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Abstract: A linear autonomous differential equation with small delay is considered in this paper. It is
shown that under a smallness condition the delay differential equation is asymptotically equivalent
to a linear ordinary differential equation with constant coefficients. The coefficient matrix of the
ordinary differential equation is a solution of an associated matrix equation and it can be written
as a limit of a sequence of matrices obtained by successive approximations. The eigenvalues of the
approximating matrices converge exponentially to the dominant characteristic roots of the delay
differential equation and an explicit estimate for the approximation error is given.

Keywords: delay differential equation; ordinary differential equation; asymptotic equivalence;
approximation; eigenvalue

1. Introduction

Let C and Cn×n denote the set of complex numbers and the n-dimensional space of complex
column vectors, respectively. Given a norm ‖ · ‖ on Cn, the associated induced norm on Cn×n will be
denoted by the same symbol.

We will study the linear autonomous delay differential equation

ẋ(t) = Ax(t) + Bx(t− τ), (1)

where τ > 0, A ∈ Cn×n and B ∈ Cn×n is a nonzero matrix. It is well-known that if φ : [−τ, 0]→ Cn is
a continuous initial function, then Equation (1) has a unique solution x : [−τ, ∞) → Cn with initial
values x(t) = φ(t) for −τ ≤ t ≤ 0 (see [1]). The characteristic equation of Equation (1) has the form

det ∆(λ) = 0, where ∆(λ) = λI − A− Be−λτ . (2)

Throughout the paper, we will assume that

‖B‖τe1+‖A‖τ < 1, (3)

which may be viewed as a smallness condition on the delay τ. We will show that if (3) holds, then
Equation (1) is asymptotically equivalent to the ordinary differential equation

ẋ = Mx, (4)

where M ∈ Cn×n is the unique solution of the matrix equation

M = A + Be−Mτ (5)
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such that
‖M‖ < µ0, where µ0 = −τ−1 ln(‖B‖τ) > 0. (6)

Furthermore, the coefficient matrix M in Equation (4) can be written as a limit of successive
approximations

M = lim
k→∞

Mk, (7)

where
M0 = 0 and Mk+1 = A + Be−Mkτ for k = 0, 1, 2, . . . . (8)

The convergence in (7) is exponential and we give an estimate for the approximation error ‖M−
Mk‖. It will be shown that those characteristic roots of Equation (1) which lie in the half-plane
Re λ > −µ0 with µ0 as in (6) coincide with the eigenvalues of matrix M. As a consequence, the above
dominant characteristic roots of Equation (1) can be approximated by the eigenvalues of Mk. We give
an explicit estimate for the approximation error which shows that the convergence of the eigenvalues
of Mk to the dominant characteristic roots of Equation (1) is exponentially fast.

The investigation of differential equations with small delays has received much attention.
Some results which are related to our study are discussed in the last section of the paper.

2. Main Results

In this section, we formulate and prove our main results which were indicated in the Introduction.

2.1. Solution of the Matrix Equation and Its Approximation

First we prove the existence and uniqueness of the solution of the matrix Equation (5) satisfying (6).

Theorem 1. Suppose (3) holds. Then Equation (5) has a unique solution M ∈ Cn×n such that (6) holds.

Before we present the proof of Theorem 1, we establish some lemmas.

Lemma 1. Let P, Q ∈ Cn×n and γ = max{‖P‖, ‖Q‖}. Then

‖Pk −Qk‖ ≤ kγk−1‖P−Q‖ for k = 1, 2, . . . . (9)

Proof. We will prove by induction on k that

Pk −Qk =
k−1

∑
j=0

Pj(P−Q)Qk−1−j (10)

for k = 1, 2, . . . . Evidently, (10) holds for k = 1. Suppose for induction that (10) holds for some positive
integer k. Then

Pk+1 −Qk+1 = Pk(P−Q) + (Pk −Qk)Q

= Pk(P−Q) +

( k−1

∑
j=0

Pj(P−Q)Qk−1−j
)

Q =
k

∑
j=0

Pj(P−Q)Qk−j.

Thus, (10) holds for all k. From (10), we find that

‖Pk −Qk‖ ≤
k−1

∑
j=0
‖P‖j‖P−Q‖‖Q‖k−1−j ≤ ‖P−Q‖

k−1

∑
j=0

γjγk−1−j = kγk−1‖P−Q‖

for k = 1, 2, . . . .
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Using Lemma 1, we can prove the following result about the distance of two matrix exponentials.

Lemma 2. Let P, Q ∈ Cn×n and γ = max{‖P‖, ‖Q‖}. Then

‖eP − eQ‖ ≤ eγ‖P−Q‖. (11)

Proof. By the definition of the matrix exponential, we have

eP − eQ =
∞

∑
k=0

Pk

k!
−

∞

∑
k=0

Qk

k!
=

∞

∑
k=1

Pk −Qk

k!
.

From this, by the application of Lemma 1, we find that

‖eP − eQ‖ ≤
∞

∑
k=1

‖Pk −Qk‖
k!

≤ ‖P−Q‖
∞

∑
k=1

kγk−1

k!
= ‖P−Q‖

∞

∑
k=1

γk−1

(k− 1)!
= eγ‖P−Q‖

which proves (11).

We will also need some properties of the scalar equation

λ = a + beλτ . (12)

Lemma 3. Let a ∈ [0, ∞), b,τ ∈ (0, ∞) and suppose that

bτe1+aτ < 1. (13)

If we let λ0 = −τ−1 ln(bτ), then λ0 > 0 and Equation (12) has a unique root λ1 ∈ (0, λ0). Moreover,

a + beλτ < λ for λ ∈ (λ1, λ0] (14)

and
bτeλτ < 1 for λ < λ0. (15)

Proof. By virtue of (13), we have bτ < e−1−aτ < 1 which implies that ln(bτ) < 0 and hence λ0 > 0.
Define

f (λ) = λ− a− beλτ for λ ∈ R.

We have
f ′(λ) = 1− bτeλτ and f ′′(λ) = −bτ2eλτ for λ ∈ R.

It is easily seen that f ′(λ) = 0 if and only if λ = −τ−1 ln(bτ) = λ0. Furthermore, (13) is equivalent
to f (λ0) = −τ−1 ln(bτ) − a − τ−1 > 0. Since f ′′(λ) < 0 for λ ∈ R, f ′ strictly decreases on R. In
particular, f ′(λ) > f ′(λ0) = 0 for λ < λ0. Therefore, (15) holds and f strictly increases on (−∞, λ0].
This, together with f (0) < 0 and f (λ0) > 0, implies that f and hence Equation (12) have a unique
root λ1 ∈ (0, λ0). Since f strictly increases on [λ1, λ0], we have that f (λ) > f (λ1) = 0 for λ ∈ (λ1, λ0].
Thus, (14) holds.

Now we can give a proof of Theorem 1.

Proof of Theorem 1. By Lemma 3, if (3) holds, then the equation

µ = ‖A‖+ ‖B‖eµτ (16)
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has a unique solution µ1 ∈ (0, µ0), where µ0 is given by (6). Moreover,

‖A‖+ ‖B‖eµτ < µ for µ ∈ (µ1, µ0] (17)

and
‖B‖τeµτ < 1 for µ < µ0. (18)

Let µ ∈ [µ1, µ0) be fixed. Define

F(M) = A + Be−Mτ for M ∈ Cn×n (19)

and
S = {M ∈ Cn×n | ‖M‖ ≤ µ }. (20)

Clearly, S is a nonempty and closed subset of Cn×n. By virtue of (17), we have for M ∈ S,

‖F(M)‖ ≤ ‖A‖+ ‖B‖e‖M‖τ ≤ ‖A‖+ ‖B‖eµτ ≤ µ. (21)

Thus, F maps S into itself. Let M1, M2 ∈ S. By the application of Lemma 2, we obtain

‖F(M1)− F(M2)‖ = ‖B(e−M1τ − e−M2τ)‖ ≤ ‖B‖‖e−M1τ − eM2τ‖ ≤ ‖B‖τeµτ‖M1 −M2‖.

In view of (18), F : S → S is a contraction and hence there exists a unique M ∈ S such that
M = F(M). Since µ ∈ [µ1, µ0) was arbitrary, this completes the proof.

In the next theorem, we show that the unique solution of Equation (5) satisfying (6) can be
written as a limit of successive approximations Mk defined by (8) and we give an estimate for the
approximation error.

Theorem 2. Suppose (3) holds and let M ∈ Cn×n be the solution of Equation (5) satisfying (6). If {Mk}∞
k=0 is

the sequence of matrices defined by (8), then

‖Mk‖ ≤ µ1 for k = 0, 1, 2, . . . , (22)

and
‖M−Mk‖ ≤ µ1qk for k = 0, 1, 2, . . . , (23)

where µ1 is the unique root of Equation (16) in the interval (0, µ0) and q = ‖B‖τeµ1τ < 1 (see (18)).

Proof. Note that Mk+1 = F(Mk) for k = 0, 1, 2, . . . , where F is defined by Equation (19). Taking µ = µ1

in the proof of Theorem 1, we find that ‖M‖ ≤ µ1. Moreover, from (20) and (21), we obtain that
‖Mk‖ ≤ µ1 for k = 0, 1, 2, . . . . From this and Equations (5) and (8), by the application of Lemma 2, we
obtain for k ≥ 0,

‖M−Mk+1‖ = ‖B(e−Mτ − e−Mkτ)‖ ≤ ‖B‖‖e−Mτ − eMkτ‖ ≤ ‖B‖τeµ1τ‖M−Mk‖ = q‖M−Mk‖.

From the last inequality, it follows by easy induction on k that

‖M−Mk‖ ≤ qk‖M−M0‖ = qk‖M‖ ≤ qkµ1

for k = 0, 1, 2, . . . .

2.2. Dominant Eigenvalues and Eigensolutions

Let us summarize some facts from the theory of linear autonomous delay differential equations
(see [1,2]). By an eigenvalue of Equation (1), we mean an eigenvalue of the generator of the solution
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semigroup (see [1,2] for details). It is known that λ ∈ C is an eigenvalue of Equation (1) if and only if
λ is a root of the characteristic equation (2). Moreover, for every β ∈ R, Equation (1) has only finite
number of eigenvalues with Re λ > β. By an entire solution of Equation (1), we mean a differentiable
function x : (−∞, ∞) → Cn satisfying Equation (1) for all t ∈ (−∞, ∞). To each eigenvalue λ

of Equation (1), there correspond nontrivial entire solutions of the form p(t)eλt, t ∈ (−∞, ∞), where
p(t) is a Cn-valued polynomial in t. Such solutions are sometimes called eigensolutions corresponding
to λ.

The following theorem shows that under the smallness condition (3) the eigenvalues of
Equation (1) with Re λ > −µ0 coincide with eigenvalues of matrix M from Theorem 1 and the
corresponding eigensolutions satisfy the ordinary differential Equation (4).

Theorem 3. Suppose (3) holds so that µ0 = −τ−1 ln(‖B‖τ) > 0, and define

Λ = { λ ∈ C | det ∆(λ) = 0, Re λ > −µ0 }.

Let M ∈ Cn×n be the unique solution of Equation (5) satisfying (6). Then Λ = σ(M), where σ(M) denotes
the set of eigenvalues of M. Moreover, for every λ ∈ Λ, Equations (1) and (4) have the same eigensolutions
corresponding to λ.

In the sequel, the eigenvalues of Equation (1) with Re λ > −µ0 will be called dominant.
As a preparation for the proof of Theorem 3, we establish three lemmas. First we show that if M

is a solution of the matrix Equation (5), then every solution of the ordinary differential Equation (4) is
an entire solution of the delay differential Equation (1).

Lemma 4. Let M ∈ Cn×n be a solution of Equation (5). Then every v ∈ Cn, x(t) = eMtv, t ∈ (−∞, ∞), is
an entire solution of Equation (1).

Proof. Since ePeQ = eP+Q whenever P and Q ∈ Cn×n commute, from Equation (5), we find that

ẋ(t) = MeMtv = (A+ Be−Mτ)eMtv = AeMtv+ Be−MτeMtv = Ax(t)+ BeM(t−τ)v = Ax(t)+ Bx(t− τ)

for t ∈ (−∞, ∞).

In the following lemma, we prove the uniqueness of entire solutions of the delay differential
Equation (1) with an appropriate exponential growth as t→ −∞.

Lemma 5. Suppose (3) holds. If x1 and x2 are entire solutions of Equation (1) with x1(0) = x2(0) and such
that

sup
t≤0
‖xj(t)‖eµ0t < ∞, j = 1, 2, (24)

with µ0 as in (6), then x1 = x2 identically on (−∞, ∞).

Proof. Define
C = sup

t≤0
‖x1(t)− x2(t)‖eµ0t.

By virtue of (24), we have that 0 ≤ C < ∞. From Equation (1), we find for t ≤ 0,

xj(t) = xj(0)− A
∫ 0

t
xj(s) ds− B

∫ 0

t
xj(s− τ) ds, j = 1, 2.
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From this, taking into account that x1(0) = x2(0), we obtain for t ≤ 0,

‖x1(t)− x2(t)‖ ≤ ‖A‖
∫ 0

t
‖x1(s)− x2(s)‖ ds + ‖B‖

∫ 0

t
‖x1(s− τ)− x2(s− τ)‖ ds

≤ ‖A‖C
∫ 0

t
e−µ0s ds + ‖B‖C

∫ 0

t
e−µ0(s−τ) ds

= C(‖A‖+ ‖B‖eµ0τ)
∫ 0

t
e−µ0s ds ≤ C

‖A‖+ ‖B‖eµ0τ

µ0
e−µ0t.

The last inequality implies for t ≤ 0,

‖x1(t)− x2(t)‖eµ0t ≤ C
‖A‖+ ‖B‖eµ0τ

µ0
.

Hence C ≤ κC, where

κ =
‖A‖+ ‖B‖eµ0τ

µ0
.

By virtue of (17), we have that κ < 1. Hence C = 0 and x1(t) = x2(t) for t ≤ 0. The uniqueness
theorem ([1] Chapter 2, Theorem 2.3) implies that x1(t) = x2(t) for all t ∈ (−∞, ∞).

Now we show that those entire solutions of Equation (1) which satisfy the growth condition

sup
t≤0
‖x(t)‖eµ0t < ∞ with µ0 as in (6) (25)

coincide with the solutions of the ordinary differential Equation (4).

Lemma 6. Suppose (3) holds. Then, for every v ∈ Cn, Equation (1) has exactly one entire solution x with
x(0) = v and satisfying (25) given by

x(t) = eMtv for t ∈ (−∞, ∞), (26)

where M ∈ Cn×n is the solution of Equation (5) with property (6).

Proof. By Lemma 4, x defined by Equation (26) is an entire solution of Equation (1).
Moreover, from Equations (6) and (26), we find for t ≤ 0,

‖x(t)‖ ≤ e‖M‖|t|‖v‖ ≤ eµ0|t|‖v‖ = e−µ0t‖v‖.

Hence supt≤0 ‖x(t)‖eµ0t ≤ ‖v‖ < ∞. Thus, x given by Equation (26) is an entire solution
of Equation (1) with x(0) = v and satisfying (25). The uniqueness follows from Lemma 5.

Now we can give a proof of Theorem 3.

Proof of Theorem 3. Suppose that λ ∈ Λ. Since det ∆(λ) = 0, there exists a nonzero vector v ∈ Cn

such that ∆(λ)v = 0 and hence x(t) = eλtv, t ∈ (−∞, ∞), is an entire solution of Equation (1).
Since Re λ > −µ0, we have for t ≤ 0,

‖x(t)‖ = |eλt|‖v‖ = et Re λ‖v‖ ≤ e−µ0t‖v‖,

which implies (25). Thus, x(t) = eλtv is an entire solution of (1) with x(0) = v and satisfying (25). By
Lemma 6, we have that eλtv = eMtv for t ∈ (−∞, ∞). Hence

eλt − 1
t

v =
eMt − I

t
v for t ∈ R \ {0}.
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Letting t→ 0, we obtain λv = Mv. This proves that Λ ⊂ σ(M).
Now suppose that λ ∈ σ(M). Then there exists a nonzero vector v ∈ Cn such that Mv = λv.

According to Lemma 4, x(t) = eMtv = eλtv is an entire solution of Equation (1). Hence ∆(λ)v = 0
which implies that det ∆(λ) = 0. In order to prove that λ ∈ Λ, it remains to show that Re λ > −µ0. It is
well-known that ρ(M) ≤ ‖M‖, where ρ(M) = supλ∈σ(M) |λ| is the spectral radius of M. This, together
with (6), yields

|Re λ| ≤ |λ| ≤ ρ(M) ≤ ‖M‖ < µ0.

Therefore Re λ > −µ0 which proves that σ(M) ⊂ Λ.
Let λ ∈ Λ = σ(M). By Lemma 4, every eigensolution of the ordinary differential equation (4)

corresponding to λ is an eigensolution of the delay differential equation (1). Now suppose that x is an
eigensolution of the delay differential equation (1) corresponding to λ. Then x(t) = p(t)eλt, where p(t)
is a Cn-valued polynomial in t. If m is the order of the polynomial p, then there exists K > 0 such that

‖p(t)‖ ≤ K(1 + |t|m) for t ∈ (−∞, ∞).

Since Re λ > −µ0, we have that ε = Re λ + µ0 > 0. From this, we find for t ≤ 0,

‖x(t)‖ = ‖p(t)‖|eλt| = ‖p(t)‖et Re λ ≤ K(1 + |t|m)et Re λ = K(1 + |t|m)eεte−µ0t.

Hence
‖x(t)‖eµ0t ≤ K(1 + |t|m)eεt −→ 0 as t→ −∞.

Thus, x is an entire solution of Equation (1) satisfying the growth condition (25). By Lemma 6, x
is a solution of the ordinary differential equation (4).

2.3. Asymptotic Equivalence

The following result from the monograph by Diekmann et al. [2] gives an asymptotic description
of the solutions of Equation (1) in terms of the eigensolutions.

Proposition 1. ([2] Chapter I, Theorem 5.4) Let x : [−τ, ∞) → Cn×n be a solution of Equation (1)
corresponding to some continuous initial function φ : [−τ, 0]→ Cn. For any γ ∈ R such that det ∆(λ) = 0
has no roots on the vertical line Re λ = γ, we have the asymptotic expansion

x(t) =
l

∑
j=1

pj(t)e
λjt + o(eγt) as t→ ∞, (27)

where λ1, λ2, . . . , λl are the finitely many roots of the characteristic equation (2) with real part greater than γ

and pj(t) are Cn-valued polynomials in t of order less than the multiplicity of λj as a zero of det ∆(λ).

Now we can formulate our main result about the asymptotic equivalence of Equations (1) and (4).

Theorem 4. Suppose that (3) holds so that µ0 = −τ−1 ln(‖B‖τ) > 0. Let M ∈ Cn×n be the solution of
Equation (5) satisfying (6). Then the following statements are valid.

(i) Every solution of the ordinary differential equation (4) is an entire solution of the delay differential
equation (1).

(ii) For every solution x : [−τ, ∞)→ Cn×n of the delay differential equation (1) corresponding to some
continuous initial function φ : [−τ, 0]→ Cn, there exists a solution x̃ of the ordinary differential equation (4)
such that

x(t) = x̃(t) + o(e−µ0t) as t→ ∞. (28)

Proof. Conclusion (i) follows from Lemma 1. We shall prove conclusion (ii) by applying Proposition 1
with γ = −µ0. We need to verify that Equation (2) has no root on the vertical line Re λ = −µ0. Suppose for
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contradiction that there exists λ ∈ C such that det ∆(λ) = 0 and Re λ = −µ0. Then there exists a nonzero
vector v ∈ Cn such that ∆(λ)v = 0 and hence λv = Av + Be−λτv. From this, we find that

|λ|‖v‖ ≤ ‖A‖‖v‖+ ‖B‖‖e−λτv‖ = ‖A‖‖v‖+ ‖B‖|e−λτ |‖v‖
= (‖A‖+ ‖B‖e−τ Re λ)‖v‖ = (‖A‖+ ‖B‖eµ0τ)‖v‖.

Hence |λ| ≤ ‖A‖+ ‖B‖eµ0τ , which together with (17), yields

µ0 = |Re λ| ≤ |λ| ≤ ‖A‖+ ‖B‖eµ0τ < µ0,

a contradiction. Thus, we can apply Proposition 1 with γ = −µ0, which implies that the asymptotic
relation (28) holds with

x̃(t) =
l

∑
j=1

pj(t)e
λjt, (29)

where λ1, λ2, . . . , λl are those eigenvalues of Equation (1) which have real part greater than −µ0 and
pj(t) are Cn-valued polynomials in t. According to Theorem 3, the eigensolutions of Equation (1)
corresponding to eigenvalues with real part greater than −µ0 are solutions of the ordinary differential
equation (4). Hence x̃ given by Equation (29) is a solution of Equation (4).

2.4. Approximation of the Dominant Eigenvalues

We will need the following result about the distance of the eigenvalues of two matrices in terms
of the norm of their difference due to Bhatia, Elsner and Krause [3].

Proposition 2. [3, Theorem 3] Let P, Q ∈ Cn×n and γ = max{‖P‖, ‖Q‖}. Then the eigenvalues of P
and Q can be enumerated as λ1, , . . . , λn and µ1, . . . , µn in such a way that

max
1≤j≤n

|λj − µj| ≤ 4 · 2−1/nn1/n(2γ)1−1/n‖P−Q‖1/n. (30)

Recall that the dominant eigenvalues of Equation (1) are those roots of Equation (2) which have
real part greater than −µ0. According to Theorem 3, if (3) holds, then the dominant eigenvalues
of Equation (1) coincide with the eigenvalues of M, the unique solution of Equation (5) satisfying (6).
By Theorem 2, M can be approximated by the sequence of matrices {Mk}∞

k=0 defined by (8). As a
consequence, the dominant eigenvalues of the delay differential equation (1) can be approximated by
the eigenvalues of Mk. The explicit estimate (23) for ‖M−Mk‖, combined with Proposition 2, yields
the following result.

Theorem 5. Suppose (3) holds so that the dominant eigenvalues of Equation (1) coincide with the eigenvalues
λ1, . . . , λn of matrix M from Theorem 1 (see Theorem 3). If {Mk}∞

k=0 is the sequence of matrices defined by (8),

then the eigenvalues λ
[k]
1 , . . . , λ

[k]
n of Mk can be renumbered such that

max
1≤j≤n

|λj − λ
[k]
j | ≤ 8 · 4−1/nn1/nµ1qk/n, (31)

where µ1 and q have the meaning from Theorem 2.

Since q < 1, the explicit error estimate (31) in Theorem 5 shows that under the smallness
condition (3) the eigenvalues of Mk converge to the dominant eigenvalues of the delay differential
equation (1) at an exponential rate as k→ ∞.
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3. Discussion

Let us briefly mention some results which are relevant to our study. For a class of linear differential
equations with small delay, Ryabov [4] introduced a family of special solutions and showed that every
solution is asymptotic to some special solution as t→ ∞. Ryabov’s result was improved by Driver [5],
Jarník and Kurzweil [6]. A more precise asymptotic description was given in [7]. For further related
results on asymptotic integration and stability of linear differential equations with small delays, see [8]
and [9]. Some improvements and a generalization to functional differential equations in Banach spaces
were given by Faria and Huang [10]. Inertial and slow manifolds for differential equations with small
delays were studied by Chicone [11]. Results on minimal sets of a skew-product semiflow generated
by scalar differential equations with small delay can be found in the work of Alonso, Obaya and
Sanz [12]. Smith and Thieme [13] showed that nonlinear autonomous differential equations with small
delay generate a monotone semiflow with respect to the exponential ordering and the monotonicity
has important dynamical consequences. For the effects of small delays on the stability and control,
see the paper by Hale and Verduyn Lunel [14].

The results in the above listed papers show that if the delay is small, then there are
similarities between the delay differential equation and an associated ordinary differential equation.
The description of the associated ordinary differential equation in general requires the knowledge of
certain special solutions. Since in most cases the special solutions are not known, the above results are
mainly of theoretical interest. In the present paper, in the simple case of linear autonomous differential
equations with small delay, we have described the coefficient matrix of the associated ordinary
differential equation. Moreover, we have shown that the coefficient matrix can be approximated by a
sequence of matrices defined recursively which yields an effective method for the approximation of
the dominant eigenvalues.
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