Geometric Algebra in Nonsinusoidal Power Systems: A Case of Study for Passive Compensation
Abstract
:1. Introduction
- The use of GA to solve the problem of passive compensation of single-phase nonsinusoidal circuits.
- Determination and suppression of the current and geometric power in quadrature that make the power factor maximum.
- Evidence of the disadvantages of traditional compensation methods based on complex numbers compared to GA.
- Design of simpler and more efficient compensators.
- Comparison with other GA-based methods.
2. Background on Geometric Algebra
3. Power in Geometric Algebra
3.1. Vector Representation in Domain
3.2. Multivector Power
4. Power Factor Compensation Using Multivector Apparent Power
5. Application to Real Circuits
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid—The new and improved power grid: A survey. IEEE Commun. Surv. Tutor. 2012, 14, 944–980. [Google Scholar] [CrossRef]
- Colak, I.; Sagiroglu, S.; Fulli, G.; Yesilbudak, M.; Covrig, C.F. A survey on the critical issues in smart grid technologies. Renew. Sustain. Energy Rev. 2016, 54, 396–405. [Google Scholar] [CrossRef]
- Bollen, M.H.; Das, R.; Djokic, S.; Ciufo, P.; Meyer, J.; Rönnberg, S.K.; Zavodam, F. Power quality concerns in implementing smart distribution-grid applications. IEEE Trans. Smart Grid 2017, 8, 391–399. [Google Scholar] [CrossRef]
- An, L.; Xu, Q.; Ma, F.; Chen, Y. Overview of power quality analysis and control technology for the smart grid. J. Mod. Power Syst. Clean Energy 2016, 4, 1–9. [Google Scholar] [Green Version]
- Cherian, E.; Bindu, G.; Nair, P.C. Pollution impact of residential loads on distribution system and prospects of DC distribution. Eng. Sci. Technol. Int. J. 2016, 19, 1655–1660. [Google Scholar] [CrossRef] [Green Version]
- Bouzid, A.M.; Guerrero, J.M.; Cheriti, A.; Bouhamida, M.; Sicard, P.; Benghanem, M. A survey on control of electric power distributed generation systems for microgrid applications. Renew. Sustain. Energy Rev. 2015, 44, 751–766. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yong, J.; Sun, Y.; Xu, W.; Wong, D. Characteristics of harmonic distortions in residential distribution systems. IEEE Trans. Power Deliv. 2017, 32, 1495–1504. [Google Scholar] [CrossRef]
- Schwanz, D.; Bollen, M.; Larsson, A.; Kocewiak, ŁH. Harmonic mitigation in wind power plants: Active filter solutions. In Proceedings of the IEEE 2016 17th International Conference on the Harmonics and Quality of Power (ICHQP), Belo Horizonte, Brazil, 16–19 October 2016; pp. 220–225. [Google Scholar]
- Steinmetz, C.P. Theory and Calculation of Alternating Current Phenomena; McGraw-Hill Book Company, Incorporated: New York, NY, USA, 1916; Volume 4. [Google Scholar]
- Orts-Grau, S.; Munoz-Galeano, N.; Alfonso-Gil, J.C.; Gimeno-Sales, F.J.; Segui-Chilet, S. Discussion on useless active and reactive powers contained in the IEEE standard 1459. IEEE Trans. Power Deliv. 2011, 26, 640–649. [Google Scholar] [CrossRef]
- Emanuel, A.E. Powers in nonsinusoidal situations-a review of definitions and physical meaning. IEEE Trans. Power Deliv. 1990, 5, 1377–1389. [Google Scholar] [CrossRef]
- Page, C.H. Reactive power in nonsinusoidal situations. IEEE Trans. Instrum. Meas. 1980, 29, 420–423. [Google Scholar] [CrossRef]
- Czarnecki, L.S.; Pearce, S.E. Compensation objectives and Currents’ Physical Components–based generation of reference signals for shunt switching compensator control. IET Power Electron. 2009, 2, 33–41. [Google Scholar] [CrossRef]
- Willems, J.L. Budeanu’s reactive power and related concepts revisited. IEEE Trans. Instrum. Meas. 2011, 60, 1182–1186. [Google Scholar] [CrossRef]
- De Léon, F.; Cohen, J. AC power theory from Poynting theorem: Accurate identification of instantaneous power components in nonlinear-switched circuits. IEEE Trans. Power Deliv. 2010, 25, 2104–2112. [Google Scholar] [CrossRef]
- Jeon, S.J. Considerations on a reactive power concept in a multiline system. IEEE Trans. Power Deliv. 2006, 21, 551–559. [Google Scholar] [CrossRef]
- Czarnecki, L.S. On some misinterpretations of the instantaneous reactive power pq theory. IEEE Trans. Power Electron. 2004, 19, 828–836. [Google Scholar] [CrossRef]
- Budeanu, C. Puissances Reactives et Fictives; Number 2; Impr. Cultura Nationala: Paris, France, 1927. [Google Scholar]
- Staudt, V. Fryze-Buchholz-Depenbrock: A time-domain power theory. In Proceedings of the IEEE 2008 International School on Nonsinusoidal Currents and Compensation ( ISNCC 2008), Lagow, Poland, 10–13 June 2008; pp. 1–12. [Google Scholar]
- Czarnecki, L.S. What is wrong with the Budeanu concept of reactive and distortion power and why it should be abandoned. IEEE Trans. Instrum. Meas. 1987, 1001, 834–837. [Google Scholar] [CrossRef]
- Czarnecki, L. Budeanu and fryze: Two frameworks for interpreting power properties of circuits with nonsinusoidal voltages and currentsBudeanu und Fryze-Zwei Ansätze zur Interpretation der Leistungen in Stromkreisen mit nichtsinusförmigen Spannungen und Strömen. Electr. Eng. 1997, 80, 359–367. [Google Scholar] [CrossRef]
- Czarnecki, L.S. Currents’ physical components (CPC) concept: A fundamental of power theory. In Proceedings of the IEEE 2008 International School on Nonsinusoidal Currents and Compensation (ISNCC 2008), Lagow, Poland, 10–13 June 2008; pp. 1–11. [Google Scholar]
- Castro-Núñez, M. The Use of Geometric Algebra in the Analysis of Non-sinusoidal Networks and the Construction of a Unified Power Theory for Single Phase Systems-A Paradigm Shift. Ph.D. Thesis, University of Calgary, Calgary, AB, USA, 2013. [Google Scholar]
- Castro-Nuñez, M.; Castro-Puche, R. The IEEE Standard 1459, the CPC power theory, and geometric algebra in circuits with nonsinusoidal sources and linear loads. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2980–2990. [Google Scholar] [CrossRef]
- Castro-Nuñez, M.; Castro-Puche, R. Advantages of geometric algebra over complex numbers in the analysis of networks with nonsinusoidal sources and linear loads. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2056–2064. [Google Scholar] [CrossRef]
- Menti, A.; Zacharias, T.; Milias-Argitis, J. Geometric algebra: A powerful tool for representing power under nonsinusoidal conditions. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 601–609. [Google Scholar] [CrossRef]
- Castilla, M.; Bravo, J.C.; Ordoñez, M. Geometric algebra: A multivectorial proof of Tellegen’s theorem in multiterminal networks. IET Circuits Dev. Syst. 2008, 2, 383–390. [Google Scholar] [CrossRef]
- Castilla, M.; Bravo, J.C.; Ordonez, M.; Montaño, J.C. Clifford theory: A geometrical interpretation of multivectorial apparent power. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 55, 3358–3367. [Google Scholar] [CrossRef]
- Hestenes, D. Point groups and space groups in geometric algebra. In Applications of Geometric Algebra in Computer Science and Engineering; Springer: Berlin, Germany, 2002; pp. 3–34. [Google Scholar]
- Castro-Núñez, M.; Londoño-Monsalve, D.; Castro-Puche, R. M, the conservative power quantity based on the flow of energy. J. Eng. 2016, 2016, 269–276. [Google Scholar] [CrossRef]
- Czarnecki, L.S. Minimisation of distortion power of nonsinusoidal sources applied to linear loads. IEE Proc. C (Gener. Transm. Distrib.) 1981, 128, 208–210. [Google Scholar] [CrossRef]
- Czarnecki, L.S. Considerations on the Reactive Power in Nonsinusoidal Situations. IEEE Trans. Instrum. Meas. 1985, IM-34, 399–404. [Google Scholar] [CrossRef]
- Castilla, M.V.; Bravo, J.C.; Martin, F.I. Multivectorial strategy to interpret a resistive behaviour of loads in smart buildings. In Proceedings of the 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), Doha, Qatar, 10–12 April 2018; pp. 1–5. [Google Scholar]
- Hestenes, D.; Sobczyk, G. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics; Springer Science & Business Media: Berlin, Germany, 2012; Volume 5. [Google Scholar]
- Hestenes, D. New Foundations for Classical Mechanics; Springer Science & Business Media: Berlin, Germany, 2012; Volume 15. [Google Scholar]
- Chappell, J.M.; Drake, S.P.; Seidel, C.L.; Gunn, L.J.; Iqbal, A.; Allison, A.; Abbott, D. Geometric algebra for electrical and electronic engineers. Proc. IEEE 2014, 102, 1340–1363. [Google Scholar] [CrossRef]
- Castro-Núñez, M.; Castro-Puche, R.; Nowicki, E. The use of geometric algebra in circuit analysis and its impact on the definition of power. In Proceedings of the IEEE 2010 International School on Nonsinusoidal Currents and Compensation (ISNCC), Lagow, Poland, 15–18 June 2010; pp. 89–95. [Google Scholar]
Description | Value |
---|---|
24,000 W | |
16,000 VA | |
45,254 VA |
Description | Budeanu | Castilla | Castro-Núñez |
---|---|---|---|
Active Power | 24,000 | 24,000 | 24,000 |
Reactive Power | 8000 | 8000 | 45,254 |
Distortion/Degraded Power | 35,780 | 35,780 | 16,000 |
Apparent/Geometric Power | 43,820 | 43,820 | 53,666 |
Power factor | 0.55 | 0.55 | 0.44 |
Description | Budeanu | Castilla | Castro-Núñez |
---|---|---|---|
Active Power | 24,000 | 24,000 | 24,000 |
Reactive Power | 11,000 | 11,000 | 0 |
Distortion/Degraded Power | 27,530 | 27,530 | 16,000 |
Apparent/Geometric Power | 38,200 | 38,200 | 28,844 |
Power factor | 0.63 | 0.63 | 0.83 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya, F.G. Geometric Algebra in Nonsinusoidal Power Systems: A Case of Study for Passive Compensation. Symmetry 2019, 11, 1287. https://doi.org/10.3390/sym11101287
Montoya FG. Geometric Algebra in Nonsinusoidal Power Systems: A Case of Study for Passive Compensation. Symmetry. 2019; 11(10):1287. https://doi.org/10.3390/sym11101287
Chicago/Turabian StyleMontoya, Francisco G. 2019. "Geometric Algebra in Nonsinusoidal Power Systems: A Case of Study for Passive Compensation" Symmetry 11, no. 10: 1287. https://doi.org/10.3390/sym11101287
APA StyleMontoya, F. G. (2019). Geometric Algebra in Nonsinusoidal Power Systems: A Case of Study for Passive Compensation. Symmetry, 11(10), 1287. https://doi.org/10.3390/sym11101287