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Abstract: The nuclear norm minimization (NNM) problem is to recover a matrix that minimizes
the sum of its singular values and satisfies some linear constraints simultaneously. The alternating
direction method (ADM) has been used to solve this problem recently. However, the subproblems in
ADM are usually not easily solvable when the linear mappings in the constraints are not identities.
In this paper, we propose a proximity algorithm with adaptive penalty (PA-AP). First, we formulate
the nuclear norm minimization problems into a unified model. To solve this model, we improve the
ADM by adding a proximal term to the subproblems that are difficult to solve. An adaptive tactic
on the proximity parameters is also put forward for acceleration. By employing subdifferentials
and proximity operators, an equivalent fixed-point equation system is constructed, and we use
this system to further prove the convergence of the proposed algorithm under certain conditions,
e.g., the precondition matrix is symmetric positive definite. Finally, experimental results and
comparisons with state-of-the-art methods, e.g., ADM, IADM-CG and IADM-BB, show that the
proposed algorithm is effective.

Keywords: nuclear norm minimization; matrix completion; alternating direction method;
subdifferential; proximity operator

1. Introduction

The rank minimization (RM) problem aims to recover an unknown low-rank matrix from very
limited information. It has gained am increasing amount of attention rapidly in recent years, since it
has a range of applications in many computer vision and machine learning areas, such as collaborative
filtering [1], subspace segmentation [2], non-rigid structure from motion [3] and image inpainting [4].
This paper deals with the following rank minimization problem:

min
X∈Rm× n

rank(X) s.t. AX = b, (1)

where A : Rm× n → Rp is a linear map and the vector b ∈ Rp is known. The matrix completion (MC)
problem is a special case of the RM problem, where A is a sampling operator in the form of AX = XΩ,
Ω ⊂ {1, 2, . . . , m} × {1, 2, . . . , n} is an index subset, and XΩ is a vector formed by the entries of X with
indices in Ω.

Although Label (1) is simple in form, directly solving it is an NP-hard problem due to the discrete
nature of the rank function. One popular way is replacing the rank function with the nuclear norm,
which is the sum of the singular values of a matrix. This technique is based on the fact that the nuclear
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norm minimization (NNM) is the tightest convex relaxation of the rank minimization problem [5].
The obtained new problem is given by

min
X∈Rm× n

‖X‖∗ s.t. AX = b, (2)

where ‖X‖∗ := ∑r
i=1 σi(X) denotes the nuclear norm. It has been shown that recovering a low-rank

matrix can be achieved by solving Label (2) [1,6].
In practical applications, the observed data may be corrupted with noise, namely b = AX + e,

where e contains measurement errors dominated by certain normal distribution. In order to
recover the low-rank matrix robustly, problem (2) should be modified to the following inequality
constrained problem:

min
X∈Rm× n

‖X‖∗ s.t. ‖AX− b‖2 ≤ δ, (3)

where ‖ · ‖2 is the `2 norm of vector and the constant δ ≥ 0 is the noise level. When δ = 0, problem (3)
reduces to the noiseless case (2).

Alternatively, problems (2) and (3) can be rewritten as the nuclear norm regularized least-square
(NNRLS) under some conditions:

min
X∈Rm× n

‖X‖∗ +
γ

2
‖AX− b‖2

2, (4)

where γ > 0 is as given parameter.
The studies on the nuclear norm minimization problem are mainly along two directions. The first

one is enhancing the precision of a low rank approximation via replacing the nuclear norm by
a non-convex regularizer—for instance, the Schatten p-norm [7,8], the truncated nuclear norm [4,9],
the log or fraction function based norm [10,11], and so on. The second one is improving the efficiency
of solving problems (2), (3) and (4) and their variants. For instance, the authors in [12] treated the
problem (2) as a standard linear semidefinite programming (SDP) problem, and proposed the solving
algorithm from the dual problem. However, since the SDP solver uses second-order information,
with the increase in the size of the matrix, the memory required to calculate the descending direction
quickly becomes too large. Therefore, algorithms that use only first-order information are developed,
such as the singular value thresholding (SVT) algorithm [13], the fixed point continuation algorithm
(FPCA) [14], the accelerated proximal gradient Lagrangian (APGL) method [15], the proximal point
algorithm based on indicator function (PPA-IF) [16], the augmented Lagrange multiplier (ALM)
algorithm [17] and the alternating direction methods (ADM) [18–21].

In particular, Chen et al. [18] applied the ADM to solve the nuclear norm based matrix completion
problem. Due to the simplicity of the linear mapping A, i.e., AA∗ = I , all of the ADM subproblems
of the matrix completion problem can be solved exactly by an explicit formula; see [18] for details.
Here, and hereafter A∗ and I represent the adjoint of A and the identity operator. However, for
a generic A with AA∗ 6= I , some of the resulting subproblems no longer have closed-form solutions.
Thus, the efficiency of the ADM depends heavily on how to solve these harder subproblems.

To solve this difficulty, a common strategy is to introduce new auxiliary variables, e.g., in [19],
one auxiliary variable was introduced for solving Label (2), while two auxiliary variables were
introduced for Label (3). However, with more variables and more constraints, more memory is required
and the convergence of ADM also becomes slower. Moreover, to update auxiliary variables, whose
subproblems are least square problems, expensive matrix inversions are often necessary. Even worse,
the convergence of ADM with more than two variables is not guaranteed. To mitigate these problems,
Yang and Yuan [21] presented a linearized ADM to solve the NNRLS (4) as well as problems (2) and (3),
where each subproblems admit explicit solutions. Instead of the linearized technique, Xiao and Jin [19]
solve one least square subproblem iteratively by the Barzilai–Borwein (BB) gradient method [22].
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Unlike [19], Jin et al. [20] used the linear conjugate gradient (CG) algorithm rather than BB to
solve the subproblem.

In this paper, we further investigate the efficiency of ADM in solving the nuclear norm
minimization problems. We first reformulate the problems (2), (3) and (4) into a unified form as follows:

min
X∈Rm× n

f (X) + g(AX), (5)

where f : Rm× n → R and g : Rp → R. In this paper, we always fix f (·) = ‖ · ‖∗. When considering
problems (2) and (3), we choose g(·) = XBδ

(· − b), where XBδ
(·) denotes the indicator function over

Bδ := {u ∈ Rp | ‖u‖2 ≤ δ}, i.e.,

XBδ
(x) :=

{
0, if x ∈ Bδ,

+∞, otherwise.
(6)

When considering problem (4), we choose g(·) = γ
2 ‖ · −b ‖2

2. As a result, for a general linear
mapping A, we only need to solve such a problem whose objective function is a sum of two convex
functions and one of them contains an affine transformation.

Motivated by the ADM algorithms above, we then present a unified proximity algorithm with
adaptive penalty (PA-AP) to solve Label (5). In particular, we employ the proximity idea to deal with
the problems encountered by the present ADM, by adding a proximity term to one of the subproblems.
We term the proposed algorithm as a proximity algorithm because we can rewrite it as a fixed-point
equation system of proximity operators of f and g. By analyzing the fixed-point equations and
applying the “Condition-M” [23], the convergence of the algorithm is proved under some assumptions.
Furthermore, to improve the efficiency, an adaptive tactic on the proximity parameters is put forward.
This paper is closely related to the works [23–26]. However, this paper is motivated to improve ADM
to solve the nuclear norm minimization problem with linear affine constraints.

The organization of this paper is as follows. In Section 2, a review of ADM and its application
on NNM are provided. In addition, the properties about subdifferentials and proximity operators
are introduced. To improve ADM, a proximity algorithm with adaptive penalty is proposed,
and convergence of the proposed algorithm is obtained in Section 3. Section 4 demonstrates the
performance and effectiveness of the algorithm through numerical experiment. Finally, we will make
a conclusion in Section 5.

2. Preliminaries

In this section, we give a brief review on ADM and its applications to the NNM problem (2)
developed in [19,20]. In addition, some preliminaries on subdifferentials and proximity operators are
given. Throughout this paper, linear maps are denoted with calligraphic letters (e.g., A), while capital
letters represent matrices (e.g., A), and boldface lowercase letters represent vectors (e.g., x).

We begin with introducing the ADM. The basic idea of ADM goes back to the work of Gabay and
Mercier [27]. ADM is designed to solving the separable convex minimization problem:

min
x,y

θ1(x) + θ2(y), s.t. Ax + By = c, (7)

where θ1 : Rs → R, θ2 : Rt → R are convex functions, and A ∈ Rl× s, B ∈ Rl× t and c ∈ Rl .
The corresponding augmented Lagrangian function is

L(x, y, λ) = θ1(x) + θ2(y)− 〈λ, Ax + By− c〉+ β

2
‖Ax + By− c‖2

2, (8)
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where λ ∈ Rl is the Lagrangian multiplier and β > 0 is a penalty parameter. ADM is to minimize (8)
first with respect to x, then with respect to y, and finally update λ iteratively, i.e.,

xk+1 = arg min
x
L(x, yk, λk),

yk+1 = arg min
y
L(xk+1, y, λk),

λk+1 = λk − β(Axk+1 + Byk+1 − c).

(9)

The main advantage of ADM is to make use of the separability structure of the objective function
θ1(x) + θ2(y).

To solve (2) based on ADM, the authors in [19,20] introduced an auxiliary variable Y,
and equivalently transformed the original model into

min
X,Y
‖X‖∗ s.t. X−Y = 0,AY = b. (10)

The augmented Lagrangian function to (10) is

L(X, Y, Z, z) = ‖X‖∗ − 〈Z, X−Y〉+ µ

2
‖X−Y‖2

F − 〈z,AY− b〉+ γ

2
‖AY− b‖2

2, (11)

where Z ∈ Rm× n, z ∈ Rp are Lagrangian multipliers, µ, γ > 0 are penalty parameters and 〈·〉 denotes
the Frobenius inner product, i.e., the matrices are treated like vectors. Following the idea of ADM,
given (Xk, Yk), the next pair (Xk+1, Yk+1) is determined by alternating minimizing (11),

Xk+1 = arg min
X
L(X, Yk, Zk, zk),

Yk+1 = arg min
Y
L(Xk+1, Y, Zk, zk),

Zk+1 = Zk − µ(Xk+1 −Yk+1),

zk+1 = zk − γ(AYk+1 − b).

(12)

Firstly, Xk+1 can be updated by

Xk+1 = arg min
X
‖X‖∗ − 〈Zk, X−Yk〉+

µ

2
‖X−Yk‖2

F

= arg min
X
‖X‖∗ +

µ

2
‖X− (Yk +

1
µ

Zk)‖2
F, (13)

which in fact corresponds to evaluating the proximal operator of ‖ · ‖∗, i.e., prox 1
β ‖·‖∗

which is

defined below.
Secondly, given (Xk+1, Zk, zk), Yk+1 can be updated by

Yk+1 = arg min
Y
− 〈Zk, Xk+1 −Y〉+ µ

2
‖Xk+1 −Y‖2

F − 〈zk,AY− b〉+ γ

2
‖AY− b‖2

2

= arg min
Y

µ

2
‖Y− (Xk+1 −

1
µ

Zk)‖2
F +

γ

2
‖AY− (b +

1
γ

zk)‖2
2, (14)

which is a least square subproblem. Its solution can be found by solving a linear equation:

(µI + γA∗A)Y = µXk+1 − Zk −A∗(γb + zk).

However, computing the matrix inverse (µI+γA∗A)−1 is too costly to implement. Though [19,20]
adopted inverse-free methods, i.e., BB and CG, to solve (14) iteratively, they are still inefficient, which
will be shown in Section 4.
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Next, we review definitions of subdifferential and proximity operator, which play an important
role in the algorithm and convergence analysis. The subdifferential of a convex function θ at a point
x ∈ Rd is the set defined by

∂θ(·)(x) = {y ∈ Rd : θ(z) ≥ θ(x)+ < y, z− x >, ∀z ∈ Rd}. (15)

The conjugate function of θ is denoted by θ∗, which is defined by

θ∗(y) := sup
x
{〈x, y〉 − θ(x)}.

For x ∈ dom(θ), y ∈ dom(θ∗), it holds that

y ∈ ∂θ(·)(x)⇔ x ∈ ∂θ∗(·)(y), (16)

where dom(·) denotes the domain of a function.
For a given positive definite matrixH, the weighted inner product is defined by 〈x, y〉H = 〈Hx, y〉.

Furthermore, the proximity operator of θ at x with respect toH [23] is defined by

proxθ(·),H(x) = arg min{θ(u) + 1
2
‖u− x‖2

H : u ∈ Rd}. (17)

IfH = βI , then proxθ(·),H(·) is reduced to

proxθ(·),βI (x) = arg min{θ(u) + β

2
‖u− x‖2

2 : u ∈ Rd},

and prox 1
β θ(·)(·) is short for proxθ(·),βI (·). A relation between subdifferentials and proximity

operators is that
y ∈ ∂θ(·)(x)⇔ x = proxθ(·)(x + y), (18)

which is frequently used to construct fixed-point equations and prove convergence of the algorithm.

3. Proximity Algorithm with Adaptive Penalty

In Section 2, it is shown that the current ADM results in expensive matrix inverse computation
when solving (2). Therefore, it is desirable to improve it. In this section, we propose a proximity
algorithm with adaptive penalty (PA-AP) to solve the unified problem (5).

3.1. Proximity Algorithm

We derive our algorithm from ADM. First of all, we introduce an auxiliary variable y ∈ Rp,
and convert (5) to

min
X,y

f (X) + g(y), s.t. AX− y = 0. (19)

The augmented Lagrangian function of (19) is defined by

L(X, y) = f (X) + g(y)− 〈λ,AX− y〉+ µ

2
‖AX− y‖2

2, (20)
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where λ ∈ Rp is the Lagrangian multiplier and µ > 0 is a penalty parameter. ADM first updates X by
minimizing L(X, y) with y being fixed and then updates y with X fixed at its latest value, until some
convergence criteria are satisfied. After some simplification, we get

Xk+1 = arg min
X

f (X) + µ
2 ‖AX− (yk +

1
µ λk)‖2

2,

yk+1 = arg min
y

g(y) + µ
2 ‖y− (AXk+1 − 1

µ λk)‖2
2,

λk+1 = λk − µ(AXk+1 − yk+1).

(21)

Note that the subproblem of Xk+1 usually has no closed-form solutions whenA is not the identity.
In order to design efficient algorithms, we add a proximity term to this subproblem. More precisely,
we propose the following algorithm:

Xk+1 = arg min
X

f (X) + µ
2 ‖AX− (yk +

1
µ λk)‖2

2 +
1
2‖X− Xk‖2

Q,

yk+1 = arg min
y

g(y) + µ
2 ‖y− (AXk+1 − 1

µ λk)‖2
2,

λk+1 = λk − µ(AXk+1 − yk+1),

(22)

where Q ∈ Rm× m is a symmetric positive definite matrix.
The next lemma shows that (22) is equivalent to a fixed-point equation of some proximity

operators. The proof is similar to [25].

Lemma 1. The problem (22) is equivalent to solving the following equations:{
zk+1 = proxµg∗(·)(µAXk + zk),

Xk+1 = proxτ f (·)(Xk+1 − τ(µA∗A+ Q)(Xk+1 − Xk)− τA∗(2zk+1 − zk)),
(23)

where τ > 0 is arbitrary.

Proof. By changing the order of iterations, the first-order optimality condition of (22) is
0 ∈ ∂g(·)(yk+1) + µ(yk+1 −AXk +

1
µ λk),

λk+1 = λk − µ(AXk − yk+1),

0 ∈ ∂ f (·)(Xk+1) + µA∗(AXk+1 − yk+1 − 1
µ λk+1) + Q(Xk+1 − Xk).

(24)

From the first line of (24) and (16), we obtain

µyk+1 ∈ ∂µg∗(·)(µ(AXk − yk+1)− λk). (25)

Denote zk := −λk. Then,
zk+1 = µAXk + zk − µyk+1. (26)

Using (18), it follows from (25) and (26) that

zk+1 = proxµg∗(·)(µAXk + zk). (27)

By (26), we have

µAXk + zk = µyk+1 + µ(AXk − yk+1 −
1
µ

λk) = µyk+1 + zk+1,
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and thus

µA∗(AXk+1 − yk+1 −
1
µ

λk+1) + Q(Xk+1 − Xk) = (µA∗A+ Q)(Xk+1 − Xk) +A∗(2zk+1 − zk). (28)

From (28) and the third line of (24), given τ > 0, we have

−τ(µA∗A+ Q)(Xk+1 − Xk)− τA∗(2zk+1 − zk) ∈ ∂τ f (·)(Xk+1),

which yields

Xk+1 = proxτ f (·)(Xk+1 − τ(µA∗A+ Q)(Xk+1 − Xk)− τA∗(2zk+1 − zk)). (29)

Therefore, the results in (23) are achieved by combining (27) and (29).

We now discuss the choice of Q. To make the first subproblem of (22) have closed-form solutions,
in this paper, we simply choose Q = µηI − µA∗A. To make sure Q is positive definite, η must satisfy
η > ‖A‖2

2, where ‖ · ‖2 is the spectral norm. By substituting Q into (22), we obtain
Xk+1 = arg min

X
f (X) + µη

2 ‖X− (Xk +
A∗(λk−µ(AXk−yk))

µη )‖2
2,

yk+1 = arg min
y

g(y) + µ
2 ‖y− (AXk+1 − 1

µ λk)‖2
2,

λk+1 = λk − µ(AXk+1 − yk+1).

(30)

The subproblems in (30) can be solved explicitly based on proximity operators. Specifically, we have

Xk+1 = prox 1
µη ‖·‖∗

(Xk +
A∗(λk − µ(AXk − yk))

µη
) = U max{Σ− 1

µη
, 0}VT , (31)

where UΣVT is the singular value decomposition (SVD) of Xk + A∗(λk−µ(AXk−yk))
µη ,

U ∈ Rm× m, V ∈ Rn× n, and Σ ∈ Rm× n is a diagonal matrix containing the singular values.
Moreover, yk+1 = prox 1

µ g(·)(AXk+1 − 1
µ λk), which depends on the choice of g(·).

If g(·) = XBδ
(· − b), then

prox 1
µ g(·)(x) =

x, x− b ∈ Bδ,

b + δ
‖x−b‖2

(x− b), otherwise.
(32)

If g(x) = γ
2 ‖x− b‖2

2, then

prox 1
µ g(·)(x) =

γb + µx
γ + µ

. (33)

3.2. Adaptive Penalty

In previous proximity algorithms [23,28,29], the penalty parameter µ is usually fixed. In view of
the linearized ADM, Liu et al. [26] presented an adaptive updating strategy for the penalty parameter
µ. Motivated by it, we update µ by

µk+1 = min{µmax, ρµk}, (34)

where µmax is an upper bound of {µk}. The value of ρ is defined as

ρ =

{
ρ0, if µk max{√η‖Xk+1 − Xk‖F, ‖yk+1 − yk‖2}/‖b‖2 ≤ ε1,

1, otherwise,
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where ρ0 > 1 and ε1 > 0 are given.
Based on the above analysis in Sections 3.1 and 3.2, the proximity algorithm with adaptive penalty

(abbr. PA-AP) for solving (5) can be outlined in Algorithm 1.

Algorithm 1 PA-AP for solving (5)
Input: Observation vector b, linear mappingA, and some parameters µ0, ρ0, ε1, ε2 > 0, µmax � µ0 > 0.
Initialize: Set X0 and y0 to zero matrix and vector, respectively. Set µ = µ0 and η > ‖A‖2

2. Set k = 0.
while not converged, do

step 1: Update Xk+1, yk+1 and λk+1 in turn by (30).
step 2: Update µk+1 by (34), and let µ← µk+1.
step 3: k← k + 1.

end while

3.3. Convergence

In this section, we establish the convergence of (22). For problem (5), Li et al. [23] presented
a general formula of fixed-point algorithms. Given two symmetric positive definite matrices S ∈ Rp× p

and T ∈ Rm× m, denote

SA :=

(
0 A
−A∗ 0

)
, R :=

(
S 0
0 T

)
, E := I + R−1SA,

where SA, R and E can be treated as linear maps which map (Rp)× (Rm× n) into itself.
Defining Z := (z, X) ∈ (Rp) × (Rm× n) and T := prox(g∗+ f )(·),R, then the solution to (5)

is equivalent to
Z = (T ◦ E)(Z).

Furthermore, a multi-step proximity algorithm was proposed, which is

Zk+1 = T (E0Zk+1 + R−1
l

∑
i=1

MiZk−i+1), (35)

where E0 = E− R−1(SA − M0) and M0 = ∑l
i=1 Mi. Let M := {Mi : i = 0, 1, . . . , l}. Li et al. [23]

proved that the sequence {Zk} generated by (35) converges to a solution of problem (5) ifM satisfies
the “Condition-M”, which refers to

(i) M0 = ∑l
i=1 Mi,

(ii) M1 = M2 = · · · = Ml−1,
(iii) H := M0 + Ml , H is symmetric positive definite,
(iv) N (H) ⊆ N (Ml) ∩N (MT

l ),
(v) ‖(H†)

1
2 Ml(H†)

1
2 ‖2 < 1

2 ,

where N (H) and H† are the null space and the Moore–Penrose pseudo-inverse matrix
of H, respectively.

By checking the Condition-M, we prove the convergence of (22).

Theorem 1. If Q is symmetric positive definite, and ‖A(A∗A+ 1
µ Q)−

1
2 ‖2 < 1, then the sequence generated

by (22) converges to the solution of (5).

Proof. By comparing (23) and (35), it can be found that l = 2 and

E0 =

(
0 0

−2τA∗ I − τ(µA∗A+ Q)

)
, R =

(
1
µI 0
0 1

τI

)
, M0 = M1 =

(
1
µI A
A∗ µA∗A+ Q

)
, M2 = 0.
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We clearly see that Item (i) and Item (ii) of Condition-M hold. Furthermore,
H = M0 + M2 = M0, which is symmetric. By Lemma 6.2 in [23], H is positive definite if and
only if ‖(µA∗A+ Q)−

1
2A∗( 1

µ )
− 1

2 ‖2 < 1, which is equivalent to ‖A(A∗A + 1
µ Q)−

1
2 ‖2 < 1. Hence,

Item (iii) of Condition-M also holds.
Since H is positive definite, it yields that N (H) = {0}, which implies Item (iv) of Condition-M

holds. Finally, M2 = 0 implies that Item (v) holds. Consequently, the sequence generated by (23)
converges to the solution of (5). The equivalence of (22) and (23) proves the result.

Corollary 1. Let Q = µηI − µA∗A. If η > ‖A‖2
2, then the sequence generated by (30) converges to the

solution of (5).

Proof. Since η > ‖A‖2
2 if and only if ‖A(A∗A+ 1

µ Q)−
1
2 ‖2 < 1, the result is true by Theorem 1.

4. Numerical Experiments

In this section, we present some numerical experiments to show the effectiveness of the proposed
algorithm (PA-AP). To this end, we test algorithms to solve the nuclear norm minimization problem,
the noiseless matrix completion problem(δ = 0), noisy matrix completion(δ > 0) and low-rank image
recovery problem. We compare PA-AP against the ADM [18], IADM-CG [20] and IADM-BB [19].
All experiments are performed under Windows 10 and MATLAB R2016 running on a Lenovo laptop
with an Intel CORE i7 CPU at 2.7 GHz and 8 GB of memory. In the numerical experiments of the first
two parts, we use randomly generated square matrices for simulations. We denote the true solution
by X∗ ∈ Rm× m. We generate the rank-r matrix X∗ as a product of XLXT

R, where XL and XR are
independent m× r matrices with i.i.d. Gaussian entries. For each test, the stopping criterion is

RelChg =
‖Xk − Xk−1‖F
‖Xk−1‖F

≤ ε2,

where ε2 > 0. The algorithms are also forced to stop when the iteration number exceeds 103.
Let X̂ be the solution obtained by the algorithms. We use the relative error to measure the quality

of X̂ compared to the original matrix X∗, i.e.,

RelErr =
‖X̂− X∗‖F
‖X∗‖F

.

It is obvious that, in each iteration of computing Xk+1, PA-AP contains an SVD computation
that computes all singular values and singular vectors. However, we actually only need the ones
that are bigger than 1

µη . This causes the main computational load by using full SVD. Fortunately, this
disadvantage can be smoothed by using the software PROPACK [30], which is designed to compute
the singular values bigger than a threshold and the corresponding vectors. Although PROPACK can
calculate the first fixed number of singular values, it cannot automatically determine the number of
singular values greater than 1

µη . Therefore, in order to perform a local SVD, we need to predict the
number of singular values and vectors calculated in each iteration, which is expressed by svk. We
initialize sv0 = 0.01m, and update it in each iteration as follows:

svk+1 =

{
svpk + 1, if svpk < svk,

svpk + 5, if svpk = svk,

where svpk is the number of singular values in the svk singular values that are bigger than 1
µη .

We use r and p to represent the rank of an (m× n) matrix and the cardinality of the index set
Ω, i.e., p = |Ω|, and use sr = p/(mn) to represent the sampling rate. The “degree of freedom” of
a matrix with rank r is defined by dof = r(m + n − r). For PA-AP, we set ε1 = 10−4, µ0 = 1

‖b‖2
,
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µmax = max{103µ0, 10−2}, ρ0 = 1.7, and η = 1.01‖A‖2
2. In all the experimental results, the boldface

numbers always indicate the best results.

4.1. Nuclear Norm Minimization Problem

In this subsection, we use PA-AP to solve the three types of problems including (2)–(4). The linear
map A is chosen as a partial discrete cosine transform (DCT) matrix. Specifically, in the noiseless
model (2), A is generated by the following MATLAB scripts:

indices = randsample(m ∗ n, p); b = dct2(X∗); b = b(indices),

which shows that Amaps Rm× n into Rp. In the noise model (3), we further set

b = AX∗ + ω,

where ω is the additive Gaussian noise of zero mean and standard deviation σ. In (3), the noise level δ

is chosen as ‖ω‖2.
The results are listed in Table 1, where the number of iterations (Iter) and CPU time in seconds

(Time) besides RelErr are reported. To further illustrate the efficiency of PA-AP, we test problems with
different matrix sizes and sampling rates (sr). In Table 2, we compare the PA-AP with IADM-CG and
IADM-BB for solving the NNRLS problem (4). It shows that our method is more efficient than the
other two methods, and thus it is suitable for solving large-scale problems.

Table 1. PA-AP for noiseless and noisy DCT matrix (m = n, ε2 = 10−4).

(n, r) p/dof sr Prob. (3) (δ = 0) Prob. (3) (δ = 10−2) Prob. (4)

Iter Time RelErr Iter Time RelErr Iter Time RelErr

(128, 3) 4.32 0.2 86 2.03 3.942 × 10−3 83 1.83 5.706 × 10−3 83 2.14 8.050 × 10−3

(128, 3) 8.64 0.4 31 0.57 4.042 × 10−4 33 0.69 5.535 × 10−3 34 0.70 6.196 × 10−3

(128, 3) 12.95 0.6 20 0.44 1.376 × 10−4 20 0.45 5.652 × 10−3 20 0.48 5.714 × 10−3

(128, 3) 17.27 0.8 13 0.29 6.251 × 10−5 12 0.34 5.952 × 10−3 13 0.28 5.966 × 10−3

(256, 5) 5.17 0.2 53 2.04 3.178 × 10−4 53 2.02 3.846 × 10−3 53 2.08 4.353 × 10−3

(256, 5) 10.34 0.4 31 1.22 1.649 × 10−4 31 1.16 4.424 × 10−3 31 1.28 4.404 × 10−3

(256, 5) 15.51 0.6 20 0.78 1.139 × 10−4 20 0.78 4.414 × 10−3 20 0.76 4.419 × 10−3

(256, 5) 20.68 0.8 13 0.50 3.893 × 10−5 13 0.52 4.458 × 10−3 14 0.52 4.297 × 10−3

(512, 10) 5.17 0.2 55 7.63 2.397 × 10−4 55 7.77 2.858 × 10−3 54 7.86 2.939 × 10−3

(512, 10) 10.34 0.4 34 4.22 1.259 × 10−4 34 4.55 3.068 × 10−3 34 4.46 3.081 × 10−3

(512, 10) 15.51 0.6 22 2.85 1.195 × 10−4 22 2.98 3.106 × 10−3 22 2.96 3.177 × 10−3

(512, 10) 20.68 0.8 13 1.81 1.009 × 10−4 13 1.85 3.129 × 10−3 13 1.86 3.262 × 10−3

Table 2. Comparisons of PA-AP, IADM-CG and IADM-BB for DCT matrix (m = n, ε2 = 10−4).

(n, r) p/dof sr PA-AP IADM-CG IADM-BB

Iter Time RelErr Iter Time RelErr Iter Time RelErr

(500, 10) 5.05 0.2 54 8.65 2.881 × 10−3 33 15.09 8.312 × 10−3 39 26.65 9.448 × 10−3

(500, 10) 10.10 0.4 33 4.14 3.035 × 10−3 23 8.45 4.433 × 10−3 26 16.58 6.484 × 10−3

(500, 10) 15.15 0.6 22 2.15 3.20 × 10−3 15 5.56 3.968 × 10−3 18 9.81 4.581 × 10−3

(500, 10) 20.20 0.8 13 1.72 3.224 × 10−3 10 4.79 3.292 × 10−3 12 7.50 3.528 × 10−3

(1000, 20) 5.05 0.2 70 38.20 2.110 × 10−3 33 69.23 8.806 × 10−3 40 141.57 5.047 × 10−3

(1000, 20) 10.10 0.4 38 15.14 2.379 × 10−3 22 41.34 3.442 × 10−3 23 78.78 7.097 × 10−3

(1000, 20) 15.15 0.6 21 8.83 2.322 × 10−3 17 30.52 3.362 × 10−3 19 60.35 4.277 × 10−3

(1000, 20) 20.20 0.8 14 6.60 2.379 × 10−3 13 25.36 3.665 × 10−3 20 57.51 2.724 × 10−3

(2000, 20) 5.05 0.2 74 144.89 2.270 × 10−3 39 581.64 1.039 × 10−2 46 1399.31 8.316 × 10−3

(2000, 20) 10.10 0.4 33 62.68 2.348 × 10−3 22 328.02 4.755 × 10−3 22 628.66 5.090 × 10−3

(2000, 20) 15.15 0.6 21 34.60 2.368 × 10−3 14 172.70 3.405 × 10−3 17 438.01 4.527 × 10−3

(2000, 20) 20.20 0.8 13 23.40 2.401 × 10−3 20 128.73 2.752 × 10−3 15 359.59 3.260 × 10−3
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4.2. Matrix Completion

This subsection adopts the PA-AP method to solve the noiseless matrix completion problem (2)
and the noisy matrix completion problem (3) to verify its validity. The mappingA is a linear projection
operator defined as AX∗ = XΩ, where XΩ is a vector formed by the components of X∗ with indices in
Ω. The indicators of the selected elements are randomly arranged to form a column vector, and the
index set of the first sr× m× n is selected to form the set Ω. For noisy matrix completion problems,
we take δ = 10−2.

In Table 3, we report the numerical results of PA-AP for noiseless and noisy matrix completion
problems, taking m = n = 1000 and m = n = 2000. Only the rank of the original matrix is considered
to be r = 10 and r = 20. As can be seen from Table 3, the PA-AP method can effectively solve these
problems. Compared with the noiseless problem, PA-AP solves the noisy problems accuracy of the
solution dropped. Moreover, the number of iterations and the running time decrease as sr increases.

Table 3. PA-AP for noiseless and noisy matrix completion problems (m = n, ε2 = 10−5).

(n, r) p/dof sr Prob. (3) (δ = 0) Prob. (3) (δ = 10−2) Prob. (4)

Iter Time RelErr Iter Time RelErr Iter Time RelErr

(1000, 10) 10.05 0.2 76 21.94 2.439 × 10−5 76 21.52 3.015 × 10−3 76 22.92 5.245 × 10−4

(1000, 10) 20.10 0.4 40 9.28 1.159 × 10−5 40 9.68 3.085 × 10−3 39 9.55 7.436 × 10−4

(1000, 10) 30.15 0.6 22 5.72 1.061 × 10−6 23 6.36 3.105 × 10−3 23 6.10 8.251 × 10−4

(1000, 10) 40.20 0.8 12 3.88 2.859 × 10−6 14 3.76 3.075 × 10−3 14 3.74 8.668 × 10−4

(1000, 20) 5.05 0.2 87 39.10 3.037 × 10−5 88 43.58 1.995 × 10−3 87 43.71 5.469 × 10−4

(1000, 20) 10.10 0.4 46 13.02 1.277 × 10−5 46 13.69 2.115 × 10−3 46 13.47 7.467 × 10−4

(1000, 20) 15.15 0.6 25 7.56 1.230 × 10−5 25 7.54 2.158 × 10−3 25 7.64 8.232 × 10−4

(1000, 20) 20.20 0.8 14 4.86 9.617 × 10−6 14 4.87 2.194 × 10−3 14 4.88 8.624 × 10−4

(2000, 10) 20.05 0.2 80 46.73 2.538 × 10−5 80 67.92 3.086 × 10−3 80 54.29 7.422 × 10−4

(2000, 10) 40.10 0.4 37 26.02 1.299 × 10−5 37 31.65 3.091 × 10−3 37 27.20 8.641 × 10−4

(2000, 10) 60.15 0.6 23 19.30 9.672 × 10−6 23 21.64 3.160 × 10−3 23 20.02 9.024 × 10−4

(2000, 10) 80.20 0.8 13 11.99 2.584 × 10−6 13 13.31 3.153 × 10−3 13 11.71 9.276 × 10−4

(2000, 20) 10.05 0.2 91 108.16 2.853 × 10−5 91 132.04 2.133 × 10−3 91 129.30 7.461 × 10−4

(2000, 20) 20.10 0.4 40 42.54 1.146 × 10−5 40 44.62 2.190 × 10−3 40 42.49 8.674 × 10−4

(2000, 20) 30.15 0.6 24 27.07 8.683 × 10−6 24 28.24 2.226 × 10−3 24 27.43 9.058 × 10−4

(2000, 20) 40.20 0.8 13 15.81 3.772 × 10−6 13 17.19 2.205 × 10−3 13 16.18 9.268 × 10−4

To further verify the validity of the PA-AP method, it is compared with ADM, IADM-CG and
IADM-BB. When RelChg is lower than 10−5, the algorithms are set to terminate. The numerical results
of the four methods for solving the noiseless and noisy MC problem are recorded in Tables 4 and 5,
from which we can see that the calculation time of the PA-AP method is much less than IADM-BB and
IADM-CG, and the number of iterations and calculation time of PA-AP and ADM are almost the same,
while our method is relatively more accurate. From the limited experimental data, the PA-AP method
is shown to be more effective than the ADM, IADM-BB and IADM-CG.
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Table 4. Comparisons of PA-AP, ADM, IADM-CG and IADM-BB for noiseless matrix completion.

(n, r) p p/dof sr PA-AP ADM IADM-CG IADM-BB

Iter Time RelErr Iter Time RelErr Iter Time RelErr Iter Time RelErr

(1024, 5) 209235 10.29 0.2 80 17.52 2.218 × 10−5 81 18.74 6.133 × 10−4 52 58.41 3.266 × 10−3 50 112.50 1.801 × 10−3

(1024, 5) 314529 30.80 0.3 50 10.25 1.743 × 10−5 56 11.60 3.988 × 10−4 37 39.52 3.639 × 10−3 51 96.33 3.023 × 10−3

(1024, 5) 419547 41.06 0.4 37 7.57 1.036 × 10−5 40 8.31 3.023 × 10−4 36 36.77 2.439 × 10−3 37 67.10 2.655 × 10−3

(1024, 5) 525213 51.33 0.5 28 6.44 8.484 × 10−6 31 7.08 2.600 × 10−4 31 33.22 1.102 × 10−3 29 57.78 1.414 × 10−3

(1024, 5) 628736 61.59 0.6 22 4.89 6.311 × 10−6 26 6.01 2.063 × 10−4 21 22.91 2.330 × 10−3 32 55.61 1.020 × 10−3

(1024, 5) 733429 71.86 0.7 17 4.20 4.239 × 10−6 21 5.42 1.738 × 10−4 40 40.23 1.361 × 10−4 53 49.85 1.743 × 10−4

(1024, 5) 838513 82.12 0.8 13 3.17 3.840 × 10−6 16 3.95 1.593 × 10−4 41 29.95 4.171 × 10−4 30 41.92 1.031 × 10−4

(1024, 5) 943801 92.39 0.9 13 2.58 2.782 × 10−6 12 2.58 1.386 × 10−4 11 12.16 8.341 × 10−4 12 19.25 6.523 × 10−4

(1024, 10) 209469 10.29 0.2 77 15.94 2.341 × 10−5 71 14.79 6.273 × 10−4 51 50.90 2.646 × 10−3 53 109.16 2.210 × 10−3

(1024, 10) 315457 15.44 0.3 55 11.95 1.848 × 10−5 52 11.63 4.264 × 10−4 40 42.72 2.328 × 10−3 39 79.82 2.258 × 10−3

(1024, 10) 419442 20.58 0.4 40 10.66 1.005 × 10−5 39 10.79 3.031 × 10−4 32 33.68 1.268 × 10−3 34 68.76 8.858 × 10−3

(1024, 10) 524145 25.73 0.5 30 8.97 8.688 × 10−5 31 9.49 2.525 × 10−4 32 35.26 1.137 × 10−3 29 55.39 1.536 × 10−3

(1024, 10) 629555 30.87 0.6 23 5.26 7.085 × 10−6 24 5.56 1.972 × 10−4 39 37.55 4.376 × 10−4 32 51.02 7.468 × 10−3

(1024, 10) 733285 36.02 0.7 18 4.98 6.149 × 10−6 19 5.13 1.817 × 10−4 27 28.35 6.503 × 10−4 30 48.98 3.295 × 10−4

(1024, 10) 838650 41.16 0.8 14 4.53 2.647 × 10−6 16 5.28 1.557 × 10−4 31 33.23 5.794 × 10−4 17 30.96 6.046 × 10−4

(1024, 10) 943738 46.31 0.9 12 3.36 2.130 × 10−6 12 3.62 1.370 × 10−4 34 34.15 8.934 × 10−4 23 40.62 3.884 × 10−4

Table 5. Comparisons of PA-AP, ADM, IADM-CG and IADM-BB for noisy matrix completion (δ = 10−2).

(n, r) p p/dof sr PA-AP ADM IADM-CG IADM-BB

Iter Time RelErr Iter Time RelErr Iter Time RelErr Iter Time RelErr

(1024, 5) 210151 20.53 0.2 61 16.96 4.345 × 10−3 60 13.61 4.354 × 10−3 40 95.66 9.546 × 10−3 45 237.45 5.234 × 10−3

(1024, 5) 314332 30.80 0.3 43 10.68 4.413 × 10−3 43 10.88 4.448 × 10−3 27 64.23 1.215 × 10−2 31 164.52 5.319 × 10−3

(1024, 5) 418708 41.06 0.4 31 8.95 4.416 × 10−3 33 9.50 4.419 × 10−3 25 59.75 6.410 × 10−3 24 123.38 5.318 × 10−3

(1024, 5) 524429 51.33 0.5 24 7.65 4.387 × 10−3 25 7.74 4.402 × 10−3 21 49.00 4.920 × 10−3 19 97.81 4.791 × 10−3

(1024, 5) 628736 61.59 0.6 19 5.25 4.452 × 10−3 19 4.93 4.452 × 10−3 19 40.69 5.035 × 10−3 14 73.53 5.177 × 10−3

(1024, 5) 734131 71.86 0.7 15 4.47 4.335 × 10−3 17 4.56 4.337 × 10−3 17 39.24 4.791 × 10−3 21 76.87 4.524 × 10−3

(1024, 5) 838476 82.12 0.8 12 3.64 4.444 × 10−3 14 3.97 4.446 × 10−3 19 39.52 1.184 × 10−3 15 54.21 4.479 × 10−3

(1024, 5) 944170 92.39 0.9 10 3.16 4.486 × 10−3 11 2.94 4.557 × 10−3 10 21.29 4.591 × 10−3 10 36.21 4.531 × 10−3

(1024, 10) 210118 10.29 0.2 77 20.56 3.017 × 10−3 71 19.10 3.081 × 10−3 53 62.98 3.894 × 10−3 48 123.01 4.089 × 10−3

(1024, 10) 314614 15.44 0.3 54 15.21 3.089 × 10−3 52 15.27 3.119 × 10−3 40 44.45 3.842 × 10−3 41 85.27 3.816 × 10−3

(1024, 10) 420191 20.58 0.4 40 11.53 3.060 × 10−3 39 11.01 3.075 × 10−3 32 36.46 3.306 × 10−3 34 72.74 3.178 × 10−3

(1024, 10) 523405 25.73 0.5 30 7.59 3.087 × 10−3 31 7.70 3.097 × 10−3 52 52.59 3.087 × 10−3 28 54.28 3.647 × 10−3

(1024, 10) 628935 30.87 0.6 23 6.04 3.061 × 10−3 24 6.76 3.068 × 10−3 44 45.74 3.061 × 10−3 39 61.59 3.113 × 10−3

(1024, 10) 734096 36.02 0.7 18 5.17 3.090 × 10−3 19 4.97 3.095 × 10−3 32 33.06 3.134 × 10−3 47 72.07 3.116 × 10−3

(1024, 10) 838509 41.16 0.8 14 4.26 3.121 × 10−3 16 4.65 3.125 × 10−3 31 31.85 3.175 × 10−3 38 60.78 3.183 × 10−3

(1024, 10) 944068 46.31 0.9 12 3.76 3.093 × 10−3 12 3.54 3.096 × 10−3 34 34.64 3.216 × 10−3 33 45.15 3.095 × 10−3

4.3. Low-Rank Image Recovery

In the section, we turn to solve problem (2) for low-rank image recovery. The effectiveness of the
PA-AP method is verified by testing three 512 × 512 grayscale images. First, the original images are
transformed into low-rank images with rank 40. Then, we lose some elements from the low rank matrix
to get the damaged image, and restore them by using the PA-AP, ADM, IADM-BB and IADM-CG,
respectively. The iteration process is stopped when RelChg falls below 10−5. The original images,
the corresponding low-rank images, the damaged images, and the restored images by the PA-AP are
depicted in Figure 1. Observing the figure, we clearly see that our algorithm performs well.
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Figure 1. Original 512 × 512 images (Lena, Pirate, Cameraman) with full rank (first column);
Corresponding low rank images with r = 40 (second column); Randomly masked images from
rank 40 images with sr = 40% (third column); Recovered images by PA-AP (last column).

To evaluate the recovery performance, we employ the Peak Signal-to-Noise Ratio (PSNR), which
is defined as

PSNR = 10 · log10

(
‖X∗‖2

∞
1

mn‖X∗ − X̂‖2
F

)
,

where ‖X∗‖∞ is the infinity norm of X∗, defined as the maximum absolute value of the elements in X∗.
From the definition, higher PSNR indicates a better recovery result.

Table 6 shows the cost time, relative error and PSNR of recovery image by different methods.
From Table 6, we can note that the PA-AP method is able to obtain higher PSNR as sr increases.
Moreover, the running time of PA-AP is always much less than the other methods with different
settings. Figure 2 shows the executing process of the different methods. From Figure 2, it is clear
that our method can estimate the rank exactly after 30 iterations, and runs much less time before
termination than other methods.
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Table 6. Comparisons of PA-AP, ADM, IADM-CG and IADM-BB for low-rank image recovery.

Name sr PA-AP ADM IADM-CG IADM-BB

Time RelErr PSNR Time RelErr PSNR Time RelErr PSNR Time RelErr PSNR

Lena

0.2 58.66 1.730 × 10−4 26.17 127.86 1.751 × 10−4 26.61 148.71 1.625 × 10−4 26.78 161.59 1.633 × 10−4 26.78
0.4 46.09 3.984 × 10−5 84.67 94.65 4.578 × 10−5 85.52 94.86 1.191 × 10−4 76.06 110.74 1.244 × 10−4 75.58
0.6 7.52 2.071 × 10−5 93.42 55.92 2.717 × 10−5 92.60 54.78 8.376 × 10−5 81.65 65.75 9.504 × 10−5 80.40
0.8 3.41 1.025 × 10−5 101.59 37.32 1.771 × 10−5 99.04 33.46 4.374 × 10−5 89.62 39.09 6.070 × 10−5 86.65

Pirate

0.2 54.23 1.561 × 10−4 26.03 121.73 1.745 × 10−4 26.25 140.40 1.643 × 10−4 26.41 154.24 1.651 × 10−4 26.41
0.4 38.58 3.961 × 10−5 85.42 92.33 4.905 × 10−5 86.24 94.57 1.140 × 10−4 76.98 112.77 8.735 × 10−5 79.81
0.6 8.15 1.313 × 10−5 97.97 53.13 2.839 × 10−5 92.92 54.81 4.376 × 10−5 86.89 66.42 6.227 × 10−5 84.26
0.8 3.45 8.451 × 10−6 104.65 33.83 1.967 × 10−5 99.05 29.41 6.704 × 10−5 91.70 36.86 1.001 × 10−5 88.64

Cameraman

0.2 50.51 1.717 × 10−4 24.10 124.54 1.965 × 10−4 24.32 145.18 2.159 × 10−4 24.43 159.92 2.167 × 10−4 24.43
0.4 46.81 5.290 × 10−5 80.18 102.31 5.570 × 10−5 81.30 106.05 1.182 × 10−5 73.72 115.48 1.313 × 10−4 73.00
0.6 10.03 2.389 × 10−5 90.92 59.87 3.090 × 10−5 90.36 58.43 6.099 × 10−5 83.07 71.95 5.343 × 10−5 84.40
0.8 4.18 1.613 × 10−5 96.46 37.86 2.036 × 10−5 96.03 35.31 3.360 × 10−5 90.22 45.53 2.106 × 10−5 93.04

(a) Estimated Rank (b) Relative Error (c) Running Time

Figure 2. Convergence behavior of the four methods (Lena, sr = 0.4, ε2 = 10−5). The first subfigure is
the estimated rank; the second is the relative error to the original matrix; and the last is the running time.

5. Conclusions and Future Work

In this paper, a unified model and algorithm for the matrix nuclear norm minimization problem are
proposed. In each iteration, the proposed algorithm mainly includes computing matrix singular value
decompositions and solving proximity operators of two convex functions. In addition, the convergence
of the algorithm is also proved. A large number of experimental results and numerical comparisons
show that the algorithm is superior to IADM-BB, IADM-CG and ADM algorithms.

The problem of tensor completion has been widely studied recently [31]. One of our future works
is to extend the proposed PA-AP algorithm to tensor completion.
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