Developing an Image Manipulation Detection Algorithm Based on Edge Detection and Faster R-CNN
Abstract
:1. Introduction
- The edge detection layer is added onto the Faster R-CNN model to extract edge features of original input images. Original input images and the images with edge features are put into the Faster R-CNN network in parallel for end-to-end training. We observe that the performance of image manipulation detection is improved on three benchmark datasets.
- We propose to remove the max pooling in the Region of Interest (RoI) pooling layer and fix the size of the RoI by bilinear interpolation, thus retaining more feature information. Experimental results show that our method is more accurate than the original max pooling approach in image manipulation detection.
2. Related Work
3. The Faster R-CNN Model Combined with Edge Detection
3.1. Adding Edge Detection Layer
3.2. Improving RoI Pooling
4. Experimental Results and Analysis
4.1. Pre-Training Model
4.2. Image Manipulation Detection
4.2.1. Datasets
4.2.2. Test Results and Analysis
4.2.3. Robustness
4.3. Localization of the Tampered Region
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, X.; Zhang, H.; Wang, C. A Robust Image Watermarking Technique Based on DWT, APDCBT, and SVD. Symmetry 2018, 10, 77. [Google Scholar] [CrossRef]
- Hou, X.; Min, L.; Yang, H. A Reversible Watermarking Scheme for Vector Maps Based on Multilevel Histogram Modification. Symmetry 2018, 10, 397. [Google Scholar] [CrossRef]
- Schneider, M.; Chang, S.F. A robust content based digital signature for image authentication. In Proceedings of the 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 19 September 1996; Volume 3, pp. 227–230. [Google Scholar]
- Ye, S.; Sun, Q.; Chang, E.C. Detecting Digital Image Forgeries by Measuring Inconsistencies of Blocking Artifact. In Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, Beijing, China, 2–5 July 2007; pp. 12–15. [Google Scholar]
- Li, W.; Yuan, Y.; Yu, N. Passive detection of doctored JPEG image via block artifact grid extraction. Signal Process. 2009, 89, 1821–1829. [Google Scholar] [CrossRef]
- Zhu, N.; Shen, J.; Niu, X. Double JPEG Compression Detection Based on Noise-Free DCT Coefficients Mixture Histogram Model. Symmetry 2019, 11, 1119. [Google Scholar] [CrossRef]
- Bianchi, T.; Piva, A. Detection of Nonaligned Double JPEG Compression Based on Integer Periodicity Maps. IEEE Trans. Inf. Forensics Secur. 2012, 7, 842–848. [Google Scholar] [CrossRef]
- Mahdian, B.; Saic, S. Using noise inconsistencies for blind image forensics. Image Vis. Comput. 2009, 27, 1497–1503. [Google Scholar] [CrossRef]
- Lyu, S.; Pan, X.; Zhang, X. Exposing Region Splicing Forgeries with Blind Local Noise Estimation. Int. J. Comput. Vis. 2014, 110, 202–221. [Google Scholar] [CrossRef]
- Ferrara, P.; Bianchi, T.; Rosa, A.D.; Piva, A. Image Forgery Localization via Fine-Grained Analysis of CFA Artifacts. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1566–1577. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.; Ni, J. A deep learning approach to detection of splicing and copy-move forgeries in images. In Proceedings of the 2016 IEEE International Workshop on Information Forensics and Security (WIFS), Abu Dhabi, UAE, 4–7 December 2016; pp. 1–6. [Google Scholar]
- Rota, P.; Sangineto, E.; Conotter, V.; Pramerdorfer, C. Bad teacher or unruly student: Can deep learning say something in Image Forensics analysis? In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancún, Mexico, 4–8 December 2016; pp. 2503–2508. [Google Scholar]
- Bayar, B.; Stamm, M.C. Constrained Convolutional Neural Networks: A New Approach Towards General Purpose Image Manipulation Detection. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2691–2706. [Google Scholar] [CrossRef]
- Bappy, J.H.; Roy-Chowdhury, A.K.; Bunk, J.; Nataraj, L.; Manjunath, B.S. Exploiting Spatial Structure for Localizing Manipulated Image Regions. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4980–4989. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Han, X.; Morariu, V.I.; Davis, L.S. Learning Rich Features for Image Manipulation Detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 1053–1061. [Google Scholar]
- Marr, D.; Hildreth, E.C. Theory of Edge Detection. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1980, 207, 187–217. [Google Scholar]
- Ulupinar, F.; Medioni, G.G. Refining edges detected by a LoG operator. Comput. Vis. Graph. Image Process. 1990, 51, 275–298. [Google Scholar] [CrossRef]
- Prewitt, J.M. Object enhancement and extraction. Pict. Process. Psychopictorics 1970, 10, 15–19. [Google Scholar]
- Salloum, R.; Ren, Y.; Kuo, C.C.J. Image Splicing Localization Using a Multi-Task Fully Convolutional Network (MFCN). J. Vis. Commun. Image Represent. 2018, 51, 201–209. [Google Scholar] [CrossRef]
- Fridrich, J.; Kodovsky, J. Rich Models for Steganalysis of Digital Images. IEEE Trans. Inf. Forensics Secur. 2012, 7, 868–882. [Google Scholar] [CrossRef]
- Girshick, R.B. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the ICLR 2015: International Conference on Learning Representations 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Lin, T.Y.; RoyChowdhury, A.; Maji, S. Bilinear CNN Models for Fine-Grained Visual Recognition. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1449–1457. [Google Scholar]
- Nist Nimble 2016 Datasets. 2016. Available online: https://mig.nist.gov/NC2017/Resources.html (accessed on 30 October 2018).
- Hsu, Y.F.J.; Chang, S.F. Detecting Image Splicing using Geometry Invariants and Camera Characteristics Consistency. In Proceedings of the 2006 IEEE International Conference on Multimedia and Expo, Toronto, ON, Canada, 1 January 2006; pp. 549–552. [Google Scholar]
- Dong, J.; Wang, W.; Tan, T. CASIA Image Tampering Detection Evaluation Database. In Proceedings of the 2013 IEEE China Summit and International Conference on Signal and Information Processing, Beijing, China, 6–10 July 2013; pp. 422–426. [Google Scholar]
- Zampoglou, M.; Papadopoulos, S.; Kompatsiaris, Y. Large-scale evaluation of splicing localization algorithms for web images. Multimed. Tools Appl. 2017, 76, 4801–4834. [Google Scholar] [CrossRef]
Algorithms | mAP |
---|---|
Faster R-CNN + LoG | 0.7400 |
Faster R-CNN + LoG + | 0.7635 |
Faster R-CNN + LoG + | 0.7582 |
Ours | 0.8100 |
Datasets | Image Number |
---|---|
Training | 11,650 |
Testing | 1833 |
IoU Threshold | mAP |
---|---|
0.3 | 0.8066 |
0.4 | 0.8084 |
0.5 | 0.8100 |
0.6 | 0.8056 |
0.7 | 0.7966 |
Datasets | NIST2016 | Columbia | CASIA |
---|---|---|---|
Training | 404 | - | 5123 |
Testing | 160 | 180 | 921 |
Datasets | Flipping | Recall | Precision | F1 Scores |
---|---|---|---|---|
NIST2016 | 0.9563 | 0.9217 | 0.9387 | |
√ | 0.9563 | 0.9503 | 0.9533 | |
Columbia | 0.7333 | 0.7416 | 0.7374 | |
√ | 0.7389 | 0.7644 | 0.7514 | |
CASIA | 0.6566 | 0.4865 | 0.5589 | |
√ | 0.6608 | 0.5158 | 0.5794 |
Algorithms | NIST16 | Columbia | CASIA |
---|---|---|---|
DCT [4] | 0.2756 | 0.5199 | 0.3005 |
NOI1 [8] | 0.2850 | 0.5740 | 0.2633 |
BLK [5] | 0.3019 | 0.5234 | 0.2312 |
CFA1 [10] | 0.1743 | 0.4667 | 0.2073 |
MFCN [20] | 0.5705 | 0.6117 | 0.5410 |
RGB-N [16] | 0.9123 | 0.7467 | 0.5655 |
Ours | 0.9533 | 0.7514 | 0.5794 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Wu, Y.; Dong, F.; Zhang, J.; Sun, S. Developing an Image Manipulation Detection Algorithm Based on Edge Detection and Faster R-CNN. Symmetry 2019, 11, 1223. https://doi.org/10.3390/sym11101223
Wei X, Wu Y, Dong F, Zhang J, Sun S. Developing an Image Manipulation Detection Algorithm Based on Edge Detection and Faster R-CNN. Symmetry. 2019; 11(10):1223. https://doi.org/10.3390/sym11101223
Chicago/Turabian StyleWei, Xiaoyan, Yirong Wu, Fangmin Dong, Jun Zhang, and Shuifa Sun. 2019. "Developing an Image Manipulation Detection Algorithm Based on Edge Detection and Faster R-CNN" Symmetry 11, no. 10: 1223. https://doi.org/10.3390/sym11101223
APA StyleWei, X., Wu, Y., Dong, F., Zhang, J., & Sun, S. (2019). Developing an Image Manipulation Detection Algorithm Based on Edge Detection and Faster R-CNN. Symmetry, 11(10), 1223. https://doi.org/10.3390/sym11101223