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Abstract: Digital image forgery is a growing problem due to the increase in readily-available technology
that makes the process relatively easy. In response, several approaches have been developed for
detecting digital forgeries. This paper proposes a novel scheme based on neural networks and deep
learning, focusing on the convolutional neural network (CNN) architecture approach to enhance a
copy-move forgery detection. The proposed approach employs a CNN architecture that incorporates
pre-processing layers to give satisfactory results. In addition, the possibility of using this model for
various copy-move forgery techniques is explained. The experiments show that the overall validation
accuracy is 90%, with a set iteration limit.

Keywords: forgery detection; neural networks; image processing

1. Introduction

Digital editing is becoming less and less complicated with time, as a result of the increased
availability of a wide array of digital image editing tools. Image forgery, which is defined as “the
process of cropping and pasting regions on the same or separate sources [1], is one of the most popular
forms of digital editing. Copy-move forgery detection technology can be applied as a means to measure
an image’s authenticity. This is done through the detection of “clues” that are typically found in
copy-move forged images.

In the field of digital image forensics, copy-move forgery detection generally falls into two
categories: keypoint-based and block-based [2]. This paper will focus on the latter category. Block-based
copy-move forgery detection approaches employ image patches that overlap. From these, “raw”
pixels are removed for forgery testing against similar patches [3]. Of the many strategies currently
being employed in image forgery detection, several use statistical characteristics across a variety of
domains [4]. Regardless of the forgery category, the forgery detection application will deal with
active image copy-move forgery and/or passive copy-move forgery. In the former type, the original
image includes embedded valuable data which makes the detection process easier, whereas in the
latter, the original is imaging that makes the detection more challenging and difficult. Image forgery
localization is even more difficult to carry out [5]. While forgery detection only seeks to know if an
image is in whole or in part fake or original, image forgery localization tries to find the exact forged
portions [5].

Furthermore, in image forgery localization, the focus is on building a model rather than looking
at only certain features or domains. The model will be used to automatically detect specific elements
based on a form of advanced deep neural network. Examples of these types of networks include
deep belief network [6], deep auto encoder [7], and convolutional neural network (CNN) [8]. Of these
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three neural networks, CNNs are most commonly used in vision applications. These approaches
employ local neighborhood pooling operations and trainable filters when testing raw input images,
thereby creating hierarchies (from concrete to abstract) of the features under examination. Because
the image analysis and computer vision in the CNN strategy are so highly advanced, CNN generally
provides excellent performance [9,10] in image forgery detection, through the composition of simplistic
non-linear and linear filtering operations (e.g., rectification and convolution) [11].

This present paper proposes a novel approach for image forgery detection and localization which
is based on scale variant convolutional neural networks (SVCNNs). An outline of the proposed method
is presented in Figure 3. For this approach, sliding windows that incorporate a variety of scales are
included in customized CNNs with the aim of creating possibility maps that indicate image tampering.
Our main focus is both copy-move forgery detection and localization through the application of
elements removed via the use of CNNs.

The rest of the paper is organized as follows. In Section 2, we introduce an overview of the
literature that has contributed to the advancement of CNNs in copy-move forgery detection and feature
extraction procedures. In Section 3, we introduce the proposed model and the training processes.
In Section 4, the experiment’s environment and results are discussed. Finally, in Section 5, we present
the study’s conclusions.

2. Related Work

This section provides an overview of related works in copy-move forgery detection using neural
network CNN’s and related concepts.

CNN for forgery detection based on discrete cosine transformation (DCT): Numerous researchers
have approached the problem using CNN’s for forgery detection. As discussed in [12], CNNs can
be used in steganalysis for gray-scale images, where the CNNs first layer features a single high pass
filter to filter out the image content. In [2], an image model is developed for detecting image-splicing
detection. In this approach, the researchers used discrete cosine transformation (DCT), to remove
relevant features out of the DCT domain [2].

The DCT domain feeds the input of the CNN by transferring the row of quantized DCT coefficients
from the JPEG file to data classification. The processing of the data in the classification stage will
generate a histogram for each patch and concatenate all of the histograms to feed the CNN [13].

In [14–16] deep learning methods applied to computer vision problems resulted in a local
convolution feature data-driven CNN, while in other research, copy-move forgery detection algorithms
were mostly based on computer vision tasks such as image retrieval [17,18], classification [19], and object
detection [20].

Along with CNN, graphics processing unit (GPU) technologies have helped to fuel the latest
improvements in computer vision tasks [14]. Unlike traditional strategies for image classification,
which mostly use local descriptors [21], the latest CNN-based image classification techniques use
end-to-end structure. Because deep networks typically incorporate classifiers and features that are
high, mid, or low level [22] using end-on-end multilayers, the various feature levels are enriched
according to the number of hidden layers. The most recent convolutional neural networks (e.g.,
VGG (Convolutional network for classification and detection) [12,14,16,23,24], significantly enhance
performance in object detection and image classification tasks [15]. Table 1 provides a brief summary
of some common CNNs [25].
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Table 1. The common convolutional neural network (CNNs) characteristics.

CNN Layers No. Inventor(s) Year Place Parameters No. Error Rate

[25] LeNet 8 Yann LeCun 1988 First 60 T N/A

[14] AlexNet 7
Alex Kirzhevsky

Hinton, Ilya
Sutskever

2012 First 60 M 15.3%

[22] ZFNet 7 Matthew Zeiler
and Rob Fergus 2013 First N/A 14.8%

[25] Google
Net 9 Google 2014 First 4 M 6.67%

[23] VGG
Net 16 Simonyan,

Zisserman 2014 Second 140 M 3.6%

[12] ResNet 152 Kaiming He 2015 First N/A 3.75%

In the CNNs mentioned above, the intermediate layers serve as global features of image-level
descriptors. This type of feature can reinforce inter-class differences but does not make any intra-class
distinctions. The strategies for deep learning applied to computer vision tasks are also not suitable for
direct use in copy-move forgery detection. As discussed previously, this kind of detection looks for
the same types of regions that have been resized, rotated or deformed in some way. The expressive
feature representations output derived from image-level CNNs [26] points to the possibility of using
appropriate patch-level descriptors in order to replace handcrafted patch-level descriptors with
data-driven ones [26].

The recent literature presents a number of deep local descriptors that offer impressive patch
classification and matching abilities [27]. Because CNNs have been proven proficient in natural image
distribution, they will likely also be useful in image copy-move forgery detection, given that the aim
in that task is to find the so-called natural or pristine image among any unnatural or forged ones.
The main key used to classify images in order to detect copy-move forgery and localize it is image
features. Therefore, extracting image features is an essential part of the CNNs’ work in copy-move
forgery detection. We will highlight the differences between the classic way and the CNN automatic
way of feature extraction and show how the CNN strategy effectively eliminates the need for the
first method.

2.1. Feature Extraction

The literature includes several different feature extraction approaches. Although the published
works discuss a wide range of different strategies for detecting copy-move forgery, the present study
will focus on three specific classifications of features, which are the polar cosine transforms (PCT),
the Zernike moments (ZM), and the Fourier–Mellin transform (FMT). These three techniques are all
similar in that they have circular harmonics transform expansions (CHT) which are more or less the
same. This means that the CHT coefficient can be measured by image projection I(ρ, θ), making use
of the basis function Kn,m(ρ, θ) for initiating the change, as given below:

FI(n, m) =

∫
∞

0
ρR∗n,m(ρ) × [

1
√

2π

∫ 2π

0
I(ρ, θ)e− jmθdθ]dρ (1)

As shown, the image I(ρ, θ) occurs at the polar scheme, as ρ ∈ [0, ∞] and θ ∈ [0, 2π]. Here,
we can include elements from two expressions, as follows: 1). We can combine the Zernike radial
with the function and ρ value integration. 2). We can use brackets to show the Fourier series function
which represents the image I(ρ, θ) along with the phase term e− jmθ and θ radians rotation. In this way,
we can find rotation invariance and also apply coefficient magnitude. The absolute value of the FMT
coefficient will then give scale invariance because any changes made to the image scale will increase the
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phase term. Consequently, the radial function thus becomes variant-based in accordance with feature
designation and PCT radial functions which normalize coefficients Cn and assert cosine functions ρ2.

Rn(ρ) = Cn cos
(
nπρ2

)
(2)

Here, the Zernike radial function shows the same radial function as PCT. However, it also shows
more suitable values for coefficients and gives the expression ρ ∈ [0, 1] for the two functions, as shown
below:

Rn,m(ρ) =

(n−|m|)/2∑
h=0

Cn,m,hρ
2−2h (3)

Additionally, we can express the FMT radial function as non-zero in ρ ≥ 0, applying a constant
value of r against the ρ2 value, as follows:

Rr(ρ) =
1
ρ2 e jr ln(ρ) (4)

These models are usable in patch size when featuring a good resolution. Therefore, to obtain more
suitable matching using features in the two patches, the feature-length extension has to reside in a
loose condition. Additionally, Cartesian and polar for ZM and PCT samples, respectively, need to be
applied, but FMT will use log-polar for samples. In the present study, polar sampling will be used only
for calculating rotation and scaling to obtain scalar values and optimized invariance angles [28].

2.2. Using CNNs for Feature Extraction

In neural networks, the process of feature extraction removes elements of learned images out
of a pre-trained CNN (see Figures 1 and 2). These images can then be utilized for training image
classifiers. In general, feature extraction presents as the simplest approach when applying pretend
deep networks of representational power as there is a clearly delineated hierarchy of the input images,
which is easy to understand. In short, the deeper layers convey features of higher levels and are built
by incorporating features from the lower levels found within earlier layers. Test and training images
for feature representations can be sourced from previous fully-connected (FC) layers, while image
representations from lower levels require an earlier network layer.
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2.3. Classifying Feature Selections

The last step for computer vision applications is to use feature selection in object identification to
classify certain features according to specific characteristics. This stage is typically carried out using later
layers of deep learning neural networks via a voting technique. Take, for example, the fully-connected
layer known as learning. Because of a large amount of data, it can be challenging for the system to
learn good classifiers prior to extracting undesirable features from the program. However, removing
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features which are irrelevant or repetitious creates a more generally applicable classifier and also serves
to decrease learning algorithm run times, thus enabling a deeper understanding of the real-world
problem to which the classifier is being applied.

A considerable amount of worthy research has already been conducted on existing techniques
for detecting and localizing copy-move forgeries. The research has investigated whether these
implemented methods are sufficiently robust and whether properly modeling the structural changes
that have occurred in images due to copy-move forgeries can reliably classify a digital image as a
pristine or manipulated image. Furthermore, many techniques of copy-move forgeries have been
presented in the literature. Some good examples about detections techniques and their limitations are
described by the authors of [29–31]. Some recent studies [29–34] on copy-move forgery detection have
highlighted CNN’s that learn and minimize a loss function (an objective that scores the quality results)
in an automatic process. However, many authors are still attempting manual efforts for designing
effective loss function by telling the CNN what they wish to minimize [31,35].

3. The Proposed CNN Model

CNN’s are nonlinear interconnecting neurons based on the construct of the human visual system.
Applying CNN’s for forensic purposes is a somewhat new approach, but their ability to segment
images and identify objects is thus far unsurpassed [36]. In one study, where CNNs were used to extract
input images’ features in order to classify them, the method outperformed all previous state-of-the-art
approaches. Therefore, and based on the method from [36], our proposed CNN will be used as a
feature extractor for image input patches in the training stage and, later on, for the testing stage as
well (see Figures 2 and 3). CNN’s can be deconstructed into building blocks known as layers. Layer
Li will accept relevant input Hi ×Wi × Pi for feature maps or vectors sized as Pi. This layer then
gives the output Hi+1 ×Wi+1 × Pi+1 for feature maps or vectors sized as Pi+1. In the present study,
we use six different kinds of layers: convolutional, pooling, ReLU, softmax, fully-connected, and batch
normalization. A brief description of each type of these layers is given below.
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(1) In a convolutional layer, the convolutions are performed using stride Sh and Sw for the first two
axes of the input feature maps, along with Pi+1 filters Kh ×Kw × Pi [37]:

Hi+1 =

[
Hi −Kh + 1

Sh

]
(5)

Wi+1 =
[Wi −Kw + 1

Sw

]
(6)

Pi+1 (7)

(2) In a pooling layer, which occurs following convolutions, the layer chooses pixel valuations of
specific characteristics (e.g., average pooling or maximum pooling) within a given region. If a
max-pooling layer is chosen, it then carries out maximum element extraction, i.e., stride Sh and
Sw for the initial two axes in a neighborhood Kh ×Kw for every two-dimensional piece of input
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the feature map. The input block’s maximum value is, therefore, returned [37]. This approach
is commonly applied in deep learning networks. In our proposed strategy, the max-pooling
layer will decrease the input image patch resolution, as well as enhance network robustness,
in the face of possible valuation changes in the motion residuals of the frame’s absolute difference
image [38].

Hi+1 =

[
Hi −Kh + 1

Sh

]
(8)

Wi+1 =
[Wi −Kw + 1

Sw

]
(9)

Pi+1 = Pi (10)

Input image patches for CNN models use two-dimensional array image blocks measuring 3 ×
(64 × 64), with 3 indicating the channel number in the RGB-scale. Thus, if we use 3 × 3 as the
window size and 3 as the stride size, then the image patch resolution decreases by half to 32 × 32
from its original 64 × 64, following the initial max-pooling layer [37].

(3) ReLU layer performs element-wise nonlinear activation. Given a single neuron x, it is transformed
into a single neuron y with:

y = max(0, x) (11)

(4) Softmax layer turns an input feature vector into a vector with the same number of elements
summing to 1. Given an input vector x with Pi neurons x j i ∈ [1, Pi], each input neuron produces
a corresponding output neuron:

y j =
ex j∑k=Pi

k=1 exk
(12)

(5) In a fully-connected (FC) layer, dot multiplication is carried out between flattened feature maps
(i.e., the input feature vector) and the weight matrix using Pi+1 rows, along with columns of Pi
or (Hi . Wi . Pi) [37]. Meanwhile, the output feature vector presents Pi+1 elements [37]. Trained
CNNs can also remove meaningful information in images that have not been used to train
the network. This particular characteristic enables forgery exposure of previously unidentified
images as well [37].

(6) In a batch normalization layer, every input channel is normalized in ultra-small (or mini) batches.
The batch normalization layer initially normalizes every individual channel’s activations by
subtracting the mini-batch mean and then dividing the result by the standard deviation of the
mini-batch [37]. Next, the input is shifted by the layer using the learnable offset β, after which it
scales the input using the learnable scale factor γ [37]. Batch normalization layers can also be used
between convolutional and nonlinearities (e.g., ReLU layers) to increase CNN training and lessen
any sensitivities that might arise during the initialization of the networks. Batch normalization
can normalize inputs xi through formulating the mean µB and variance σ2

B for a mini-batch and
input channel, after which it formulates the normalized activations [37]:

x̂i =
xi − µB√
σ2

B + ε
(13)

As can be seen in the expression above, ε or Epsilon is used to enhance numerical stability if the
variance of the mini-batch variance presents as being too small. Furthermore, in cases where the zero
mean input and unit variance are not suited to the subsequent batch normalization layer, it is then
scaled and shifts its activations as follows:

yi = ˆγxi + β (14)
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Interestingly, the offset β and scale factor γ properties appear as learnable properties that can
be updated throughout the network training process. At the end of the network training, the batch
normalization layer then formulates both the mean and the variance across the entire training set, after
which it retains them as properties named TrainedMean or TrainedVariance [37]. Then, if the trained
network is applied for new image prediction, the layer will utilize the trained mean/variance rather
than the mini-batch mean/variance for activation normalization [37].

The three main characteristics are representative of CNN models and indicate their potential for
image forgery detection. These characteristics are presented below:

Convolution operation: This is defined as adding image pixels within local regions, thereby
accumulating into large values the duplicate patches in the area. The large-value accumulation could
result in easier detection of forged images among pristine ones [39].

CNN model convolutional: This is a form of exploitation of any strong spatially local correlations
which could occur in input images. Embedded copy-move distorts image pixel local correlation, which
then differentiates it from correlations of pristine images via the process of correlation-based alignment.
In this way, any distinctions between distorted and natural images are easily perceived through the
CNN models [39].

Nonlinear mappings: In CNN models, this type of mapping enables them to derive deep and
rich features that therefore means they can be used to classify all types of images. Such features
are automatically learned via network updates and would be difficult to apply using the traditional
non-CNN method [39].

The literature, as mentioned above, has introduced different types of algorithms used for image
forgery in general and in copy-move forgery detection in particular. However, CNNs are emerging
now as a powerful method to do the job. The CNN pipeline begins the extracting process of the
features from the image using the different layers and then feeds them into the specific classifier
to detect the copy-move forgery if it exists. However, before we go over the different parameters
used in this CNN as shown in Table 2, we should first clarify why CNNs are generally a more viable
option for this task. The fact that CNNs are a learnable method makes them a better choice overall,
as compared to other methods, for achieving the same goal. In the evaluation section, we show the
output performance of this algorithm versus the state-of-the-art. Second, the classifier here can work at
the feature level as well as the pixel level, which eliminates the challenge of losing pixel interaction if
we use a pixel vector. The CNN uses the first convolution layer to downsample the image by adjacent
information of the pixels. The convolution is thus a summation of the weight of pixel values in the
input image. This is achieved, in the proposed network, by convoluting the input image 64× 64 with a
5 × 5 Kernel filter. The operation (using a weight matrix) will produce a new image with a smaller
size. Each convolutional layer in the CNN will produce multi convolutions, thus generating a weight
tensor according to the n number of the convolutions, and in this case, the tensor will be 5 × 5 × n.
The first convolution layer in the CNN will give a weight matrix of 64× 5× 5, which will produce 1600
parameters. At the end of the network, we use a prediction layer to support the final classification task.
For the last two convolutional layers we padded them with 2, however, the max-pooling layer has a
pool size of 3× 3 and a stride of 2× 2.
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Table 2. Summary of CNN layers with their chosen parameters.

Layer Properties No

imageInputLayer 64× 64× 3 1

convolution2dLayer 64 5× 5 convolutions with
stride [1 1] and padding [2 2 2 2] 3

MaxPooling2DLayer

Name: “
HasUnpoolingOutputs: 0

NumOutputs: 1
OutputNames: {‘out’}

Hyperparameters
PoolSize: [2 2]

Stride: [2 2]
PaddingMode: ‘manual’

PaddingSize: [0 0 0 0]

3

fullyConnectedLayer(x)

x =

{
64
2 .

64 fully connected layer
2 fully connected layer 2

ReLU ReLU 4

Softmax Softmax 1

C-Outputlayer 64× 64× 3 1

3.1. The Proposed CNN Architecture

Recent studies show that CNNs are performing remarkably well in image forgery [29–34].
Therefore, in this paper, we propose an end-to-end deep learning CNN to handle and detect
copy-move forgery. The proposed CNN includes the following main operational layers: an input
layer, convolutional layers, fully connected layers, classification layer, and output layer, with each
convolutional layer including different convolutional filters. The main benefit of using CNNs in a
copy-move forgery detection model is the strategy’s success in feature extraction, which improves the
model overall performance. Moreover, improvements in the output results are based on CNN learning
skills which can be boosted by increasing the input samples and training cycle. CNNs also lower the
cost of detecting copy-move forgery, as compared to the classic method. Finally, a wide range of input
images can be used by CNN which, indeed, increases the output accuracy of the model.

In this paper, the CNN structure is intended for copy-move forgery detection. To that end,
we layered the CNN in a specific sequence such that it could function as a type of feature extraction
system that uses filter sets of a certain size. The filters are arranged in parallel to the input image
regions, incorporating an area of overlap known as the stride. Every convolutional filter output
per convolutional layer stands for a feature map or learned data representation. The subsequent
convolutional layers likewise extract features from maps, which were learned from earlier convolutional
layers. The proposed CNN will learn how to detect similarities and differences in image features
through a number of hidden layers. Each individual hidden layer will enhance the CNN’s learning
feature ability in order to increase its detection accuracy. Note that, hierarchical feature extractor output
is added to an FC to carry out a classification task learning weight, which is first randomly initiated
and then learned via a backpropagation method [40]. However, the hierarchical convolutional layers
create an enormous amount of feature maps, rendering the CNN’s impractical from both cost and
computational perspectives [41]. The network, shown in Figure 3, applied to the present study, features
15 layers in total: one each of input and output classification layers, one SoftMax layer, one max-pooling
layer, two average-pooling layers, two FC layers, three convolution layers, and four ReLU layers.
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Batch Normalization of the Proposed CNN

Batch normalization for CNN has been commonly applied as a technique for classifying output
images. Deep neural network model training can be challenging due to data changes across the
various different layers (known as the internal covariate shift) as well as gradient vanishing/exploding
phenomena [42]. Batch normalization can overcome these issues through the application of a few
simple operations for input data, as follows [43]:

µρ←
1
m

m∑
i=1

Ii (15)

σ2
β ←

1
m

m∑
i=1

(Ii − µβ)
2 (16)

Îi =
Ii − E[Ii]√
σ2
β + ε

(17)

I
◦

i = γÎi+ (18)

where Ii indicates the i− th training sample; m denotes batch sample amount; β =
{
Ii,.....m

}
expresses

mini-batch input data; µβ and σβ stand for mean and standard deviations, respectively, in mini-batch
B; ε represents a negligible constant that prevents zero from being divided, and γ and β indicate
parameters. Against these operational parameters, the mini-batch I

◦

i output data show a standard
deviation and a fixed mean for all depths following normalization of the batch. Hence, any deviations
of mean or variance are removed through the process of batch normalization, allowing the network to
avoid potential internal covariate shifts.

Different types of CNN’s are proposed to achieve a similar goal by employing different architectures
and different domains. However, the CNN centered deep learning approach is currently widely
used for universal image manipulation and forgery detection [1]. The proposed copy-move forgery
detection algorithm is performed based on CNN to adopt an end-to-end structure. Thus, the proposed
algorithm provides a better outcome for copy-move forgery detection than traditional copy-move
forgery detection algorithms. The copy-move forgery detection baseline initiates by taking the input
image, extracting the features, producing feature maps, and then making useful feature statistics with
the percentage pooling process of up sample feature maps. After that, the feature classifier can be
applied to doctor similar regions as a copy-move forgery. PatchMatch was implemented to achieve the
localization assignment.

4. Experiment Results

In this section, we present the results analysis and performance of the used CNN deep learning
model. Next, we evaluate the model’s method versus state-of-the-art approaches. Finally, we present
the training experiment and testing evaluation in detail.

4.1. Environment Analysis

In this work, we use a CNN deep learning model with two fully connected layers. The auto-
resizing layer was modified to inject unrestricted size images and output modified union dataset
size to 16 × 16 × 3 to fit with the input to the first convolutional layer. Training and testing phases
were performed using neural network toolbox-MATLAB 2018a. Learning training was implemented
with different image batch sizes: 64, 100 and 265, with the same preliminary learning rate of 10−3.
However, the best performance of error loss was accomplished with the mini-batch size of 100. Forgery
localization used images with a minimum size of 277× 277. We considered PNG image formats for
the used datasets, each image of which is 12.288 k. bytes on the disk, versus the actual size of 8.420 k.
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bytes. A lab machine was used to run this implementation using 16 GB RAM. All network parameters
were set to achieve smoothed training for both, applying the same number of iterations to test accuracy
and loss. In our training and testing, we split the dataset into randomized bases; however, the dataset
was divided into 70% training data and 30% testing data.

The used dataset is a combination of public online datasets available from research or dataset
producers. These publicly available datasets are quite small, however, and none of the existing
copy-move forgery detection (CMFD) datasets provide ground truth masks showing the distinguishing
source and target copies. Therefore, we generated a collection dataset out of online and public
existing datasets for training and testing. In total, we collected 1792 paired images of good quality to
present different samples for copy-move forgery, each with one binary mask distinguishing source
and destination. This dataset contains 166 authentic and 1626 tampered color images. However,
in the training task, we do not specify which images are manipulated in a copy-move manner and
which are not. Hence, we randomly verify that 30% of the total forged samples are a copy-move
forgery for testing i.e., around 340 mixed images for testing. These CMFD samples and their authentic
counterparts together form the training and testing datasets.

The first one was constructed by Christlein et al. [1], consisting of 48 base images and 87 copied
with a total of 1392 copy-move forged images. The second database, MICC-F600, was introduced
by Amerini et al. [16,39] with 400 images. The CIFAR-10 had 11,000 images [44]. There was also the
Caltech-101 image manipulation dataset and the IM dataset, which had 240 images [2]. The Oxford
buildings dataset consisted of 198 images and 5062 resized images [45]. The coverage dataset had 200
images [46] and, finally, we also had a collection of online and self-produced images. Note that, the
total images appear to be larger than what we used in training and testing, and this is because we
avoided using some images, either because they are in bad shape or low resolution.

An image data augmentation configured with the main properties is shown in the next Table 3
Data augmentation typically maintains the generalization of the image classification properties, such as
rotation, scaling, shearing, etc. Training and testing have been illustrated comprehensively in the result
discussion section.

Table 3. Data augmentation properties.

Data Property Option Value

Input Size [64 64 3] Various

Fill Value 0

Rand X Reflection 0

Rand Y Reflection 0

Rand Rotation [–20 20]

Rand X Scale [1 1]

Rand Y Scale [1 1]

Rand X Shear [0 0]

Rand Y Shear [0 0]

Rand X Translation [–3 3]

Rand Y Translation [–3 3]

Initial Learn Rate 0.01 0.001

Mini Batch Size 256 100, 64

lower Threshold 10 8

Validation Frequency 50 30

Base Learning Reta 0.0001
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4.2. Training

While CNN training involves a larger portion of data, there are no large public datasets that contain
numerous image pairs marked with their copy-move manipulations and ground truth. Therefore,
we generated our own dataset, from datasets we found online. The training data were designed to
present two datasets categories: pristine and forged. The second dataset category is larger than the
first because of the different types of geometric transformation employed to the copy-move patches in
the forged images.

Training images constitute images that have a known outcome. The elements and features of
these kinds of images undergo a classification process in order to find their correct weight category.
After determining which weights will be used, sample images, whose outcome is also already known,
are run. Next, the sampled test images undergo an extraction, while the weight is used to predict image
classification. Finally, an actual known classification is compared with the predicted classification to
gauge the accuracy of the analysis.

4.3. Results and Discussion

In assessing the proposed model approach, we will review the dataset, analyze its performance,
and then compare the method to other key algorithms as a reference point. The dataset was built with
images that were readily available online. These images were then resized to 64 × 64 and constituted
the two specific pre-set image categories of pristine and forged. We used both of these categories for
network training, starting with the input layer sized to the output of the automatically resized layer.
We also used two learned connected layers—fc1 output at size 64, and fc2 output at size 2. The SoftMax
layer represents the final layer used for output discrimination, as shown in Figure 3. The variant scale
classifier trains the network output at a certain size based on loss function software. The various
minibatch sizes used (e.g., 64, 100 and 256) indicate a strong impact on the training set, as well as
in the saturation of the overall accuracy and error loss. Moreover, the model fitting shows different
training responses based on changes in minibatch size and other important parameters. For instance,
the training cycle, for the same data in the same training environment, using minibatch 64, there are
154 iterations and for 7 epochs, there are 22 iterations for each epoch. On the other hand, while using
minibatch 256, the training cycle will only have 98 iterations for the same number of epochs, but each
epoch, in this case, will take 14 iterations to be finished. In both training cases, samples will take
roughly the same amount of time. Overall, we found that the best minibatch size is 100. Despite the
training process having a high noise ratio, this batch size still gives the best training accuracy and error
drops faster, therefore resulting in less error. We then reduce the number of epochs to avoid overfitting
during the training task as the input data for the dataset are not large enough.

The results indicate network robustness, despite the small size of our dataset. Given these results,
we anticipate that increasing our dataset size will result in even higher efficiency, as the small dataset
could not use much of the temporal information i.e., the use of a small sequence of image volumes across
the time range will not make an effective investigation to understand the dataset’s temporal dynamic.
Nonetheless, the good performance of our model still leaves room for improvement, for instance,
the approach gives similar results if no post-processing is performed. Overall, the technique provides
the best results when applied to active copy-move forgery, whereas for passive copy-move forgery
detection, it gives fair results. Figure 4 and Figure 7 illustrate some of the results for different scenarios
of copy-move forgery detection using the proposed learned CNN approach. As we mentioned in
the introduction, CNN still suffers from forgery localization for copy-move since it is located in the
same neighborhood as the original region. Provisionally, we overcome this issue by employing a
PachMatch technique to match the feature points between the two regions, with this stage being
done separately [28]. However, image patch size used for training and testing, as mentioned above,
is customized to small sizes according to network sizing parameters. This will reduce the image
size leading to loss of some important details. Hence, this size will not work effectively for forgery
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localization, which mainly relies on the offset points matching. Therefore, the image size used for
copy-move region localization is 277× 277 instead of the 64× 64 used for the training and testing stages.
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present experiment. On the other hand, in both Figures 5 and 6 the model red flags these images as 

Figure 4. Random output samples show the true detection of the pristine image’s category. The output
is flagged with the category name in green color “pristine” which indicates the correct decision.

In Figure 4, the model was able to justify the authenticity of these images and mark them as
pristine images, which illustrates that the false positive is zero and the true positive is the one in the
present experiment. On the other hand, in both Figures 5 and 6 the model red flags these images as
forged images regardless of whether the copy-move forgery type is active (as is in Figure 5) or passive
(as is in Figure 6). These two cases are called true positive and true negative, respectively.
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Figure 5. This figure presents three image categories (a) pristine image; (b) the same image was
manipulated with copy-move forgery (c) the output mask showing the copy-move forgery detection
result, including the two similar areas in the same image frame.
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An unfortunate scenario occurs when the model marks the forged image as a pristine image.
In this case, the model accuracy is reduced. However, even if a result mistakenly shows the image as
pristine, the resulting flagging alarm may incorrectly act by sending the output category in red color as
illustrated in Figure 7.
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Figure 7. False detections by labeling this forged image as a pristine image. There will be a red flag in
the results, referring to the false result.

Our model represents a deep learning method suitable for detecting forgery embedded within
digital images. Non-deep-learning traditional methods, such as [47], are unable to extract relevant data
from input image patches automatically, nor can they devise representations very efficiently. Many
non-deep-learning approaches also only utilize a single artificial feature for classification purposes.
These are all significant drawbacks in the traditional models. Our proposed method, on the other hand,
is much more efficient. It can apply several epochs in the training sets, the optimal number being no
less than three epochs and no more than five, which is related to dataset size. Testing a new input
image will take a longer time the first time round, but will decrease by several trials, the first of which
usually takes no more than 1.6 s, as illustrated in Figure 8. This time is based on image resolution
and the used machine. Table 4 indicates a clear reduction in accuracy from 90% to 81%. The average
validation loss rate of the training set was around 0.3010 for all saturated iteration values. Of the 1255
forged images we used, we had an overall validation accuracy of 88.26% to 90.1%. The matrices and
the baseline evaluation settings were devised by computing false positive (FP), true positive (TP),
false positive (FP) and false negative (FN) settings in order to compute the F-measure. The evaluation
scores in Table 5 present the F-measure of the proposed model vs. the state-of-the-art models [27,48,49].
It is worth mentioning again that our testing dataset was relatively small and used a mix of both forged
and pristine images. Hence, we anticipate that the value will change in accordance with dataset size.
Note that the number of epochs is low according to the dataset size to avoid overfitting during the
training task.
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Table 4. The accuracy is based on the epoch and the number of the iterations.

Epoch Iteration Time Elapsed Sec. Mini-batch Accuracy Base Learning Rate

1 1 31.42 88.00% 0.0010
4 50 1587.43 90.00% 0.0010
7 90 3120.95 91.00% 0.0010

Table 5. Comparison of copy-move forgery detection F-measure, precision and recall of different
algorithm.

Algorithm [48] [50] [49] [27] [51] [33] Proposed

F1 0.5943 0.5439 0.6055 0.6318 0.7993 0.4926 0.8835
Precision 0.5440 0.5390 0.5662 0.5927 - 0.5734 0.6963

Recall 0.8020 0.8327 0.8040 0.8220 - 0.4939 0.8042

5. Conclusions

A novel neural network-based copy-move forgery detection strategy was proposed in this work.
The convolutional neural network (CNN) was built with MATLAB due to its ease of use and its
support of GPU/CPU (Computer Processing Unit) computations. Weights for decreasing error rates
and improving overall efficiency were applied via backward and forward propagation. Our CNN
learned how to reproduce both forged and pristine outputs in its training phase, enabling copied
regions to trigger detection during reconstruction. The results of active copy-move detection were
highly promising, while the passive detection results were only satisfactory. Additionally, overall
efficiency was relatively low due to the small size of the experimental dataset utilized in the training
phase. The proposed model’s key contribution is its capability of detecting and localizing copy-move
forgery. In future related work, other network structures could be tested, and in-depth analyses could
be performed through implementing a more expansive dataset than the one used here. Additionally,
other kinds of image manipulation could be incorporated, including post-processing strategies.
Futhermore, future work could focus on producing customized layers to distinguish the source and
target location of the copy-moved region in this type of forgery, or to examine the effects of other
shallow learning methods for image copy-move forgery.
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