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Abstract: Relativity theory assumes that force fields propagate with the speed of light. We show
that such force fields generated by a single source can be described by a pre-potential, which is a
complex-valued function on spacetime outside the worldline of the source. The pre-potential is
invariant under a spin-half representation of the Lorentz group acting on complexified spacetime.
The complex four-potential of such a field is defined and calculated explicitly from the pre-potential
without assuming any particular force law for the field. The real part of the obtained four-potential
coincides with the known Liénard–Wiechert potential. The symmetry of the four-potential is
described herein. The pre-potential satisfies the wave equation. The single source electromagnetic
field derived from this four-potential is self-dual or anti-self-dual. The pre-potential and the
four-potential are extended to a field with several sources.

Keywords: retarded potential; Whittaker scalar potential; pre-potential; Lorentz invariance; spin-half
representation; self-dual field

1. Introduction and Motivation

The main distinction between classical and relativistic physics is the speed with which fields
propagate. Classically, the field acts instantaneously, while in relativity it is assumed that fields
propagate with the speed of light. It is known that both electric fields and gravitational fields propagate
with the speed of light. These fields are generated by moving charges and moving masses, respectively.
We start here with the field generated by a single source. A description of a field generated by more
than one source can be obtained by integration.

In this paper, we describe the field using a scalar-valued pre-potential. This approach has its
origins in the work of E. T. Whittaker, who in 1904 introduced [1] two scalar potential functions. He was
thus able to reduce the degrees of freedom of the electromagnetic field description to two. He showed
that the electromagnetic field can be expressed in terms of the second derivatives of these functions.
However, he was not able to find the covariance of his scalar potentials. H. S. Ruse [2] improved the
result of Whittaker. A. O. Barut, S. Malin and M. Semon [3,4] presented another alternative formulation
of classical electrodynamics in terms of a single scalar function.

In 2009, the first author and S. Gwertzman [5] showed that it is possible to use Whittaker’s two
scalar potentials as the real and complex parts of one complex-valued function ψ(x) on Minkowski
space, called the pre-potential of the electromagnetic field. Moreover, in [6,7], it was shown that
this pre-potential is invariant under a spin-half representation of the Lorentz group. Thus, this
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pre-potential provides a covariant description of an electromagnetic field with minimal degrees of
freedom. The electromagnetic field tensor is a contraction of the second derivatives of the pre-potential
with the Dirac α-matrices. The pre-potential is also relevant to the Aharonov-Bohm effect [8].

One of the motivations for using complex numbers to describe a field comes from the two types
of acceleration that a field generates. Linear acceleration expresses the rate of change of the magnitude
of the velocity, while rotational acceleration expresses the rate of change of the direction of the velocity.
For example, an electric field E generates a linear acceleration, and a magnetic field B generates a
rotational acceleration. Note that E is a vector, but B is a pseudo-vector, meaning that its sign depends
on an arbitrary choice of orientation. In a gravitational field, the linear acceleration vector can be
measured by an accelerometer, while a gyroscope measures the rotational acceleration, which is also
represented by a pseudo-vector. In order to combine E and B, we introduce a pseudo-scalar i, which
changes sign upon a change of orientation. We multiply the pseudo-vector B by the pseudo-scalar i.
Then, the resulting complex Faraday vector F = E + iB is independent of the choice of orientation.

The electromagnetic field strength tensor can be described as a derivative of the four-potential.
Thus, we may expect that the four-potential is the derivative of a scalar function on spacetime, which
we will call the pre-potential. Note that the usual differential of a gradient of a real-valued function
is zero. Moreover, in order to describe rotational acceleration, the pre-potential must be complex
valued. As a result, it is necessary to define a Lorentz-invariant conjugation on complexified spacetime.
The four-potential is the conjugation of the gradient of the pre-potential. The electromagnetic field is
then obtained by taking the curl of the four-potential. For a gravitational field, the pre-potential and
the four-potential are derived in a similar fashion. However, getting from the four-potential to the field
is handled differently.

The outline of the paper is as follows. In Section 2, we define our pre-potential and four-potential
of any field, propagating with the speed of light, generated by a single source. The pre-potential ψ(x)
at x is defined by the strength of the source and the relative position r of the source at the retarded
time. The relative position is a null vector in Minkowski spacetime. By introducing bipolar coordinates
in spacetime, we associate to r a complex angle ζ describing the relative direction of the source and
the observer. The pre-potential ψ(x) is defined everywhere outside the source as the product of the
strength of the source and the direction angle ζ. The direction angle of the source at the retarded time
is easily calculated from the observed direction.

The next step is to find a representation πL of the Lorentz group under which the pre-potential
is invariant. This representation is based on the identification of spacetime points with linear
combinations of the Pauli matrices. We show that it is a spin-half representation and can be expressed
by anti-self-dual matrices. Our approach here can also be cast in the language of the quaternions [9],
the theory of spinors [10] and the Clifford or geometric algebra approaches to electrodynamics [11].
We show that the direction angle, and therefore, the pre-potential, are invariant under πL.

We define a conjugation on complex Minkowski space which commutes with πL and then
calculate the complex four-potential of the field. The four-potential is a complex extension of the
Liénard–Wiechert potential [12]. The symmetries of the four-potential are investigated. It is surprising
that field propagation with the speed of light is enough to obtain this four-potential. For example, we
do not assume that the field satisfies an inverse-square law. We end Section 2 by showing that the
pre-potential satisfies the wave equation.

In Section 3, we restrict the analysis to the electromagnetic field. We obtain the complex field
tensor by taking the curl of the four-potential. The real part of the field tensor is the usual field tensor
of a field generated by a single source. The complex part of the field tensor makes the complex tensor
anti-self-dual. If one replaces the pre-potential with its complex conjugate, the resulting field tensor is
self-dual. This shows that our description is independent of the choice of orientation.

Anti-self-duality is important for obtaining explicit formulas for charge evolution in
electromagnetic fields [13,14]. The importance of self-duality with respect to the symmetry of Maxwell’s
equations is explained in [15]. In [16,17], a complex four-potential was used to obtain a dual-symmetric
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quantum field theory. However, the self-duality of the field derived from it was assumed. In [18] as
well, two real potentials were used to study the quantum field theory of charged particles.

We end the paper by indicating how to extend the model to a field generated by many sources.
We write the components of the field tensor in terms of the total pre-potential and the α-matrices of
Dirac. We obtain Maxwell’s equations for the pre-potential.

2. Pre-Potential and Four-Potential of a Field Generated by a Single Source

In this section, we define the pre-potential of an arbitrary field propagating with the speed of light,
generated by a single source. We will study its properties and derive the corresponding four-potential.
All of the information about the field is contained in the pre-potential. We also study the Lorentz
invariance and the symmetries of the pre-potential and the four-potential.

2.1. Definition of the Pre-Potential of a Field Generated by a Single Source

In this section, we construct the pre-potential of a field propagating with the speed of light,
generated by a moving source. Let M be four-dimensional Minkowski spacetime, with coordinates
x = xµ, where µ = 0, 1, 2, 3. The Minkowski inner product is

x · y = ηµνxµyν, η = diag(1,−1,−1,−1), (1)

for x, y ∈ M.
Consider the field generated by a single source, and denote by x̌(τ) = x̌µ(τ) the worldline of

the source, parameterized by proper time parameter τ. To define the pre-potential at the spacetime
point x = xµ, let the point x̌(τ(x)) be the unique point of intersection of the past light cone at x with
the worldline x̌(τ) of the source. The time τ(x) on the worldline of the source, corresponding to this
intersection, is uniquely determined by the point x and is called the retarded time. Since the field
propagates with the speed of light, the field at x is proportional to the strength of the source and may
depend only on the source’s relative position

r(x) = x− x̌(τ(x)) (2)

at the retarded time τ(x). The relative position r is a null vector with a positive time component. This
vector belongs to the upper half-plane

M+ = {r ∈ M : r0 ≥ 0}. (3)

We stress that we do not assume that our field satisfies an inverse-square law. Nevertheless, for
purposes of dimensional analysis, it is worthwhile to observe that the potential of a field obeying
an inverse-square law is U(r) = k/r, for some constant k defining the strength of the source. This

potential has dimensions
[k]

length
. If this potential is to be the derivative of our pre-potential, our

pre-potential should have dimensions [k]. Thus, the pre-potential should be the product of k and a
unit-free scalar describing the relative position null vector r. As we know, angles are unit-free scalars
associated to vectors.

Introduce bipolar (BP) coordinates (ρ0, ρ1, ϕ, θ) defined, for any r ∈ M+, by

r0 = ρ0 cosh θ, r1 = ρ1 cos ϕ, r2 = ρ1 sin ϕ, r3 = ρ0 sinh θ . (4)

The angle ϕ in these coordinates is the usual polar angle ϕ in the plane Π1 = Span(r1, r2),
equipped with the Euclidean metric, and is defined up to the addition of an integer multiple of 2π.
To have ϕ defined uniquely, we can restrict to the interval 0 ≤ ϕ < 2π, but this entails a loss of
continuity. For the complementary plane Π0 = Span(r0, r3), the metric is hyperbolic, and thus the
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associated angle θ is hyperbolic. These coordinates lead to a simple form for the pre-potential, but to
achieve this involves splitting 4D spacetime into a sum of two planes Π0 and Π1.

For any point x ∈ M+, using (4), we define a local orthonormal frame {dα}:

d0 =
∂r

∂ρ0 = (cosh θ, 0, 0, sinh θ), d1 =
∂r

∂ρ1 = (0, cos ϕ, sin ϕ, 0)

d2 =
1
ρ1

∂r
∂ϕ

= (0,− sin ϕ, cos ϕ, 0), d3 =
1
ρ0

∂r
∂θ

= (sinh θ, 0, 0 cosh θ),

and the dual basis {dα} of co-vectors dα
µ = ηµνdν

α. We use boldface indices for the BP basis and dual
basis to distinguish from the usual basis. Note that differentiation by θ and ϕ maps the local frame
into itself:

d0,θ = d3, d3,θ = d0, d1,ϕ = d2, d2,ϕ = −d1. (5)

In BP coordinates, a null vector r belongs to a hyperplane ρ0 = ρ1 = ρ and is of the form

r = ρ(cosh θ, cos ϕ, sin ϕ, sinh θ), (6)

or
r = ρ(d0 + d1) . (7)

The past light cone LCx about a point x is

LCx = {x− ρ(cosh θ, cos ϕ, sin ϕ, sinh θ) : ρ > 0,−∞ < θ < ∞, 0 ≤ ϕ < 2π}. (8)

Note that if r = 0, meaning that the point x is on the worldline of the source, then θ and ϕ are
not defined.

As mentioned above, the pre-potential of the field is proportional to the strength k of the
source and depends on an angle determined by the relative position of the source. We propose
the following definition.

Definition 1. For any x ∈ Mc not on the worldline of the source, the pre-potential of the field generated by a
single source of constant strength k is defined by

ψ(x) = k(θ − iϕ), (9)

a product of k and the complex angle
ζ = θ − iϕ (10)

of its relative position r(x) defined by (2).

Note that the field strength k can be positive or negative.
We could have defined the angle to be ζ = θ + iϕ. This would amount to a change of orientation

of the spatial axes, and, later, would require using right multiplication in our representation of the
Lorentz group instead of left multiplication. Since operators usually act from the left, we have chosen a
minus sign in the complex angle. In Section 2.4, we will show that the pre-potential is invariant under
a representation of the Lorentz group.

Note that any stellar observation can be translated into the complex angle. For any observation,
we have the angles ϕ̃, θ̃ of the spherical coordinates. We may assume ϕ = ϕ̃, and using (6), we obtain
θ = tanh−1(cos θ̃). Thus, the complex angle ζ is calculated directly form the observation.

In order to restore the continuity lost by restricting to 0 ≤ ϕ < 2π, we may define the following
continuous prepotential.
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Definition 2. For any x ∈ Mc not on the worldline of the source, the "continuous pre-potential of the field
generated by a single source" of constant strength k is defined by

ψ̃(x) = keζ , (11)

where ζ is defined by (10).

As we show later, the four-potential derived from Definition 1 is a complex extension of the
usual electromagnetic four-potential, while the continuous four-potential is closer to the quantum
mechanics model.

We could have defined the pre-potential using the complex conjugate angle ζ. This is equivalent
to a change of orientation.

The following properties of the derivatives of the complex angle with respect to rµ will be needed
later. Now, we must introduce two null-vectors n = (1, 0, 0,−1) and m = (0,−1,−i, 0). These are two
of the four vectors of the Newman–Penrose tetrad [19]. Then r · n = ρeθ and r ·m = ρeiϕ, implying

that ζ = ln
r · n
r ·m = ln(r · n)− ln(r ·m). Thus,

∂ζ

∂rµ =
nµ

r · n −
mµ

r ·m .

This implies that

∇rζ · r = ∂ζ

∂rµ rµ =
rµnµ

r · n −
rµmµ

r ·m =
r · n
r · n −

r ·m
r ·m = 0, (12)

meaning that the gradient of ζ with respect to r is perpendicular to r. Moreover, since n, m are null, the
d’Alembertian of ζ with respect to r vanishes:

�rζ = ηµν ∂2ζ

∂rµ∂rν
= − n · n

(r · n)2 +
m ·m
(r ·m)2 = 0. (13)

2.2. Matrix Representations of Spacetime

Since the pre-potential is a complex-valued function on M, its gradient is a vector in complexified
Minkowski space Mc, which is C4 endowed with the unconjugated Minkowski inner product x · y =

ηµνxµyν. In order to obtain a representation of the Lorentz group under which the pre-potential is
invariant, we introduce the following identification of Mc with 2× 2 complex matrices:

Φ(x) =

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
(14)

(see [20,21] and references therein). The components of this matrix are the coordinates of x with
respect to the Newman-–Penrose null tetrad, but identifying the vector as a matrix enables the use of
additional mathematical tools such as matrix multiplication and determinants. We observe that matrix
multiplication is associative but not commutative. Non-commutativity is one of the major distinctions
between the classical and quantum models. Note that (x)2 = det Φ(x).

Using the Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
, (15)

we can write
Φ(x) = xµσµ. (16)
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The Pauli matrices satisfy the canonical anti-commutation relationships

{σj, σk} =
1
2
(σjσk + σkσj) = δj,k I , j, k = 1, 2, 3, (17)

where δj,k is the Kronecker delta and I is the identity. The multiplication rules for the Pauli matrices are

σ0σj = σjσ0 = σj, σ1σ2 = −iσ3, σ2σ3 = −iσ1, σ3σ1 = −iσ2. (18)

The identification of Mc by the matrices Φ(x) is related to the quaternion approach [10], which
has long been used in relativity, geometry and quantum mechanics. The quaternions have the form
q = q0 + q1i + q2j + q3k, qµ ∈ C. The multiplication rules (18) of the matrices σ0, iσ1, iσ2, iσ3 are the
same as those of the quaternions {1, i, j, k}. Note that the quaternion multiplication is associative but
not commutative, as is matrix multiplication. This means that all of our results here can be translated
into the language of the quaternions.

2.3. Lorentz Group Representations of Mc

The Lorentz group is generated by boosts Bj in the direction xj and rotation Rj about the xj axis,
for j = 1, 2, 3. The regular representation π of the Lorentz group on M is by use of the Lorentz
transformations defined by a velocity in the direction xj for boosts Bj, and multiplication by a
rotation matrix about the xj axis for the rotation Rj. This representation has a natural extension
to a representation on Mc.

Under the identification (14) of Mc with 2× 2 matrices, the representation π may be obtained by
multiplication of Φ(x) from both the left and the right by certain 2× 2 matrices. This indicates that the
regular representation π can be decomposed into a product of two representations πL and πR of the
Lorentz group on Mc, where πL acts by left multiplication on Φ(x) and πR acts by right multiplication
on Φ(x).

To define a representation of the Lorentz group, it is enough to define the representation of the
generators Bj of boosts Bj and the generators Rj of rotations Rj.

Definition 3. Under the representation πL, the generators Bj of boosts in the direction of xj and the generators
Rj of rotation about the xj axis are represented as:

πLBj(x) = Φ−1
(

1
2

σjΦ(x)
)

, πLRj(x) = Φ−1
(

i
2

σjΦ(x)
)

, (19)

for any x ∈ Mc, where σj are the Pauli matrices (15).

To show that πL is a representation of the Lorentz group, it is enough to check that πLBj and
πLRj satisfy the same commutation relations as the corresponding generators of the Lorentz group.
This follows directly from (17) and (18).

Under this representation, the boosts Bj act by left multiplication of Φ(x) by exp(
w
2

σj) and

rotations Rj act by multiplication by exp(
iω
2

σj), for parameters w, ω. From (17), it follows that

exp
(w

2
σ1

)
=

 cosh
w
2

sinh
w
2

sinh
w
2

cosh
w
2

 , exp
(

iω
2

σ1

)
=

 cos
ω

2
i sin

ω

2

i sin
ω

2
cos

ω

2

 .
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This implies that

πLB1 = Φ−1
(

exp
(w

2
σ1

)
Φ(x)

)
=



cosh
w
2

sinh
w
2

0 0

sinh
w
2

cosh
w
2

0 0

0 0 cosh
w
2
−i sinh

w
2

0 0 i sinh
w
2

cosh
w
2


(20)

and

πLR1 = Φ−1
(

exp
(

iw
2

σ1

)
Φ(x)

)
=



cos
ω

2
i sin

ω

2
0 0

i sin
ω

2
cos

ω

2
0 0

0 0 cos
ω

2
sin

ω

2

0 0 − sin
ω

2
cos

ω

2


. (21)

The formulas for the boosts B2, B3 and rotations R2, R3 are similar. This establishes that πL is a
spin-half representation of the Lorentz group.

Note that the generator Bj of a boost in the direction of xj is associated with the acceleration in
this direction, while the generator Rj of rotation about the xj axis is associated with the corresponding
rotational acceleration. Thus, as mentioned above, it is natural that the generator of a rotation is i times
the generator of a boost. Since the representation πL acts by left multiplication on the matrix Φ(x),
it acts linearly on the columns of Φ(x). Hence, this representation has two invariant subspaces

M1 = {x : x1 + ix2 = 0, x0 − x3 = 0} , M2 = {x : x0 + x3 = 0, x1 − ix2 = 0}, (22)

corresponding to the first and second column, respectively.
The matrix representation of the generators (20) of boosts are the Majorana–Oppenheimer matrices

(see [22])

(K1)
α
β =

1
2


0 1 0 0
1 0 0 0
0 0 0 −i
0 0 i 0

 , (K2)
α
β =

1
2


0 0 1 0
0 0 0 i
1 0 0 0
0 −i 0 0

 , (K3)
α
β =

1
2


0 0 0 1
0 0 −i 0
0 i 0 0
1 0 0 0

 .

The generators of rotations are iKj, j = 1, 2, 3. (After lowering the indices, these become
antisymmetric matrices).

We can define a dual representation πR by replacing the multiplication in (19) from the left by
Pauli matrices σj with multiplication by their complex conjugates σ̄j from the right, and replacing i with
−i for the generators of rotations. This representation can also be defined via the matrices K j, which
are the complex conjugates of Kj. The matrices K j are antisymmetric on Mc. The invariant subspaces
of πR are the two subspaces corresponding to the rows of Φ(x). These representations commute, and
the usual representation π of the Lorentz group is the product of these representations: π = πLπR.

We now explain the meaning of the parameter w in formula (20). A direct calculation shows that
πB1 = πL(B1)πR(B1) = πL(B1)πL(B1), which is the matrix of a Lorentz boost corresponding to the
velocity v = (c tanh w, 0, 0). Thus, w is the rapidity of v, and w/2 is the rapidity of the symmetric
velocity of v (see [23]). The operator πLB1 contains the usual boost in the (x0, x1) plane, but with
boost velocity equal to the symmetric velocity. An additional boost of the same magnitude acts on the
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(x2, ix3) plane, which is the orthogonal complement of the (x0, x1) plane. In the (x2, ix3) plane, the
Minkowski metric has the same signature as in the (x0, x1) plane.

The meaning of the parameter ω in formula (21) is similar. A direct calculation shows that
πR1 = πL(R1)πR(R1) = πL(R1)πL(R1), which is the matrix of a rotation by an angle ω. The operator
πLR1 contains a rotation in the (x2, x3) plane by the half-angle ω/2. An additional rotation by ω/2
acts on the (ix0, x1) plane, which is the orthogonal complement of the (x2, x3) plane. In the (ix0, x1)

plane, the Minkowski metric has the same signature as in the (x2, x3) plane.
The above considerations show that the representations πL and πR have symmetries not present

in the usual representation π. For example, under π, a boost acts only on the plane spanned by the
time direction and the direction of the boost, but leaves the orthogonal complement fixed. To describe
the additional symmetry of πL and πR , we define, as in [11], for any pair of vectors a, b ∈ Mc, an
operator a ∧ b by

(a ∧ b)x = a(b · x)− b(a · x), x ∈ Mc. (23)

For any basis {eµ} of Mc, a natural basis of antisymmetric operators on Mc is given by eµν = eµ ∧ eν.
The Hodge dual operator ? is a linear map defined by

? eµν =
1
2

εαβ
µνeαβ, (24)

where ε is the Levi–Civita symbol. The square of this operator is minus the identity: ?? = −I. To turn
this operator into a symmetry, we define

Λ = i ? . (25)

This is the helicity operator used in [24] . Obviously, Λ2 = I, implying that Λ is a symmetry.

Definition 4. We will call an antisymmetric tensor F "self-dual" if

F = ΛF (26)

and "anti-self-dual" if
F = −ΛF . (27)

For example, the Majorana–Oppenheimer matrices Kj are anti-self-dual. Thus, the generators of
the representation πL of Definition 3 are anti-self-dual. Similarly, the generators of the representation
πR are self-dual. The representations πL and πR correspond to different helicities.

2.4. Lorentz Invariance of the Pre-Potential and the Conjugation

We now prove the following.

Claim 1. The pre-potential ψ(x) defined by (9) and the continuous pre-potential ψ̃ defined by (11) are invariant
under the representation πL. The complex conjugates of ψ(x) and ψ̃(x) are invariant under the representation
πR. In addition, ψ(x), ψ̃ and their complex conjugates are invariant under scaling.

Using (6), Φ(r) becomes

Φ(r) = ρ

(
eθ eiϕ

e−iϕ e−θ

)
. (28)

Since the determinant of Φ(r) is zero, the first row R1 is proportional to the second row R2, and
the first column C1 is proportional to the second column C2. Explicitly,

R1 = eζ̄ R2, C1 = eζC2, (29)

where ζ is defined by (10) and ζ̄ is its complex conjugate.
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Under the representation πL, the boosts and rotations act by multiplication from the left of Φ(x) by
exp(σjω/2) and exp(iσjω/2), respectively, for a parameter ω. Since this operation is a linear map on
the columns of Φ(x), the relation (29) between the columns is preserved. This implies that eζ , and hence
ζ, are preserved under the representation πL. Thus, both the continuous pre-potential ψ̃(x) defined in
Definition 2 and the pre-potential ψ(x) defined by (9) are invariant under the representation πL.

Similarly, the representation πR, acting by multiplication from the right of Φ(x), preserves the
relation between the rows, implying that ζ̄ is preserved under the representation πR. Thus, the
complex conjugate of the pre-potential and the continuous pre-potential are invariant under the
representation πR.

Since scaling is equivalent to multiplication of the matrix Φ(x) by the scale factor, scaling preserves
the ratio (29) between the rows and the columns. Thus, the pre-potential, the continuous pre-potential
and their conjugates remain the same after scaling. This proves the claim.

The complex electromagnetic field strength tensorF should be the derivative of a co-vector-valued
four-potential A, meaning that F = ∇∧A. We cannot take A = ∇ψ, since then F = ∇∧∇ψ = 0.
Hence, we define a linear conjugation ] on complexified spacetime Mc and define the four-potential to
be ]∇ψ.

We define the conjugation ] : Mc → Mc by

]x = Φ−1 (Φ(x)σ3) . (30)

Clearly, ]2 = I, and the matrix Φ(]x) differs from the matrix Φ(x) only by a change of sign of the
second column.

For the regular representation π of the Lorentz group, there are two invariant subspaces, <Mc

and =Mc. Complex conjugation changes the sign of the second invariant subspace. Similarly, for the
representation πL, there are two invariant subspaces, M1 and M2, defined by (22), and the conjugation
]x changes the sign of the second invariant subspace.

Claim 2. The conjugation ] commutes with the representation πL of the Lorentz group.

Since matrix multiplication is associative, and ] acts by multiplication of Φ(x) from the right,
while the representation πL acts by multiplication of Φ(x) from the left, the conjugation ] commutes
with the action of πL. This proves the claim.

Similarly, a conjugation of x which changes the sign of the second row of Φ(x) is invariant under
the representation πR.

Under the Pauli matrix representation, the BP frame is

Φ(d0) =

(
eθ 0
0 e−θ

)
, Φ(d1) =

(
0 eiϕ

e−iϕ 0

)
,

Φ(d2) =

(
0 ieiϕ

−ie−iϕ 0

)
, Φ(d3) =

(
eθ 0
0 −e−θ

)
.

Thus, the conjugation on this frame is

]d0 = d3, ]d3 = d0, ]d1 = id2, ]d2 = −id1. (31)

On the local frame of co-vectors, defined by dα
µ = ηµνdν

α, α = 0, 1, 2, 3, the conjugation is

]d0 = −d3, ]d3 = −d0, ]d1 = id2, ]d2 = −id1. (32)

2.5. The Four-Potential of a Moving Source

We now define the complex four-potential of a moving source.
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Definition 5. The complex four-potential A is defined by

A = ]∇ψ, (33)

where ψ is defined by Definition 1 and ] is defined by Equation (30).

To derive an explicit formula for the complex four-potential of a moving source, we first compute
the derivatives of the relative position r(x) defined by (2). The partial derivative r,µ = ∂r/∂xµ is

rα
,µ = xα

,µ − x̌α
,µ(τ(x)) = xα

,µ − ∂x̌α/∂τ τ,µ = xα
,µ − uατ,µ,

where u denotes the four-velocity of the source at the retarded time. Note that xα
,µ = δα

µ. The vector

r(x) is null, implying that r · r,µ = 0. Thus, using the above and ηαβδ
β
µ = ηαµ, we get

0 = r · r,µ = ηαβrαrβ
,µ = ηαβrα

(
δ

β
µ − uβτ,µ

)
= ηαµrα − (r · u)τ,µ = rµ − (r · u)τ,µ.

Hence, the derivative of the retarded time is

τ(x),µ =
rµ

r · u , (34)

and hence,

rα
,µ = δα

µ −
uαrµ

r · u . (35)

Since (r)2 = 0 and (u)2 = 1, the inner product r · u is always non-zero, so equations (34) and (35)
are always well defined.

Equations (7) and (5) yield

r,µ = ρ,µd0 + ρ,µd1 + ρϕ,µd2 + ρθ,µd3. (36)

Taking the dot product of this equation with d0 and using (35) and (7) yields

ρ,µ = d0 ·
(

x,µ −
urµ

r · u

)
=

d0
µρ((d0 + d1) · u)− ρ(d0

µ − d1
µ)(d0 · u)

r · u . (37)

Using (23) and denoting d01 = d0 ∧ d1, this can be rewritten as

∇ρ

ρ
= η

d01u
r · u . (38)

Taking now, the dot product of Equation (36) with d3 and d2, respectively, and using (35) and (7),
we get

ρθ,µ = d3 ·
( urµ

r · u − x,µ

)
=

ρ(d0
µ + d1

µ)(d3 · u)− d3
µρ((d0 + d1) · u)

r · u ,

or

ρ∇θ = ηρ
((d0 + d1) ∧ d3)u

r · u = η
(r ∧ d3)u

r · u , (39)

and

ρϕ,µ = d2 ·
( urµ

r · u − x,µ

)
=

ρ(d0
µ + d1

µ)(d2 · u)− d2
µρ((d0 + d1) · u)

r · u ,

or

ρ∇ϕ = ηρ
((d0 + d1) ∧ d2)u

r · u = η
(r ∧ d2)u

r · u . (40)
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Thus, the gradient of the pre-potential defined by (9) is

∇ψ = k(∇θ − i∇ϕ) = kη
(d0 + d1) ∧ (d3 − id2))u

r · u .

Using Equation (32), the complex four-potential (Equation (33)) is

A = ]∇ψ = kη
(d0 − d1)((d0 + d1) · u)− ((d3 − id2) · u)(d3 + id2)

r · u . (41)

The numerator is a sum of three components. The first term is

d0(d0 · u)− d1(d1 · u)− d2(d2 · u)− d3(d3 · u) = u,

since this is the decomposition of u by the frame. The second term is

d0(d1 · u)− d1(d0 · u) = d01u,

which, by Equation (38), can be identified as the numerator of ρ−1∇ρ. The last term, the only imaginary
one, is

id3(d2 · u)− id2(d3 · u) = −id23u.

Thus,

A = k
ηu

r · u + k∇ ln ρ− ikη
d23u
r · u . (42)

The first term is the Liénard–Wiechert potential of the electromagnetic field of a moving source.
The second term is a gauge, since it is the gradient of a scalar function. The last term is purely imaginary.
Thus, the real part ofA is a four-potential which properly defines the electromagnetic field of a moving
source. As we show later, the complex part is needed to make the field strength anti-self-dual.

If we use the continuous pre-potential (Equation (11)), then the continuous complex
four-potential is

Ã = ]∇ψ̃ = Aψ̃. (43)

In the Dirac equation, the four-potential of the external field is an operator acting on the wave
function [25]. Thus, the continuous four-potential is closer to the quantum mechanics model.

If we change orientation and define the pre-potential to be ψ(x), then in Definition 5, we use the
conjugation ], which is invariant under πR. The resulting four-potential is then the complex conjugate
of the four-potential (42).

2.6. The Symmetry of the Complex Four-Potential

Let
A = k

ηu
r · u (44)

be the Liénard-Wiechert potential. From (41), we can write the complex four potential A as

A =
kη

r · u (u + (d01 − id23)u) = A + ηSηA, (45)

where S is the operator
S = d01 − id23. (46)

Using the definition of d01 and d23, it is easily verified that S is an instance of symmetry.
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Claim 3. Using the Pauli matrix representation, the operator S = d01 − id23 acts on x ∈ Mc by

Φ(Sx) = −Φ(x)

(
0 e−ζ

eζ 0

)
, (47)

for Φ defined by (14) and the complex angle ζ defined by (10). Moreover, S commutes with the representation πL.

It is straightforward to verify (47) by checking the action of S on the BP basis. Note that ζ is
Lorentz invariant under the representation πL. Since this representation acts by left multiplication on
Φ(x), while S acts by right multiplication, the operator S and the operators of πL commute. This proves
the Claim.

The eigenvectors of S corresponding to the eigenvalues ±1 are spacetime points x for which the
columns of Φ(x) satisfy C1 = ∓eζC2, respectively. For example, using (29), the relative position r of
the source at the retarded time with respect to the observer is mapped by S to −r, which is the relative
position of the observer with respect to the source at the retarded time. Since Φ(]r) is obtained from
Φ(r) by changing the sign of the second column, we get S(]r) = ]r.

The operator P =
1
2
(1 + S) is a projection on Mc which commutes with πL and satisfies Pr =

0, P(]r) = ]r. Using (47), for any x ∈ Mc, the norm of P(x) is

det Φ(P(x)) =
1
4

det Φ(x)det

(
1 −e−ζ

−eζ 1

)
= 0.

Note that from the definition of S, it follows that Su · u = 0. This implies that Su in purely spatial
in the frame co-moving to the source. We have thus proven the following claim.

Claim 4. The complex four potential A, defined by (45), is a scalar multiple of the null vector u + Su. In the
frame co-moving to the source, the norms of the time and space components of u + Su are 1 and −1, respectively.

Moreover, A is twice the projection P of the Liénard–Wiechert potential A of the field of a
single source.

2.7. The Pre-Potential and the Wave Equation

We show that a single-source pre-potential ψ(x) satisfies the wave equation. To prove this, we
will need the following formulas: Using (34),

u,µ = u,ττ,µ = aτ,µ =
arµ

r · u , (48)

where a is the acceleration of the source at the retarded time. Using (35), (48) and (u)2 = 1 yields

(r · u),µ = rα
,µuα + uα

,µrα = uµ −
rµ

r · u +
(r · a)rµ

r · u

and

∇ 1
r · u = η

−u
(r · u)2 + η

r− (r · a)r
(r · u)3 . (49)

Claim 5. The single-source pre-potential ψ(x), defined by (9), satisfies the wave equation 2ψ(x) = 0 for any x
outside the source.

Since ψ(x) is proportional to the complex angle ζ(x) = θ− iϕ, it is enough to show that 2ζ(x) = 0.
We get

2ζ(x) = ηµν ∂

∂xν

(
∂ζ

∂rκ

∂rκ

∂xµ

)
= ηµν ∂2ζ

∂rκ∂rα

∂rκ

∂xµ

∂rα

∂xν
+ ηµν ∂ζ

∂rκ

∂2rκ

∂xµ∂xν
. (50)
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From (35), using that r is null,

ηµν ∂rκ

∂xµ

∂rα

∂xν
= ηκα − uκrα + uαrκ

r · u ,

and from (13) and using the symmetry of mixed differentiation, the first term in (50) is

ηµν ∂2ζ

∂rκ∂rα

∂rκ

∂xµ

∂rα

∂xν
= ηκα ∂2ζ

∂rκ∂rα
− 2

∂2ζ

∂rκ∂rα

uκrα

r · u = −2
uκrα

r · u
∂2ζ

∂rκ∂rα
.

Using (35) once more, we obtain

ηµν ∂2rκ

∂xµ∂xν
= ηµν ∂

∂xν

∂

∂xν

∂rκ

∂xµ = ηµν ∂

∂xν

(
δκ

µ −
uκrµ

r · u

)
= −ηµν ∂

∂xν

uκrµ

r · u

Combining (48) and (49) yields

∂

∂xν

uκ

r · u =
aκrν

(r · u)2 −
uκuν

(r · u)2 +
uκrν(1− (r · a))

(r · u)3 .

Since rνrν = 0, we obtain

ηµν ∂2rκ

∂xµ∂xν
= − ∂

∂xν

(
rν uκ

r · u

)
= −

(
δν

ν −
uνrν

r · u

)
uκ

r · u + rν uκuν

(r · u)2 = (−3 + 1)
uκ

r · u = −2
uκ

r · u .

Finally, using (12), we arrive at

2ζ(x) = −2
uκ

r · u

(
∂2ζ

∂rκ∂rα
rα +

∂ζ

∂rκ

)
= −2

uκ

r · u
∂

∂rκ

(
∂ζ

∂rα
rα

)
= 0

This proves the claim.

3. The Electromagnetic Field Tensor of a Moving Source and Its Self-Duality

To this point, our results are valid for any field propagating with the speed of light. However,
to obtain the evolution equation, we proceed differently for gravitational and electric fields. For a
gravitational field, we use the four-potential to obtain a metric on spacetime and describe motion
by the geodesic equation with respect to this metric. From this point on, we will consider only
electromagnetic fields.

We derive first the tensor F corresponding to the Liénard–Wiechert potential A = k
ηu

r · u . For a
covector w, define the wedge product ∇∧ w by

(∇∧ w)αβ = wα,β − wβ,α.

Then, Equation (48) implies that

∇∧ ηu = η
r ∧ a
r · u .

Using (48) and (49) yields

Fµν = ∇∧ A = k
(
∇∧ ηu

r · u

)
= k
∇∧ ηu

r · u + k∇ 1
r · u ∧ ηu

= kη

(
r ∧ a
(r · u)2 +

r ∧ u− (r · a)r ∧ u
(r · u)3

)
,
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and the mixed electromagnetic field tensor is

F = Fµ
ν = k

(
r ∧ u
(r · u)3 +

r ∧ ((a ∧ u)r)
(r · u)3

)
. (51)

The first term is the near field, which falls off as 1/r2. The second term is the radiation field,
which exists only when the source is accelerating, and it falls off as 1/r.

The complex electromagnetic field tensor F can be defined from the four-potential A via F =

∇∧A or Fαβ = Aα,β −Aβ,α. We show that first.

Claim 6. The tensor F (x) = ∇∧ (]ψ(x)), with ] defined by Equation (30), is anti-self-dual.

Since the matrix form of the gradient is ∇ψ = ψ,µσµ, the matrix form of the four-potential is
A = ]∇ψ = ψ,µσµσ3, or, using Equation (18),

A = (ψ,3, iψ,2,−iψ,1, ψ,0). (52)

From this, it follows that

F01 = A0,1 −A1,0 = ψ,31 − iψ,02, F23 = A2,3 −A3,2 = −iψ,13 − ψ,20,

which implies F23 = −iF01. Similarly,

F02 = A0,2 −A2,0 = ψ,32 + iψ,10, F31 = A3,1 −A1,3 = ψ,01 − iψ,23,

which implies F31 = −iF02. But

F03 = A0,3 −A3,0 = ψ,33 − ψ,00, F12 = A1,2 −A2,1 = iψ,22 + iψ,11.

This implies that F12 = −iF03 if and only if

2ψ(x) = ψ,00 − ψ,11 − ψ,22 − ψ,33 = 0.

By Claim (5), the previous equation holds. Therefore, by the definition (26) of an anti-self-dual
operator, the tensor F (x) is anti-self-dual. This proves the claim.

By Claim 6, the tensor F is anti-self-dual and can be written as

F = F− i ? F, (53)

where F = ∇∧ A is the real electromagnetic field tensor and A = <A = k
ηu

r · u . For the orientation

corresponding to ψ(x), the corresponding complex tensor F is self-dual.
Any electromagnetic field is a sum or integral of the fields generated by its sources. Thus,

the pre-potential is also an integral of the pre-potentials of the sources. For any point x ∈ M, the
pre-potential will be defined by the distribution and the position of the source charges on the backward
light cone LCx about this point. Using bipolar coordinates (4), any point in LCx is of the form
x − r, with the null vector r defined by (6). Thus, any point in LCx is defined by (ρ, θ, ϕ), with
0 ≤ ρ < ∞, −∞ < θ < ∞, 0 ≤ ϕ < 2π. The spatial volume element is dv = ρ2dρ cosh θdθdϕ.

Denote by q(x̌) the source charge density at x̌. The pre-potential at x is then

ψ(x) =
∫

LCx
(θ − iϕ)q(x− r)dv =

=
∫ ∞

0
ρ2dρ

∫ ∞

−∞
cosh θ

∫ 2π

0
(θ − iϕ)q(x− r)dϕdθ . (54)



Symmetry 2019, 11, 1430 15 of 18

We define matrices αj for j = 1, 2, 3 on Mc by

Φ(αj(x)) = σjΦ(x)σ3. (55)

These matrices are the α-matrices of Dirac. It can be shown [7] that the Faraday vector F = E + iB
describing the electromagnetic field can be calculated from the pre-potential by

Fj(x) = αj(x)µνψ,µν. (56)

The Maxwell equations for the pre-potential become

]∇(2ψ(x)) = J(x), (57)

where J(x) is the four-current density at x.

4. Discussion

The search for a complete, alternative formulation of classical electrodynamics in terms of a single
scalar function has a long history; see [1,4,26] and references therein. In this paper, we have constructed
a pre-potential that is a single complex-valued function on spacetime, and we have shown that it
contains all the information of the field. Our pre-potential is valid for any field which propagates with
the speed of light; in particular, electromagnetic and gravitational fields.

We considered first, a field generated by a single source and then extended our results to any
number of sources. By using bipolar coordinates (4), we introduced a complex angle ζ to describe the
relative position of the observer and the source of the field at the retarded time. The pre-potential ψ(x)
is defined for any spacetime point x outside the sources. At the observation point x, the pre-potential
ψ(x), defined in Definition 1, is the product of the strength of the source and ζ. However, ψ(x)
has jump discontinuities which can be removed by redefining the pre-potential, as in Definition 2.
Both pre-potentials are defined only from the strength of the source and the observed angular direction
of the source at the retarded time, without the need to know the distance to the source or the source’s
velocity and acceleration. Note that the electromagnetic tensor Fµν of the field of a moving charge
depends on the strength, the direction angle, the distance, velocity and acceleration of the source at
the retarded time; the four-potential Aµ depends on all of the above, except the acceleration, while
ψ(x) depends only on the strength of the source and the observed angle. The effect of a change of
orientation in our model is expressed by taking the complex conjugate ψ(x) as the pre-potential.

To define the symmetries of the pre-potential, we use the spacetime identification (14)
Φ(x) = xµσµ, where σµ are the Pauli matrices. This already enables the use of matrix multiplication,
which is not commutative. The generators of the regular representation π of the Lorentz group act by
multiplication of these matrices from left and right by multiples of Pauli matrices. This representation
can be decomposed as a product of two representations πL, acting from the left, and its complex
adjoint πR, acting from the right. Both representations are spin-half representations. We have shown
that the pre-potential ψ(x) is Lorentz invariant under πL, and that ψ(x) is Lorentz invariant under πR.
The pre-potential satisfies the wave equation (Claim 5).

The helicity operator defines an important symmetry on the anti-symmetric tensors.
The representation πL acts by anti-self-dual operators, while the representation πR acts by self-dual
operators on complexified spacetime.

To define the four-potential of the field from the pre-potential, we defined an adjoint operator
on spacetime. We recognized that the representation πL has two invariant subspaces, corresponding
to the columns of Φ(x). The representation πR also has two invariant subspaces, corresponding to
the rows of Φ(x). This observation helps to define a conjugation by changing the sign of one of the
invariant subspaces. This conjugation is Lorentz invariant under the corresponding representation.
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The four-potential A is defined (33) as the conjugate of the gradient of ψ(x). Taking advantage of
the natural basis associated with bipolar coordinates, we calculated the four-potential of a field of a
moving source and found (Equation (42)) that it is a complex extension of the known Liénard—Wiechert
potential. It is surprising that the Liénard—Wiechert potential can be derived without assuming any
specific law of the field, only assuming that it propagates with the speed of light. For example, we do
not assume that the field satisfies an inverse-square law.

In Claim 4, we showed that our complex four-potential (45) is a null vector. In the frame co-moving
to the source, the time component is the usual scalar potential. The vector part has the same (in absolute
value) norm as the time component and depends on the relative position of the observer and the source
at the retarded time. We obtained a Lorentz invariant formula (47) for this vector part.

There are two ways to derive the field strength from the four-potential. The first one, used here,
assumes that the field strength is the derivative of this potential, as it is assumed for the electromagnetic
field. The second way is to define a metric based on the four-potential and to assume that the evolution
is by a geodesic with respect this metric, as in the general relativity approach to the gravitational field.
For the electromagnetic field, the field strength tensor is proportional to the source strength k, which
can be positive or negative, reflecting that the force generated by the field can be attractive or repulsive.
On the other hand, for gravitational fields, when we construct the metric from the four-potential,
the field strength will be proportional to k2. This coincides with the fact that gravitational fields are
always attractive.

We derived the electromagnetic field strength tensor from the four-potential. We have shown
in Claim 6 that a field tensor derived by use of a pre-potential is anti-self-dual. The complex
four-potential derived from ψ(x), using the conjugation associated with πR, is the complex conjugate
of the four-potential associated with ψ(x) and leads to a self-dual electromagnetic field tensor.

It is known that Maxwell’s equations are invariant under the conformal group. We have shown
here that our pre-potential is invariant under the Poincaré group and scaling. To obtain invariance
under the full conformal group, one need only check invariance with respect to the special conformal
transformation (also called the acceleration transformation) [27]. Since this transformation is not linear,
it maps the linear interval connecting the source at the retarded time and the observer to part of a
null geodesic, which may not be linear. Nevertheless, at the spacetime point x, one may define the
tangent vector ř to this null geodesic, which is a null vector. The null vector ř plays the role of the
relative position r. One can define θ̌ and ϕ̌ for this null vector with respect to a local tetrad. Based on
the invariance of the complex angle ζ under πL, we expect that this complex angle will be the same as
before the special transformation. A rigorous proof is still needed.

Assuming that the field from several sources is the sum or integral of the fields of each of the
sources, we presented a formula (54) for the pre-potential of such a field. The Faraday vector of the
electromagnetic field can be derived from the pre-potential by contracting the second derivatives of
the pre-potential with the α-matrices of Dirac. Maxwell’s equations connect the pre-potential to the
sources of the field via the d’Alembertian of the pre-potential, followed by its conjugate gradient.

The representation of a field propagating with the speed of light by the pre-potential is a model
applicable both for gravitational and electromagnetic fields. The model presented here shares some
characteristics with quantum mechanics, such as complex-valued functions, non-commuting products,
spin-half representations, and the α-matrices of Dirac. Therefore, we hope that this model will be an
interface between classical and quantum physics.
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