The Erez–Rosen Solution Versus the Hartle–Thorne Solution
Abstract
:1. Introduction
2. The Erez–Rosen Metric
3. The Linearized Erez–Rosen Solution in Terms of the Zipoy–Voorhees Parameter
4. The Exterior Hartle–Thorne Solution
5. Coordinate Transformations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Boshkayev, K.; Quevedo, H.; Ruffini, R. Gravitational field of compact objects in general relativity. Phys. Rev. D 2012, 86, 064043. [Google Scholar] [CrossRef]
- Erez, G.; Rosen, N. The gravitational field of a particle possessing a quadripole moment. Bull. Res. Counc. Israel 1959, 8, 47. [Google Scholar]
- Hartle, J.B. Slowly rotating relativistic stars. I. Equations of structure. Astrophys. J. 1967, 150, 1005. [Google Scholar] [CrossRef]
- Hartle, J.B.; Thorne, K.S. Slowly rotating relativistic stars. II. Models for neutron stars and supermassive stars. Astrophys. J. 1968, 153, 807. [Google Scholar] [CrossRef]
- Weyl, H. Zur gravitationstheorie. Annalen der Physik 1917, 359, 117–145. [Google Scholar] [CrossRef]
- Doroshkevich, A.G.; Zel’Dovich, Y.B.; Novikov, I.D. Gravitational collapse of nonsymmetric and rotating masses. Sov. J. Exp. Theor. Phys. 1966, 22, 122. [Google Scholar]
- Winicour, J.; Janis, A.I.; Newman, E.T. Static, axially symmetric point horizons. Phys. Rev. 1968, 176, 1507–1513. [Google Scholar] [CrossRef]
- Young, J.H.; Coulter, C.A. Exact metric for a nonrotating mass with a quadrupole moment. Phys. Rev. 1969, 184, 1313–1315. [Google Scholar] [CrossRef]
- Zeldovich, Y.B.; Novikov, I.D. Relativistic Astrophysics. Volume 1: Stars and Relativity; University of Chicago Press: Chicago, IL, USA, 1971. [Google Scholar]
- Quevedo, H.; Parkes, L. Geodesies in the Erez-Rosen space-time. Gen. Relativ. Gravit. 1989, 21, 1047–1072. [Google Scholar] [CrossRef]
- Quevedo, H. General static axisymmetric solution of Einstein’s vacuum field equations in prolate spheroidal coordinates. Phys. Rev. D 1989, 39, 2904–2911. [Google Scholar] [CrossRef]
- Quevedo, H. Multipole moments in general relativity static and stationary vacuum Solutions. Fortschritte der Physik 1990, 38, 733–840. [Google Scholar] [CrossRef]
- Quevedo, H.; Mashhoon, B. Exterior gravitational field of a rotating deformed mass. Phys. Lett. A 1985, 109, 13–18. [Google Scholar] [CrossRef]
- Quevedo, H.; Mashhoon, B. Exterior gravitational field of a charged rotating mass with arbitrary quadrupole moment. Phys. Lett. A 1990, 148, 149–153. [Google Scholar] [CrossRef]
- Lewis, T. Some Special Solutions of the Equations of Axially Symmetric Gravitational Fields. Proc. R. Soc. Lon. Ser. A 1932, 136, 176–192. [Google Scholar] [CrossRef]
- Papapetrou, A. Eine rotationssymmetrische Lösung in der allgemeinen Relativitätstheorie. Annalen der Physik 1953, 447, 309–315. [Google Scholar] [CrossRef]
- Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237–238. [Google Scholar] [CrossRef]
- Bini, D.; Geralico, A.; Luongo, O.; Quevedo, H. Generalized Kerr spacetime with an arbitrary mass quadrupole moment: geometric properties versus particle motion. Class. Quantum Gravity 2009, 26, 225006. [Google Scholar] [CrossRef]
- Stergioulas, N. Rotating stars in relativity. Living Rev. Relativ. 2003, 6, 3. [Google Scholar] [CrossRef]
- Boshkayev, K.; Rueda, J.A.; Ruffini, R.; Siutsou, I. On general relativistic uniformly rotating white dwarfs. Astrophys. J. 2013, 762, 117. [Google Scholar] [CrossRef]
- Belvedere, R.; Boshkayev, K.; Rueda, J.A.; Ruffini, R. Uniformly rotating neutron stars in the global and local charge neutrality cases. Nuclear Phys. A 2014, 921, 33–59. [Google Scholar] [CrossRef] [Green Version]
- Weber, F.; Glendenning, N.K. Application of the improved Hartle method for the construction of general relativistic rotating neutron star models. Astrophys. J. 1992, 390, 541–549. [Google Scholar] [CrossRef]
- Urbanec, M.; Miller, J.C.; Stuchlík, Z. Quadrupole moments of rotating neutron stars and strange stars. Mon. Not. Roy. Astr. Soc. 2013, 433, 1903–1909. [Google Scholar] [CrossRef] [Green Version]
- Yagi, K.; Kyutoku, K.; Pappas, G.; Yunes, N.; Apostolatos, T.A. Effective no-hair relations for neutron stars and quark stars: Relativistic results. Phys. Rev. D 2014, 89, 124013. [Google Scholar] [CrossRef]
- Mashhoon, B.; Theiss, D.S. Relativistic lunar theory. Nuovo Cimento B Serie 1991, 106, 545–571. [Google Scholar] [CrossRef]
- Quevedo, H.; Toktarbay, S.; Aimuratov, Y. Quadrupolar gravitational fields described by the q-metric. arXiv 2013, arXiv:1310.5339. [Google Scholar]
- Quevedo, H. Multipolar solutions. arXiv 2012, arXiv:1201.1608. [Google Scholar]
- Zipoy, D.M. Topology of some spheroidal metrics. J. Math. Phys. 1966, 7, 1137–1143. [Google Scholar] [CrossRef]
- Voorhees, B.H. Static axially symmetric gravitational fields. Phys. Rev. D 1970, 2, 2119–2122. [Google Scholar] [CrossRef]
- Geroch, R. Multipole moments. I. Flat space. J. Math. Phys. 1970, 11, 1955–1961. [Google Scholar] [CrossRef]
- Hansen, R.O. Multipole moments of stationary space-times. J. Math. Phys. 1974, 15, 46–52. [Google Scholar] [CrossRef]
- Ernst, F.J. New formulation of the axially symmetric gravitational field problem. Phys. Rev. 1968, 167, 1175–1177. [Google Scholar] [CrossRef]
- Frutos-Alfaro, F.; Quevedo, H.; Sanchez, P.A. Comparison of vacuum static quadrupolar metrics. R. Soc. Open Sci. 2018, 5, 170826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frutos-Alfaro, F.; Soffel, M. On relativistic multipole moments of stationary space-times. R. Soc. Open Sci. 2018, 5, 180640. [Google Scholar] [CrossRef] [PubMed]
- Bini, D.; Boshkayev, K.; Ruffini, R.; Siutsou, I. Equatorial Circular Geodesics in the Hartle-Thorne Spacetime. il Nuovo Cimento C 2013, 36, 31. [Google Scholar]
- Frutos-Alfaro, F.; Soffel, M. On the post-linear quadrupole-quadrupole metric. Rev. Mat. Teor. Apl. 2017, 24, 239. [Google Scholar] [CrossRef]
- Boshkayev, K.A.; Quevedo, H.; Abutalip, M.S.; Kalymova, Z.A.; Suleymanova, S.S. Geodesics in the field of a rotating deformed gravitational source. Int. J. Mod. Phys. A 2016, 31, 1641006. [Google Scholar] [CrossRef] [Green Version]
- Boshkayev, K.; Gasperín, E.; Gutiérrez-Piñeres, A.C.; Quevedo, H.; Toktarbay, S. Motion of test particles in the field of a naked singularity. Phys. Rev. D 2016, 93, 024024. [Google Scholar] [CrossRef] [Green Version]
- Allahyari, A.; Firouzjahi, H.; Mashhoon, B. Quasinormal modes of a black hole with quadrupole moment. Phys. Rev. D 2019, 99, 044005. [Google Scholar] [CrossRef] [Green Version]
- Allahyari, A.; Firouzjahi, H.; Mashhoon, B. Quasinormal modes of generalized black holes: Delta-Kerr spacetime. arXiv 2019, arXiv:1908.10813. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boshkayev, K.; Quevedo, H.; Nurbakyt, G.; Malybayev, A.; Urazalina, A. The Erez–Rosen Solution Versus the Hartle–Thorne Solution. Symmetry 2019, 11, 1324. https://doi.org/10.3390/sym11101324
Boshkayev K, Quevedo H, Nurbakyt G, Malybayev A, Urazalina A. The Erez–Rosen Solution Versus the Hartle–Thorne Solution. Symmetry. 2019; 11(10):1324. https://doi.org/10.3390/sym11101324
Chicago/Turabian StyleBoshkayev, Kuantay, Hernando Quevedo, Gulmira Nurbakyt, Algis Malybayev, and Ainur Urazalina. 2019. "The Erez–Rosen Solution Versus the Hartle–Thorne Solution" Symmetry 11, no. 10: 1324. https://doi.org/10.3390/sym11101324
APA StyleBoshkayev, K., Quevedo, H., Nurbakyt, G., Malybayev, A., & Urazalina, A. (2019). The Erez–Rosen Solution Versus the Hartle–Thorne Solution. Symmetry, 11(10), 1324. https://doi.org/10.3390/sym11101324