Let us take into account the nonlinear PDE in the form:


L(ψ,ψx,ψt,ψxx,…)=0.



(6)







Using the transformations ψ=ψ(η) and η=σx−lt, Equation (6) is reduced to following NODE as:


L(ψ,ψ′,ψ″,…)=0,



(7)




where the values of σ and l will be found later.



	
Now, the structure of the wave solution of Equation (7) is assumed to be


ψ(η)=p0+∑k=1MpkΘ(η)k+∑k=1MqkΘ(η)k,



(8)




where


Θ(η)=ι1eκ1η+ι2eκ2ηι3eκ3η+ι4eκ4η.



(9)







The values of constants ιi,κi(1≤i≤4), p0,pk and qk(1≤k≤M) are determined, in such a way that solution (8) always persuade Equation (7). By considering the homogenous balance principle, the value of M is determined.



	
Substituting Equation (8) into Equation (7), an algebraic equation P(S1,S2,S3,S4)=0 in terms of Si=eqiη for i=1,…,4 is constructed. Then, making each coefficient for the powers of P to zero, we acquire a series of nonlinear equations in terms of pi,qi(1≤i≤4), and σ,l,p0,pk and qk(1≤k≤M) is generated.



	
By solving the above system of equations using any computer package like Maple (18, Waterloo Maple, Canada), the values of ιi,κi(1≤i≤4), p0,pk, and qk(1≤k≤M) are determined, replacing these values in Equation (8) provides us the exact solutions of the nonlinear PDE (6).









3. Utilization of GERFM for the GBBM Equation


Let us consider the following dependent variable transformation


ux,t=ψ(η),η=kx−θt,



(10)




where k and θ are constants need to be calculated. Under the transformation of Equation (10), Equation (1) can be reduced to the following NODE:


αk−θψη+kβψϑ+γψ2ϑψη+δk2θψηηη=0.



(11)







We may now integrate Equation (11) to have


αk−θψ+kβϑ+1ψϑ+1+γ2ϑ+1ψ2ϑ+1+δk2θψηη=0.



(12)







Using the transformation ψ=ψn in (12), we attain


ψψηη+σ1ψ2+σ2ψ3+σ3ψ4+σ4ψη2=0,



(13)




where


σ1=αk−θϑδk2θ,σ2=βϑδk(ϑ+1)θ,σ3=γϑδk(2ϑ+1)θ,σ4=1−ϑϑ.











In this section, GERFM will be used to determine solitary wave solutions of (1). To this end, if we apply the balancing principle for the terms of ψ4 and ψη2 in (13), (i.e., 4M=2(M+1)), we get M=1. This implies that Equation (1) has the solution given by


ψ(η)=p0+p1Θ(η)+q1Θ(η).



(14)







We now exert the GERFM to derive the following categories of solutions for Equation (1):

	Family 1:

	
We attain ι=[1,1,1,−1] and κ=[1,−1,1,−1], so we will obtain


Θη=−3−2eη1+eη.



(15)





	Case 1:

	


θ=−2ϑ+1γϑ+γϑ+22α−2ϑ+1β2ϑβ−δγϑ+γϑ+22,










k=−2ϑ+1ϑβ−δγϑ+γϑ+22α−2ϑ+1β2,










p0=−6ϑ−3βγϑ+2,p1=0,q1=−12n−6βγϑ+2.








These resulting values direct us to have


ψη=−6ϑ−3βγϑ+23+2eη.











Consequently, we can get the following exact wave solution


u1x,t=−6ϑ−3βγϑ+23+2eη1ϑ,



(16)




where


η=−2ϑ+1ϑβ−δγϑ+γϑ+22α−2ϑ+1β2x+










2ϑ+1γϑ+γϑ+22α−2ϑ+1β2ϑβ−δγϑ+γϑ+22t.












	Case 2:

	


θ=−2ϑ+125γϑ+γϑ+22α−2ϑ+1β2ϑβ25−δγϑ+γϑ+22,










k=−2ϑ+1ϑβ−δ25γϑ+γϑ+22α−2ϑ+1β2,










p0=−2n−1βγϑ+2,p1=−β2ϑ+15γϑ+2,q1=−6β2ϑ+15γϑ+2








led


ψη=−2ϑ−1βeηϑ+21+eηγ15+10eη.











Hence, we get the following solitary wave solution for GBBM as


u2x,t=−2ϑ−1βeηϑ+21+eηγ15+10eη1ϑ,



(17)




where


η=−2ϑ+1ϑβ−δ25γϑ+γϑ+22α−2ϑ+1β2x+










2ϑ+125γϑ+γϑ+22α−2ϑ+1β2ϑβ25−δγϑ+γϑ+22t.


















	Family 2:

	
We attain ι=[1,1,1,−1] and κ=[1,−1,1,−1], so we will obtain


Θη=−sinηcosη.



(18)





	Case 1:

	


θ=2ϑ+1γϑ+γϑ+22α−2ϑ+1β2ϑβ2δγϑ+γϑ+22,










k=2ϑ+1ϑβ2δγϑ+γϑ+22α−2ϑ+1β2,










p0=−β2ϑ+12γϑ+2,p1=0,q1=i2ϑ+1β2γϑ+2.








These resulting values help us to have


ψη=−ksinhη2γ2k2−γ2q2+2qγ−1ϑcoshη.











Consequently, the following exact wave solution is determined


u3x,t=−ksinhη2γ2k2−γ2q2+2qγ−1ϑcoshη1ϑ,



(19)




where


η=2ϑ+1ϑβ2δγϑ+γϑ+22α−2ϑ+1β2x−










2ϑ+1γϑ+γϑ+22α−2ϑ+1β2ϑβ2δγϑ+γϑ+22t.


















	Family 3:

	
We attain ι=[1,1,1,−1] and κ=[1,−1,1,−1], so we will obtain


Θη=sinη+cosηcosη.



(20)





	Case 1:

	


θ=−2ϑ+1γϑ+γϑ+22α+2ϑ+1β2ϑβ−δγϑ+γϑ+22,










k=−2ϑ+1ϑβ−δγϑ+γϑ+22α+2ϑ+1β2,










p0=−2ϑ−1βγϑ+2,p1=β2ϑ+12γϑ+2,q1=β2ϑ+1γϑ+2.








These resulting values led us to obtain


ψη=β2ϑ+12ϑ+2γcosηsinη+cosη.











Hence, one arrives to the following exact wave solution:


u4x,t=β2ϑ+12ϑ+2γcosηsinη+cosη1ϑ,



(21)




where


η=−2ϑ+1ϑβ−δγϑ+γϑ+22α+2ϑ+1β2x+










2ϑ+1γϑ+γϑ+22α+2ϑ+1β2ϑβ−δγϑ+γϑ+22t.


















	Family 4:

	
We attain ι=[1,1,1,−1] and κ=[1,−1,1,−1], so we will obtain


Θη=−sinη+cosηsinη.



(22)





	Case 1:

	


θ=−2ϑ+1γϑ+γϑ+22α+2ϑ+1β2ϑβ2−δγϑ+γϑ+22,










k=−2ϑ+1ϑβ2−δγϑ+γϑ+22α+2ϑ+1β2,










p0=−2ϑ−1βγϑ+2,p1=−β2ϑ+12γϑ+2,q1=−2ϑ−1βγϑ+2.








These solutions direct us to get


ψη=β2ϑ+12γϑ+2sinηsinη−cosη.











As a result, we can get the following exact wave solution:


u5x,t=β2ϑ+12γϑ+2sinηsinη−cosη1ϑ,



(23)




where


η=−2ϑ+1ϑβ2−δγϑ+γϑ+22α+2ϑ+1β2x+










2ϑ+1γϑ+γϑ+22α+2ϑ+1β2ϑβ2−δγϑ+γϑ+22t.


















	Family 5:

	
We attain ι=[1,1,1,−1] and κ=[1,−1,1,−1], so we will obtain


Θη=−11+eη.



(24)





	Case 1:

	


θ=−2ϑ+1γϑ+γϑ+22α−2ϑ+1β2ϑβ−δγϑ+γϑ+22,










k=−2ϑ+1ϑβ−δγϑ+γϑ+22α−2ϑ+1β2,










p0=0,p1=β2ϑ+1γϑ+2,q1=0.








Then, we arrived to


ψη=−2ϑ−1βγϑ+21+eη.











Therefore, the following exact wave solution for the equation is achieved


u6x,t=−2ϑ−1βγϑ+21+eη1ϑ,



(25)




where


η=−2ϑ+1ϑβ−δγϑ+γϑ+22α−2ϑ+1β2x+










2ϑ+1γϑ+γϑ+22α−2ϑ+1β2ϑβ−δγϑ+γϑ+22t.


















	Family 6:

	
We attain ι=[1,1,1,−1] and κ=[1,−1,1,−1], so we will obtain


Θη=3eη+21+eη.



(26)





	Case 1:

	


θ=−2ϑ+1γϑ+γϑ+22α−2ϑ+1β2ϑβ−δγϑ+γϑ+22,










k=−2ϑ+1ϑβ−δγϑ+γϑ+22α−2ϑ+1β2,










p0=−4n−2βγϑ+2,p1=0,q1=−4n−2βγϑ+2.








These values let us to consider


ψη=−4n−2βγϑ+2eη+2.











Thus, we obtain


u7x,t=−4n−2βγϑ+2eη+21ϑ,



(27)




where


η=−2ϑ+1ϑβ−δγϑ+γϑ+22α−2ϑ+1β2x+










2ϑ+1γϑ+γϑ+22α−2ϑ+1β2ϑβ−δγϑ+γϑ+22t.


















	Family 7:

	
We attain ι=[1,1,1,−1] and κ=[1,−1,1,−1], so we will obtain


Θη=−eη−21+eη.



(28)





	Case 1:

	


θ=−2ϑ+1γϑ+γϑ+22α−2ϑ+1β2ϑβ−δγϑ+γϑ+22,










k=−2ϑ+1ϑβ−δγϑ+γϑ+22α−2ϑ+1β2,










p0=−6ϑ−3βγϑ+2,p1=0,q1=12n+6βγϑ+2.








These resulting values help us to consider


ψη=−6ϑ−3βeηγϑ+23eη+2.











Accordingly, we can get the following exact wave solution


u8x,t=−6ϑ−3βeηγϑ+23eη+21ϑ,



(29)




where


η=−2ϑ+1ϑβ−δγϑ+γϑ+22α−2ϑ+1β2x+










2ϑ+1γϑ+γϑ+22α−2ϑ+1β2ϑβ−δγϑ+γϑ+22t.


















	Family 8:

	
We attain ι=[1,1,1,−1] and κ=[1,−1,1,−1], so we will obtain


Θη=2eη+11+eη.



(30)





	Case 1:

	


θ=−2ϑ+19γϑ+γϑ+22α−2ϑ+1β2ϑβ9−δγϑ+γϑ+22,










k=−2ϑ+1ϑβ−δ9γϑ+γϑ+22α−2ϑ+1β2,










p0=−2ϑ−1βγϑ+2,p1=β2ϑ+13γϑ+2,q1=2β2ϑ+13γϑ+2.








From these results, one has


ψη=−2ϑ−1βeη3γϑ+21+eη2eη+1.











Thus, we can get the following exact wave solution


u9x,t=−2ϑ−1βeη3γϑ+21+eη2eη+11ϑ,



(31)




where


η=−2ϑ+1ϑβ−δ9γϑ+γϑ+22α−2ϑ+1β2x+










2ϑ+19γϑ+γϑ+22α−2ϑ+1β2ϑβ9−δγϑ+γϑ+22t.


















	Family 9:

	
We attain ι=[1,1,1,−1] and κ=[1,−1,1,−1], so we will obtain


Θη=cosη−2sinηsinη.



(32)





	Case 1:

	


θ=−2ϑ+14γϑ+γϑ+22α+2ϑ+1β2ϑβ8−δγϑ+γϑ+22,










k=−2ϑ+1ϑβ2−δ4γϑ+γϑ+22α+2ϑ+1β2,










p0=−2ϑ−1βγϑ+2,p1=−β2ϑ+14γϑ+2,q1=−5β2ϑ+14γϑ+2.








These results suggest us to have


ψη=2ϑ+1β4ϑ+2γsinηcosη+2sinη.











At this point, the following exact wave solution is formulated


u10x,t=2ϑ+1β4ϑ+2γsinηcosη+2sinη1ϑ,



(33)




where


η=2ϑ+1ϑβ2−δ4γϑ+γϑ+22α+2ϑ+1β2x−










2ϑ+14γϑ+γϑ+22α+2ϑ+1β2ϑβ8−δγϑ+γϑ+22t.























To analyze the dynamic behavior of the obtained solutions, some three-dimensional figures have been depicted in some special cases. The moduli of s u3(x,t), u4(x,t), u6(x,t), u8(x,t), u9(x,t) and u10(x,t) are depicted in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6, respectively. The analytical results and profiles obtained in this contribution provide us a different physical interpretation for the considered equation. As we observe, the absolute value of solutions displayed in Figure 1 is a bright solitary wave, in Figure 2 is a periodic wave, in Figure 3 is a kink solitary wave, in Figure 4 is a dark wave, in Figure 5 is a periodic wave soliton, and finally in Figure 6 is a singular periodic wave.




4. Conclusions


The study in this paper was devoted to the derivation of new exact solitary wave solutions of the generalized BBM equation through the GERFM. The correctness of the whole solutions u1(x,t)-u10(x,t) has been verified with a symbolic Maple package, and it is found that all are satisfied with their corresponding original equations. The obtained solutions could be classified as periodic solutions and soliton solutions. Some graphical representations reveal the fact that the wave profile u behaves as bright and kink, multi-soliton solutions. These new obtained solutions could help for a deeper understanding of systems described by the BBM equation. All obtained solutions in the present work are new, and have not been previously reported in the literature. This is the main advantage of the GERFM over existing methods for solving GBBM equations, and indicates that GERFM is an efficient and easy to use tool that can help physicists and mathematicians handle and explore various sets of nonlinear PDEs.
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Figure 1. Perspective view of the modulus of u3(x,t) with α=0.5,β=2,δ=1,γ=−0.5 and ϑ=1.5. 






Figure 1. Perspective view of the modulus of u3(x,t) with α=0.5,β=2,δ=1,γ=−0.5 and ϑ=1.5.
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Figure 2. Perspective view of the modulus of u4(x,t) with α=1,β=1,δ=1,γ=0.5, and ϑ=3. 






Figure 2. Perspective view of the modulus of u4(x,t) with α=1,β=1,δ=1,γ=0.5, and ϑ=3.
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Figure 3. Perspective view of the modulus of u6(x,t) with α=0.5,β=1,δ=2.0,γ=−0.5, and ϑ=1.1. 






Figure 3. Perspective view of the modulus of u6(x,t) with α=0.5,β=1,δ=2.0,γ=−0.5, and ϑ=1.1.
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Figure 4. Perspective view of the modulus of u8(x,t) with α=0.5,β=1,δ=1,γ=−1.5, and ϑ=1.5. 






Figure 4. Perspective view of the modulus of u8(x,t) with α=0.5,β=1,δ=1,γ=−1.5, and ϑ=1.5.
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Figure 5. Perspective view of the modulus of u9(x,t) with α=0.5,β=1,δ=0.5,γ=2, and ϑ=3. 






Figure 5. Perspective view of the modulus of u9(x,t) with α=0.5,β=1,δ=0.5,γ=2, and ϑ=3.
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Figure 6. Perspective view of the modulus of u10(x,t) with α=1,β=1,δ=1,γ=−0.5, and ϑ=3. 






Figure 6. Perspective view of the modulus of u10(x,t) with α=1,β=1,δ=1,γ=−0.5, and ϑ=3.
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