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Abstract: The nuclear norm minimization (NNM) problem is to recover a matrix that minimizes
the sum of its singular values and satisfies some linear constraints simultaneously. The alternating
direction method (ADM) has been used to solve this problem recently. However, the subproblems in
ADM are usually not easily solvable when the linear mappings in the constraints are not identities.
In this paper, we propose a proximity algorithm with adaptive penalty (PA-AP). First, we formulate
the nuclear norm minimization problems into a unified model. To solve this model, we improve the
ADM by adding a proximal term to the subproblems that are difficult to solve. An adaptive tactic
on the proximity parameters is also put forward for acceleration. By employing subdifferentials
and proximity operators, an equivalent fixed-point equation system is constructed, and we use
this system to further prove the convergence of the proposed algorithm under certain conditions,
e.g., the precondition matrix is symmetric positive definite. Finally, experimental results and
comparisons with state-of-the-art methods, e.g., ADM, IADM-CG and IADM-BB, show that the
proposed algorithm is effective.

Keywords: nuclear norm minimization; matrix completion; alternating direction method;
subdifferential; proximity operator

1. Introduction

The rank minimization (RM) problem aims to recover an unknown low-rank matrix from very
limited information. It has gained am increasing amount of attention rapidly in recent years, since it
has a range of applications in many computer vision and machine learning areas, such as collaborative
filtering [1], subspace segmentation [2], non-rigid structure from motion [3] and image inpainting [4].
This paper deals with the following rank minimization problem:

min rank(X) st AX=Db, 1)
XeRmx n

where A : R™* " — RP? is a linear map and the vector b € R” is known. The matrix completion (MC)
problem is a special case of the RM problem, where A is a sampling operator in the form of AX = X(,
Qc{1,2,...,m} x{1,2,...,n}is an index subset, and X(, is a vector formed by the entries of X with

indices in Q).
Although Label (1) is simple in form, directly solving it is an NP-hard problem due to the discrete
nature of the rank function. One popular way is replacing the rank function with the nuclear norm,
which is the sum of the singular values of a matrix. This technique is based on the fact that the nuclear
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norm minimization (NNM) is the tightest convex relaxation of the rank minimization problem [5].
The obtained new problem is given by

min || X[« st AX=Db, 2)
XERVHX n
where || X[, := ¥I_; 0;(X) denotes the nuclear norm. It has been shown that recovering a low-rank

matrix can be achieved by solving Label (2) [1,6].

In practical applications, the observed data may be corrupted with noise, namely b = AX +e,
where ¢ contains measurement errors dominated by certain normal distribution. In order to
recover the low-rank matrix robustly, problem (2) should be modified to the following inequality
constrained problem:

min || X[}« st [[AX—=Db| <9, 3)
XERW}X n

where || - ||2 is the ¢, norm of vector and the constant § > 0 is the noise level. When § = 0, problem (3)
reduces to the noiseless case (2).

Alternatively, problems (2) and (3) can be rewritten as the nuclear norm regularized least-square
(NNRLS) under some conditions:

min_ X[ + 7 AX b3, (4)
where v > 0 is as given parameter.

The studies on the nuclear norm minimization problem are mainly along two directions. The first
one is enhancing the precision of a low rank approximation via replacing the nuclear norm by
a non-convex regularizer—for instance, the Schatten p-norm [7,8], the truncated nuclear norm [4,9],
the log or fraction function based norm [10,11], and so on. The second one is improving the efficiency
of solving problems (2), (3) and (4) and their variants. For instance, the authors in [12] treated the
problem (2) as a standard linear semidefinite programming (SDP) problem, and proposed the solving
algorithm from the dual problem. However, since the SDP solver uses second-order information,
with the increase in the size of the matrix, the memory required to calculate the descending direction
quickly becomes too large. Therefore, algorithms that use only first-order information are developed,
such as the singular value thresholding (SVT) algorithm [13], the fixed point continuation algorithm
(FPCA) [14], the accelerated proximal gradient Lagrangian (APGL) method [15], the proximal point
algorithm based on indicator function (PPA-IF) [16], the augmented Lagrange multiplier (ALM)
algorithm [17] and the alternating direction methods (ADM) [18-21].

In particular, Chen et al. [18] applied the ADM to solve the nuclear norm based matrix completion
problem. Due to the simplicity of the linear mapping A, i.e., AA* = 7, all of the ADM subproblems
of the matrix completion problem can be solved exactly by an explicit formula; see [18] for details.
Here, and hereafter A* and Z represent the adjoint of A and the identity operator. However, for
a generic A with AA* # 7, some of the resulting subproblems no longer have closed-form solutions.
Thus, the efficiency of the ADM depends heavily on how to solve these harder subproblems.

To solve this difficulty, a common strategy is to introduce new auxiliary variables, e.g., in [19],
one auxiliary variable was introduced for solving Label (2), while two auxiliary variables were
introduced for Label (3). However, with more variables and more constraints, more memory is required
and the convergence of ADM also becomes slower. Moreover, to update auxiliary variables, whose
subproblems are least square problems, expensive matrix inversions are often necessary. Even worse,
the convergence of ADM with more than two variables is not guaranteed. To mitigate these problems,
Yang and Yuan [21] presented a linearized ADM to solve the NNRLS (4) as well as problems (2) and (3),
where each subproblems admit explicit solutions. Instead of the linearized technique, Xiao and Jin [19]
solve one least square subproblem iteratively by the Barzilai-Borwein (BB) gradient method [22].
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Unlike [19], Jin et al. [20] used the linear conjugate gradient (CG) algorithm rather than BB to
solve the subproblem.

In this paper, we further investigate the efficiency of ADM in solving the nuclear norm
minimization problems. We first reformulate the problems (2), (3) and (4) into a unified form as follows:

i X AX), 5
XglR}nnx nf (X) +8( ) ©)

where f : R"* " — R and ¢ : R? — R. In this paper, we always fix f(-) = || - ||«. When considerin
8 pap Yy g

problems (2) and (3), we choose g(-) = A, (- — b), where A (-) denotes the indicator function over
Bs:={u € R? | ||lullp < 6}, ie,

Xy () = {o, if x € By, ©)

400, otherwise.

When considering problem (4), we choose g(-) = %|| - —b ||3. As a result, for a general linear
mapping A, we only need to solve such a problem whose objective function is a sum of two convex
functions and one of them contains an affine transformation.

Motivated by the ADM algorithms above, we then present a unified proximity algorithm with
adaptive penalty (PA-AP) to solve Label (5). In particular, we employ the proximity idea to deal with
the problems encountered by the present ADM, by adding a proximity term to one of the subproblems.
We term the proposed algorithm as a proximity algorithm because we can rewrite it as a fixed-point
equation system of proximity operators of f and g. By analyzing the fixed-point equations and
applying the “Condition-M” [23], the convergence of the algorithm is proved under some assumptions.
Furthermore, to improve the efficiency, an adaptive tactic on the proximity parameters is put forward.
This paper is closely related to the works [23-26]. However, this paper is motivated to improve ADM
to solve the nuclear norm minimization problem with linear affine constraints.

The organization of this paper is as follows. In Section 2, a review of ADM and its application
on NNM are provided. In addition, the properties about subdifferentials and proximity operators
are introduced. To improve ADM, a proximity algorithm with adaptive penalty is proposed,
and convergence of the proposed algorithm is obtained in Section 3. Section 4 demonstrates the
performance and effectiveness of the algorithm through numerical experiment. Finally, we will make
a conclusion in Section 5.

2. Preliminaries

In this section, we give a brief review on ADM and its applications to the NNM problem (2)
developed in [19,20]. In addition, some preliminaries on subdifferentials and proximity operators are
given. Throughout this paper, linear maps are denoted with calligraphic letters (e.g., .A), while capital
letters represent matrices (e.g., A), and boldface lowercase letters represent vectors (e.g., x).

We begin with introducing the ADM. The basic idea of ADM goes back to the work of Gabay and
Mercier [27]. ADM is designed to solving the separable convex minimization problem:

min 61(x) + 62(y), s.t. Ax+ By = ¢, (7)
24

where 0; : R® — R, 6, : Rf — R are convex functions, and A € R* 5, B € R*! and ¢ € R.L
The corresponding augmented Lagrangian function is

L6y, 2) = 61(x) +Ba(y) — (A, Ax+ By <) + b | ax + By — c[3 ®)
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where A € R! is the Lagrangian multiplier and 8 > 0 is a penalty parameter. ADM is to minimize (8)
first with respect to x, then with respect to y, and finally update A iteratively, i.e.,
X1 = arg min L£(x, ¥, Ar),
Yi+1 = arg min L(xi41,¥, Ak, )
Akr1 = Ak = B(Axii1 + Bygyr — o).

The main advantage of ADM is to make use of the separability structure of the objective function

01(x) + 62(y)-
To solve (2) based on ADM, the authors in [19,20] introduced an auxiliary variable Y,
and equivalently transformed the original model into

r)r(ulpHXH* st. X-Y=0,AY =b. (10)

The augmented Lagrangian function to (10) is
L(X,Y,Z,2) = ||X]s — (Z,X —Y) + %HX ~Y|2— (2, AY —b) + %HAY “ b3, (11)
where Z € R"™* ", z € RP are Lagrangian multipliers, y, v > 0 are penalty parameters and (-) denotes
the Frobenius inner product, i.e., the matrices are treated like vectors. Following the idea of ADM,

given (Xy, Yy), the next pair (Xy.1, Yiy1) is determined by alternating minimizing (11),

Xjiq = arg m}}n L(X, Yk, Zy, zk),

Yk+1 = arg mén E(Xk+1, Y, Zk/ Zk)/

(12)
Zir1 = Zg = (X = Y1),
zgy1 = zx — Y(AYgy1 —b).
Firstly, Xj1 can be updated by
Xepr = argmin | X| = (Zi, X = Yi) + 21X =il
~ argmin [ X]l. + 51X - (v +  Z0) I} (13
X 2 i Fr
which in fact corresponds to evaluating the proximal operator of || - ||+, ie., prox 1 which is
defined below.
Secondly, given (Xj.1, Zx, zx), Yr+1 can be updated by
Yerr = argmin — (Zg Xt = Y) + 51X = YIIE = (21, AY = ) + J | AY ~ b}
. 1 0% 1
= argmin 5 = (Xier = L Z0) [+ 5 AY = (b + 20, (14)

which is a least square subproblem. Its solution can be found by solving a linear equation:
(ML + 7y AT A)Y = pXpy1 — Zp — A" (b + 2).

However, computing the matrix inverse (uZ + 7.4* A) ~! is too costly to implement. Though [19,20]
adopted inverse-free methods, i.e., BB and CG, to solve (14) iteratively, they are still inefficient, which
will be shown in Section 4.
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Next, we review definitions of subdifferential and proximity operator, which play an important
role in the algorithm and convergence analysis. The subdifferential of a convex function 6 at a point
x € R? is the set defined by

dg(y(x) ={y € R?: 0(z) > 0(x)+ < y,z—x >,Vz € R} (15)
The conjugate function of 6 is denoted by 8*, which is defined by
0°(y) == sup{{xy) — 0(x)}.
For x € dom(6), y € dom(6*), it holds that

y € 89(_)(x) & Xe 89*(_)(y), (16)

where dom(-) denotes the domain of a function.
For a given positive definite matrix #, the weighted inner product is defined by (x,y)» = (Hx,y).
Furthermore, the proximity operator of 6 at x with respect to H [23] is defined by

1
ProXg(.) 5 (x) = arg min{6(u) + §||u —x[% :u e RY}. (17)

If # = B, then proxg ) 5, () is reduced to

ProXg( g7 (x) = arg min{6(u) + gHu —x|%:u e RYY,

and prox 1 9(~)(~) is short for proxg(.),ﬁz(). A relation between subdifferentials and proximity

operators is that
Y € 9g()(X) & x = proxy.y (x +y), (18)

which is frequently used to construct fixed-point equations and prove convergence of the algorithm.

3. Proximity Algorithm with Adaptive Penalty

In Section 2, it is shown that the current ADM results in expensive matrix inverse computation
when solving (2). Therefore, it is desirable to improve it. In this section, we propose a proximity
algorithm with adaptive penalty (PA-AP) to solve the unified problem (5).

3.1. Proximity Algorithm

We derive our algorithm from ADM. First of all, we introduce an auxiliary variable y € RP?,
and convert (5) to
n}(in f(X)+g(y), st. AX—y=0. (19)
y

The augmented Lagrangian function of (19) is defined by

L(X,y) = F(X) +8(y) = (L AX —y) + B[ AX —y[3, 20)
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where A € R? is the Lagrangian multiplier and y > 0 is a penalty parameter. ADM first updates X by
minimizing £(X,y) with y being fixed and then updates y with X fixed at its latest value, until some
convergence criteria are satisfied. After some simplification, we get

Xip1 = arg min f(X) + 5[ AX = (ye + 5 A0 13,
Ve = arg min g(y) + 5lly — (AXper = A3 (21)
Aks1 = Mg = p(AXpes1 = Yir)-

Note that the subproblem of X 1 usually has no closed-form solutions when A is not the identity.
In order to design efficient algorithms, we add a proximity term to this subproblem. More precisely,
we propose the following algorithm:

X1 = argmin £(X) + [ AX = (v + 3 A 3 + 21X = Xillg,
Vi1 = argmin g(y) + 5lly — (AXipr — 540 I3, (22)
Akpr = A — #(AXpi1 = Vi),

where Q € R™* " is a symmetric positive definite matrix.
The next lemma shows that (22) is equivalent to a fixed-point equation of some proximity
operators. The proof is similar to [25].

Lemma 1. The problem (22) is equivalent to solving the following equations:

{zk+1 = prox,e. ) (HAX) + 2¢), (23)

Xip1 = proxes( ) (Xgsr = T(pA" A+ Q) (Xiy1 — Xi) — TA* (22441 — 2)),
where T > 0 is arbitrary.

Proof. By changing the order of iterations, the first-order optimality condition of (22) is

0 € g (yht1) + p(yrn — AXk+ 1AL,
A1 = A — p(AXg — yiy1), 24)
0 € dp()(Xiy1) + HA* (AXip1 = Yoot — 2Aegn) + QX — Xp)-

From the first line of (24) and (16), we obtain
UYk+1 € Oyge() (H(AXk — Yit1) — M) (25)

Denote z; := —Ag. Then,
Zp1 = pAXg + Zg — Pkt (26)

Using (18), it follows from (25) and (26) that

Ziey1 = ProxX,e. () (HAX) + 2¢). (27)

By (26), we have

1
AXi + 2k = pyis1 + p(AXe — Vi1 — ﬁ}\k) = UYk41 T Zks 1,
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and thus
PA"(AXpi1 = Vi1 — :l)\kH) + QX1 — Xp) = (A" A+ Q) (X1 — Xi) + A" (22541 — 2¢). (28)
From (28) and the third line of (24), given T > 0, we have
~T(HA" A+ Q) (Xi+1 — Xi) = TA™ (2241 — 2k) € 9pp() (Xit1),
which yields
X1 = ProX. s, (Xpp1 — T(A" A+ Q) (Xyyq — Xy) — TA* (2241 — 2¢)). (29)

Therefore, the results in (23) are achieved by combining (27) and (29). O

We now discuss the choice of Q. To make the first subproblem of (22) have closed-form solutions,
in this paper, we simply choose Q = unZ — uA* A. To make sure Q is positive definite, # must satisfy
1 > ||A||3, where || - |2 is the spectral norm. By substituting Q into (22), we obtain

Xipr = arg min f(X) + 5[ X - (X, + Aty 3
Ve = argmin g(y) + 5lly = (AXirn = 5AQI, (30)
Ak = Ax — p(AXpp1 = Yir1):

The subproblems in (30) can be solved explicitly based on proximity operators. Specifically, we have

A" (M — p(AXy — yi))
U1

Xkp1 = prox | (X + ) = Umax{X — ;;,O}VT, (31)
pug 1A%

A M= p(AXk—y1))

where UXVT is the singular value decomposition (SVD) of X + 0 ,

UeR™ ™MV eR™™" and X € R™* " is a diagonal matrix containing the singular values.
Moreover, yry1 = Prox1,.) (AXjq — %Ak), which depends on the choice of g(-).
}l

Ifg(-) = AB,(- —b), then

prox. | (x) = {x’ X be By (32)
#8() b+ ﬁ(x —b), otherwise.
If g(x) = ¥|Ix — b3, then
prox%g“(x) = ’Y’l;i;jx' (33)

3.2. Adaptive Penalty

In previous proximity algorithms [23,28,29], the penalty parameter y is usually fixed. In view of
the linearized ADM, Liu et al. [26] presented an adaptive updating strategy for the penalty parameter
u. Motivated by it, we update y by

Hik+1 = min{,umax/ P]/lk}r (34)

where 1,4y is an upper bound of {j }. The value of p is defined as

_ Jeo, if pemax{ /711X — Xellp, [lyksa — yill2}/[[bll2 < €1,
1, otherwise,
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where pg > 1 and €; > 0 are given.
Based on the above analysis in Sections 3.1 and 3.2, the proximity algorithm with adaptive penalty
(abbr. PA-AP) for solving (5) can be outlined in Algorithm 1.

Algorithm 1 PA-AP for solving (5)

Input: Observation vector b, linear mapping A, and some parameters p, po, €1, €2 > 0, Pmax > po > 0.
Initialize: Set Xo and y( to zero matrix and vector, respectively. Set y = p and 17 > ||.A[|3. Set k = 0.
while not converged, do

step 1: Update Xy 1, yx+1 and A1 in turn by (30).

step 2: Update py1 by (34), and let p < py 1.

step3: k< k+1.
end while

3.3. Convergence

In this section, we establish the convergence of (22). For problem (5), Li et al. [23] presented
a general formula of fixed-point algorithms. Given two symmetric positive definite matrices S € RP* 7
and T € R™* ™ denote

L 0 A (S 0 . 1
Sqi= (—A* 0>,R.— (0 T),E.—I+R S,

where S 4, R and E can be treated as linear maps which map (R”) x (R"* ") into itself.
Defining Z := (z,X) € (RP) x (R™ ") and T := ProX (g« r)(),r- then the solution to (5)
is equivalent to

Z = (T oE)(Z).
Furthermore, a multi-step proximity algorithm was proposed, which is

l
Zis1 = T(EoZks1 + R7Y. MiZk_i11), (35)
i=1
where Ey = E — R™1(S4 — Mp) and My = 25-:1 M;. Let M := {M; : i =0,1,...,1}. Lietal. [23]
proved that the sequence {Z; } generated by (35) converges to a solution of problem (5) if M satisfies
the “Condition-M”, which refers to

(W) My =Y, M,
i My=My=---=M_4,
(iii) H:= Mp+ M, H is symmetric positive definite,
(iv)  N(H) CN(M) NN M),
1 1
) IHD2M(HD)? 2 < 3,

where N(H) and H' are the null space and the Moore-Penrose pseudo-inverse matrix
of H, respectively.
By checking the Condition-M, we prove the convergence of (22).

Theorem 1. If Q is symmetric positive definite, and || A(A* A + %Q)_% ll2 < 1, then the sequence generated
by (22) converges to the solution of (5).

Proof. By comparing (23) and (35), it can be found that [ = 2 and

£ 0 0 Rﬁ%zo Mfo%I A Mo — 0
T\ 2tar ToruarA+ Q) T T Lo i) T T T T\ parar ) TR T
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We clearly see that Item (i) and Item (ii) of Condition-M hold. Furthermore,
H = My + M, = M, which is symmetric. By Lemma 6.2 in [23], H is positive definite if and
only if ||(pA* A+ Q)*%A*(%)’%Hz < 1, which is equivalent to || A(A*A + %Q)f%ﬂz < 1. Hence,
Item (iii) of Condition-M also holds.

Since H is positive definite, it yields that N'(H) = {0}, which implies Item (iv) of Condition-M
holds. Finally, M, = 0 implies that Item (v) holds. Consequently, the sequence generated by (23)
converges to the solution of (5). The equivalence of (22) and (23) proves the result. O

Corollary 1. Let Q = unZ — pA*A. If 5 > ||Al|3, then the sequence generated by (30) converges to the
solution of (5).

Proof. Since 17 > ||.A||3 if and only if || A(A* A + %Q)_% |2 < 1, the result is true by Theorem 1. [

4. Numerical Experiments

In this section, we present some numerical experiments to show the effectiveness of the proposed
algorithm (PA-AP). To this end, we test algorithms to solve the nuclear norm minimization problem,
the noiseless matrix completion problem(d = 0), noisy matrix completion(é > 0) and low-rank image
recovery problem. We compare PA-AP against the ADM [18], IADM-CG [20] and IADM-BB [19].
All experiments are performed under Windows 10 and MATLAB R2016 running on a Lenovo laptop
with an Intel CORE i7 CPU at 2.7 GHz and 8 GB of memory. In the numerical experiments of the first
two parts, we use randomly generated square matrices for simulations. We denote the true solution
by X* € R™* ™. We generate the rank-r matrix X* as a product of X; XY where X; and Xy are
independent m X r matrices with i.i.d. Gaussian entries. For each test, the stopping criterion is

[ Xk — Xi_1lle

|
el g H:(kflul @

where g5 > 0. The algorithms are also forced to stop when the iteration number exceeds 10°.
Let X be the solution obtained by the algorithms. We use the relative error to measure the quality
of X compared to the original matrix X*, i.e.,

1X - X*||F
RelErr = —————
1X*|[F

It is obvious that, in each iteration of computing X*1, PA-AP contains an SVD computation
that computes all singular values and singular vectors. However, we actually only need the ones
that are bigger than ﬁ This causes the main computational load by using full SVD. Fortunately, this
disadvantage can be smoothed by using the software PROPACK [30], which is designed to compute
the singular values bigger than a threshold and the corresponding vectors. Although PROPACK can
calculate the first fixed number of singular values, it cannot automatically determine the number of
singular values greater than ﬁ Therefore, in order to perform a local SVD, we need to predict the
number of singular values and vectors calculated in each iteration, which is expressed by sv;. We

initialize svg = 0.01m, and update it in each iteration as follows:

sopx + 1, if supp < svy,
SUpp1 =
ke supx +5, if supy = svy,

where svpy is the number of singular values in the sv; singular values that are bigger than ﬁ
We use r and p to represent the rank of an (m x n) matrix and the cardinality of the index set

Q, ie., p = |Q|, and use sr = p/(mn) to represent the sampling rate. The “degree of freedom” of

a matrix with rank r is defined by dof = r(m +n — r). For PA-AP, we set e; = 1074, yp = m,



Symmetry 2019, 11, 1277 10 of 16

tmax = max{103ug, 1072}, pg = 1.7, and 17 = 1.01||.A||3. In all the experimental results, the boldface
numbers always indicate the best results.

4.1. Nuclear Norm Minimization Problem

In this subsection, we use PA-AP to solve the three types of problems including (2)—(4). The linear
map A is chosen as a partial discrete cosine transform (DCT) matrix. Specifically, in the noiseless
model (2), A is generated by the following MATLAB scripts:

indices = randsample(m xn, p); b = dct2(X*); b = b(indices),
which shows that A maps R”* " into R”. In the noise model (3), we further set
b=AX*+w,

where w is the additive Gaussian noise of zero mean and standard deviation ¢. In (3), the noise level ¢
is chosen as [|w|2-

The results are listed in Table 1, where the number of iterations (Iter) and CPU time in seconds
(Time) besides RelErr are reported. To further illustrate the efficiency of PA-AP, we test problems with
different matrix sizes and sampling rates (sr). In Table 2, we compare the PA-AP with IADM-CG and
IADM-BB for solving the NNRLS problem (4). It shows that our method is more efficient than the
other two methods, and thus it is suitable for solving large-scale problems.

Table 1. PA-AP for noiseless and noisy DCT matrix (m = n,ep = 10~4).

Prob. (3) (6 = 0) Prob. (3) (6 = 1072) Prob. (4)
Iter Time RelErr Iter Time RelErr Iter Time RelErr

(128,3) 432 02 86 203 3942x103 8 183 5706x1073 83 214 8050 x 1073
(128,3) 864 04 31 057 4042x10"% 33 069 5535x1073 34 070 6.196 x 1073
(128,3) 1295 06 20 044 1376x107* 20 045 5652x1073 20 048 5714 x 1073
(128,3) 1727 08 13 029 6251x107° 12 034 5952x1073 13 028 5966 x 1073

(256,50 517 02 53 204 3178x107* 53 202 3846x1073 53 208 4353 x 1073
(256,5) 1034 04 31 122 1649x107* 31 116 4424 x107% 31 128 4.404 x 1073
(256,5) 1551 0.6 20 078 1139x10~* 20 078 4414x10=% 20 076 4419 x 1073
(256,5) 2068 08 13 050 3.893x107> 13 052 4458 x1073 14 052 4297 x 1073

(512,10) 517 02 55 763 2397x10% 55 777 2858x1073 54 7.86 2939 x 1073
(512,10) 1034 04 34 422 1259x107% 34 455 3068x1073 34 446 3.081 x 1073
(512,10) 1551 0.6 22 285 1195x107% 22 298 3106x1073 22 296 3.177 x 1073
(512,10) 2068 0.8 13 181 1.009x107% 13 185 3129x1073 13 186 3.262 x 1073

(n, 1) pldof  sr

Table 2. Comparisons of PA-AP, IADM-CG and IADM-BB for DCT matrix (m = n,&; = 1079).

PA-AP IADM-CG IADM-BB
Iter Time RelErr Iter Time RelErr Iter Time RelErr

(500,10) 505 02 54 865 2881 x1073 33 1509 8312x107% 39 2665 9.448 x 1073
(500,10) 10.10 04 33 414 3.035x1073 23 845 4433 x107° 26 16.58  6.484 x 1073
(500,10) 1515 06 22 215 320x1073 15 556 3968 x 1073 18 981 4581 x 1073
(500,10) 2020 0.8 13 172 3224x10° 10 479 3292x107% 12 750  3.528 x 1073

(1000,20) 505 02 70 3820 2110x1073 33 6923 8806 x 1073 40 14157 5.047 x 1073
(1000,20) 10.10 0.4 38 1514 2379 x 1073 22 4134 3442x10° 23 7878  7.097 x 1073
(1000,20) 1515 0.6 21 883 2322x107% 17 3052 3362x10° 19 6035 4277 x 1073
(1000,20) 2020 0.8 14  6.60 2379x1073 13 2536 3.665x10™° 20 5751 2724 x 1073

(2000,20) 505 02 74 14489 2270x1073 39 581.64 1.039 x 1072 46  1399.31 8316 x 1073
(2000,20) 10.10 0.4 33 6268 2348 x 1073 22 32802 4755x1073 22 62866 5.090 x 1073
(2000,20) 15.15 0.6 21 3460 2368 x1073 14 17270 3.405x 1073 17 43801 4527 x 1073
(2000,20) 2020 08 13 2340 2401 x1073 20 12873 2752x107% 15 35959 3.260 x 1073

(n, 1) pldof  sr
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4.2. Matrix Completion

This subsection adopts the PA-AP method to solve the noiseless matrix completion problem (2)
and the noisy matrix completion problem (3) to verify its validity. The mapping A is a linear projection
operator defined as AX* = X, where X, is a vector formed by the components of X* with indices in
Q). The indicators of the selected elements are randomly arranged to form a column vector, and the
index set of the first s x m X n is selected to form the set (). For noisy matrix completion problems,
we take § = 1072.

In Table 3, we report the numerical results of PA-AP for noiseless and noisy matrix completion
problems, taking m = n = 1000 and m = n = 2000. Only the rank of the original matrix is considered
tober = 10 and r = 20. As can be seen from Table 3, the PA-AP method can effectively solve these
problems. Compared with the noiseless problem, PA-AP solves the noisy problems accuracy of the
solution dropped. Moreover, the number of iterations and the running time decrease as sr increases.

Table 3. PA-AP for noiseless and noisy matrix completion problems (m = n,&, = 1075).

Prob. (3) (6 = 0) Prob. (3) (6 =1072) Prob. (4)
Iter Time RelErr Iter Time RelErr Iter Time RelErr

(1000,10) 10.05 02 76 2194 2439x107° 76 2152 3.015x107% 76 2292 5245x107*
(1000,10) 20.10 04 40 928 1159 x107°> 40  9.68 3.085x 1073 39 955 7436 x 10*
(1000,10) 30.15 0.6 22 572 1061 x10® 23 636 3105x1073 23 610 8251 x107*
(1000,10) 4020 0.8 12 388 2859 x10° 14 376 3.075x10% 14 374 8668 x 10~*

(1000,20) 505 02 87 3910 3.037x107° 88 4358 1995 x 1073 87 4371 5469 x 1074
(1000,20) 10.10 04 46 13.02 1277 x 107> 46 13.69 2115x 1073 46 1347 7467 x 1074
(1000,20) 1515 0.6 25 7.56 1.230 x 107> 25 754 2158 x 1073 25 7.64 8232 x107*
(1000,20) 2020 08 14 486 9617 x107° 14 487 2194 x107% 14 488 8624 x 10*

(2000,10) 2005 02 80 4673 2538 x10™° 80 6792 3.086 x 1073 80 5429 7.422 x 1074
(2000,10) 4010 04 37 2602 1299 x1075 37 3165 3.091x1073 37 2720 8.641 x 104
(2000,10) 6015 0.6 23 1930 9.672x1076 23 2164 3160 x 1073 23 2002 9.024 x 1074
(2000,10) 8020 0.8 13 1199 2584 x1076 13 1331 3153 x 1073 13 1171 9276 x 1074

(2000,20) 10.05 0.2 91 10816 2853 x 107> 91 13204 2133 x 103 91 129.30 7.461 x 1074
(2000,20) 20.10 0.4 40 4254 1146 x 107> 40 4462 2190 x 1073 40 4249 8674 x 1074
(2000,20) 30.15 0.6 24 2707 8683x107° 24 2824 2226x1073 24 2743 9.058 x10~*
(2000,20) 4020 08 13 1581 3772x10°° 13 1719 2205x107% 13 1618 9.268 x 10~*

(n, 1) pldof  sr

To further verify the validity of the PA-AP method, it is compared with ADM, IADM-CG and
IADM-BB. When RelChg is lower than 1072, the algorithms are set to terminate. The numerical results
of the four methods for solving the noiseless and noisy MC problem are recorded in Tables 4 and 5,
from which we can see that the calculation time of the PA-AP method is much less than IADM-BB and
IADM-CG, and the number of iterations and calculation time of PA-AP and ADM are almost the same,
while our method is relatively more accurate. From the limited experimental data, the PA-AP method
is shown to be more effective than the ADM, IADM-BB and IADM-CG.
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Table 4. Comparisons of PA-AP, ADM, IADM-CG and IADM-BB for noiseless matrix completion.

PA-AP ADM IADM-CG IADM-BB
Iter Time RelErr Iter Time RelErr Iter Time RelErr Iter Time RelErr

(1024,5) 209235 1029 0.2 80 1752 2218 x 107> 81 1874 6.133x107* 52 5841 3.266x 1073 50 11250 1.801 x 1073
(1024,5) 314529 3080 0.3 50 1025 1743 x107° 56 11.60 3988 x 107* 37 3952 3.639 x 1073 51 96.33  3.023 x 1073
(1024,5) 419547 4106 04 37 757 1.036 x 107> 40 831 3.023x107% 36 3677 2439x1073 37 67.10  2.655 x 1073
(1024,5) 525213 5133 0.5 28 644 8484 x107° 31 7.08 2600 x 107% 31 3322 1.102x 1073 29 57.78 1414 x 1073
(1024,5) 628736 6159 0.6 22 489  6311x10°° 26 6.01 2063 x107% 21 2291 2330x107% 32 55.61  1.020 x 1073
(1024,5) 733429 7186 07 17 420 4239 x10°° 21 542 1738 x107%* 40 4023 1361x107* 53 4985 1.743 x 107*
(1024,5) 838513 8212 0.8 13 317 3840 x10°¢ 16 395 1593 x107% 41 2995 4171x107* 30 4192 1.031 x 1074
(1024,5) 943801 9239 09 13 258  2782x107°¢ 12 258 138 x107%* 11 1216 8341x 1074 12 1925 6523 x 1074

(1024,10) 209469 1029 02 77 1594 2341x107° 71 1479 6273x10°* 51 5090 2646x1073 53 109.16 2.210 x 103
(1024,10) 315457 1544 03 55 1195 1848 x 107> 52 1163 4264 x107% 40 4272 2328x 1073 39 79.82 2258 x 1073
(1024,10) 419442 2058 04 40 1066 1.005x 107> 39 1079 3.031 x 107* 32 3368 1268x 107> 34 68.76  8.858 x 1073
(1024,10) 524145 2573 05 30 897 8688 x107° 31 949 2525x107% 32 3526 1.137x1073 29 5539  1.536 x 103
(1024,10) 629555 30.87 0.6 23 526  7.085x107° 24 556 1972 x107%* 39 3755 4376x107% 32 51.02  7.468 x 1073
(1024,10) 733285 36.02 0.7 18 498 6149 x10°° 19 513 1817x107% 27 2835 6503x107% 30 4898  3.295 x 107+
(1024,10) 838650 41.16 0.8 14 4.53 2647 x 107% 16 528 1557 x107* 31 3323 5794x10°* 17 30.96  6.046 x 10°*
(1024,10) 943738 4631 09 12 336 2130 x107° 12 362 1370 x107% 34 3415 8934 x 1074 23 40.62  3.884 x 107*

(n,1) r pldof  sr

Table 5. Comparisons of PA-AP, ADM, IADM-CG and IADM-BB for noisy matrix completion (§ = 10*2).

PA-AP ADM IADM-CG IADM-BB
Iter Time RelErr Iter Time RelErr Iter Time RelErr Iter Time RelErr

(1024,5) 210151 2053 02 61 1696 4345x 1073 60 13.61 4354 x 1073 40 9566 9546 x 1073 45 23745 5234 x 1073
(1024,5) 314332 3080 03 43 1068 4413x107° 43 1088 4448 x 103 27 6423 1215x1072 31 16452 5319 x 1073
(1024,5) 418708 41.06 04 31 8.95 4416 x1073 33 950 4419x1073 25 5975 6410x 1073 24 12338 5318 x 103
(1024,5) 524429 5133 05 24 7.65 4387 x1073 25 774 4402x107% 21 49.00 4920x 1073 19 97.81  4.791 x 1073
(1024,5) 628736 6159 0.6 19 525 4452 %1073 19 493  4452x107% 19 4069 5035x 107 14 7353 5177 x 1073
(1024,5) 734131 7186 0.7 15 447  4335x 1073 17 456 4337 x 1073 17 3924 4791 x 1073 21 76.87  4.524 x 1073
(1024,5) 838476 8212 0.8 12 3.64 4444 %1073 14 3.97 4446 x107% 19 3952 1184 x 1073 15 5421 4479 x 1073
(1024,5) 944170 9239 09 10 316 4486 x 1073 11 294 4557 x107% 10 2129 4591 x 1073 10 3621 4531 x 1073

(1024,10) 210118 1029 02 77 2056 3.017x1073 71 1910 3.081 x 1073 53 6298 3.894x 103 48 12301 4.089 x 1073
(1024,10) 314614 1544 03 54 1521 3.089 x1073 52 1527 3.119x 1073 40 4445 3842x10° 41 8527 3.816 x 1073
(1024,10) 420191 2058 04 40 1153 3.060 x 107> 39 11.01 3.075x 1073 32 3646 3306x10° 34 7274 3178 x 1073
(1024,10) 523405 2573 05 30 759 3.087x1073 31 770 3.097 x 1073 52 5259 3.087 x 1073 28 5428 3.647 x 1073
(1024,10) 628935 3087 0.6 23 604 3.061x1073 24 676 3.068x 1073 44 4574 3.061x10° 39 6159 3.113x 1073
(1024,10) 734096 3602 07 18 517 3.090 x1073 19 497 3.095x 1073 32 3306 3.134x10° 47 7207 3.116 x 1073
(1024,10) 838509 41.16 08 14 426 3121x1073 16 465 3.125x1073 31 3185 3175x10° 38 60.78 3.183 x 1073
(1024,10) 944068 4631 09 12 376 3.093x1073 12 354 3.09 x 1073 34 3464 3216x10°° 33 4515 3.095 x 1073

(n,7) P pldof  sr

4.3. Low-Rank Image Recovery

In the section, we turn to solve problem (2) for low-rank image recovery. The effectiveness of the
PA-AP method is verified by testing three 512 x 512 grayscale images. First, the original images are
transformed into low-rank images with rank 40. Then, we lose some elements from the low rank matrix
to get the damaged image, and restore them by using the PA-AP, ADM, IADM-BB and IADM-CG,
respectively. The iteration process is stopped when RelChg falls below 10~°. The original images,
the corresponding low-rank images, the damaged images, and the restored images by the PA-AP are
depicted in Figure 1. Observing the figure, we clearly see that our algorithm performs well.
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Figure 1. Original 512 X 512 images (Lena, Pirate, Cameraman) with full rank (first column);
Corresponding low rank images with r = 40 (second column); Randomly masked images from
rank 40 images with sr = 40% (third column); Recovered images by PA-AP (last column).

To evaluate the recovery performance, we employ the Peak Signal-to-Noise Ratio (PSNR), which
is defined as

X*||%
PSNR =10 - logg (%) ’
i 1 X = X2

where || X*|| is the infinity norm of X*, defined as the maximum absolute value of the elements in X*.
From the definition, higher PSNR indicates a better recovery result.

Table 6 shows the cost time, relative error and PSNR of recovery image by different methods.
From Table 6, we can note that the PA-AP method is able to obtain higher PSNR as sr increases.
Moreover, the running time of PA-AP is always much less than the other methods with different
settings. Figure 2 shows the executing process of the different methods. From Figure 2, it is clear
that our method can estimate the rank exactly after 30 iterations, and runs much less time before
termination than other methods.
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Table 6. Comparisons of PA-AP, ADM, IADM-CG and IADM-BB for low-rank image recovery.
PA-AP ADM IADM-CG IADM-BB
Name st
Time RelErr PSNR Time RelErr PSNR Time RelErr PSNR Time RelErr PSNR
02 5866 1730 x10°% 2617 127.86 1751 x10"* 2661 14871 1.625x10°% 2678 16159 1633 x107% 2678
Lena 04 46.09 3984 x1075 8467 9465 4578x 1075 8552 9486 1191 x10°% 7606 11074 1244 x10°* 7558
0.6 752 2071x1075 9342 5592 2717x1075 9260 5478 8376 x 1075 8165 6575 9504 x 1075  80.40
0.8 341 1.025x107% 10159 3732 1771 x10~° 99.04 3346 4374x1075 89.62 39.09 6.070 x 107>  86.65
02 5423 1561 x107* 2603 12173 1745x10°% 2625 14040 1643 x10°% 2641 15424 1651 x10~* 2641
Pirate 04 3858 3961 x1075 8542 9233 4905x 1075 8624 9457 1.140x10°% 7698 11277 8735x 1075  79.81
0.6 815 1313x1075 9797 5313 2839 x 1075 9292 5481 4376 x107° 8689 6642 6227 x 1075 84.26
0.8 345 8451 %1076 10465 3383 1967 x107° 99.05 2941 6704x1075 9170 3686 1.001 x 1075  88.64
02 5051 1.717x10°% 2410 12454 1965x10°% 2432 14518 2159 x 10°% 2443 15992 2167 x 10°% 2443
Cameraman 04 4681 5290x107° 8018 10231 5570 x107° 8130 10605 1.182x 107> 7372 11548 1313x10°* 73.00
0.6 10.03 2389 %1075 9092 59.87 3.090 x 1075 9036 5843 6.099 x 1075  83.07 7195 5343 x 1075 8440
0.8 418 1613x1075 9646 3786 2036 x 1075 9603 3531 3360x 1075 9022 4553 2106 x 1075  93.04
Estimated Rank i Relative Error 106 Running Time(sec)
——owes E=rors ——owes
—6— IADM-CG 141 —6— IADM-CG 14 —6—IADM-CG
—F—PA-AP —5—PA-AP —F—PAAP
1.2 12
1 1
E é 08 é 08
o 14 4
06 08,
04 04
0.2 0.2, &-
R\~ S———— e - — 0 3 % -
100 0 20 40 60 80 100 0 20 40 60 80 100
Iter Iter time

(a) Estimated Rank (b) Relative Error (c) Running Time

Figure 2. Convergence behavior of the four methods (Lena,sr = 0.4,ep = 1072). The first subfigure is
the estimated rank; the second is the relative error to the original matrix; and the last is the running time.

5. Conclusions and Future Work

In this paper, a unified model and algorithm for the matrix nuclear norm minimization problem are
proposed. In each iteration, the proposed algorithm mainly includes computing matrix singular value
decompositions and solving proximity operators of two convex functions. In addition, the convergence
of the algorithm is also proved. A large number of experimental results and numerical comparisons
show that the algorithm is superior to IADM-BB, IADM-CG and ADM algorithms.

The problem of tensor completion has been widely studied recently [31]. One of our future works
is to extend the proposed PA-AP algorithm to tensor completion.
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