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Abstract: In this paper, we introduce certain aggregation operators, namely, the m-polar fuzzy (mF)
Hamacher weighted average operator, mF Hamacher ordered weighted average (mFHOWA) operator,
mF Hamacher hybrid average (mFHHA) operator, mF Hamacher weighted geometric (mFHWG)
operator, mF Hamacher weighted ordered geometric operator, and mF Hamacher hybrid geometric
(mFHHG) operator. We discuss some properties of these operators, inclusive of their ability to
implement both symmetric and asymmetric treatments of the items. We develop an algorithmic
model to solve multi-attribute decision-making (MADM) problems in mF environment using mF
Hamacher weighted average operator (mFHWA) and mFHWG operators. They can compensate for
the possible asymmetric roles of the attributes that describe the problem. In the end, to prove the
validity and feasibility of the proposed work, we give applications for selecting the most affected
country regarding human trafficking, selecting health care waste treatment methods and selecting the
best company for investment. We also solve practical MADM problems by using ELECTRE-I method,
and give a comparative analysis.

Keywords: m-polar fuzzy Hamacher aggregation operators; t-norms; ELECTRE-I method;
decision-making

1. Introduction

Multi-attribute decision-making (MADM) plays an efficient role in different domains, ranging
from engineering to social sciences. MADM approaches identify how attribute information is to be
processed to compute a suitable alternative or to rank the alternatives for supporting decision-making.
It has been broadly applied in different domains, including engineering technology [1], operation
research [2], and management science [3]. To solve decision-making problems having uncertainty,
Atanassov [4] introduced the idea of intuitionistic fuzzy sets (IFSs) which involve both membership
and non-membership functions, an efficient generalization of fuzzy sets [5] which characterize only
membership function.

Aggregation operators (AOs) play a key role in combining information into a single datum and
solving MADM issues. For instance, Yager [6] proposed weighted AOs. Xu [7] introduced some novel
AOs based on intuitionistic fuzzy sets. Xu and Yager [8] gave some novel geometric AOs with some
practical applications in MADM. From the information analysis of an alternative, it is easy to see
that there is another property that is its counterpart for each property of the alternative. With this
viewpoint, Zhang [9,10] initiated the concept of bipolar fuzzy (BF) sets. The membership degree of
BF sets enlarged from [0, 1] to [−1, 0]× [0, 1]. In a BF set, there are two membership parts, positive
and negative memberships which belong to the intervals [0, 1] and [−1, 0], respectively. BF sets have
a wide range of applications in many research domains, including medicine science [11] and decision
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analysis [12]. Wei et al. [13] presented some hesitant BF weighted arithmetic and geometric AOs. Xu
and Wei [14] developed dual hesitant BF arithmetic and geometric AOs. Garg [15] utilized linguistic
prioritized AOs to develop a MADM method under a single-valued neutrosophic environment.
Beg and Rashi [16] proposed a intuitionistic hesitant fuzzy set model for group decision-making.
Grzegorzewski [17] discussed the separability of fuzzy relations. Alcantud et al. [18] take advantage of
the theoretical foundations of aggregation operators to produce the first procedure for the aggregation
of infinitely many intuitionistic fuzzy sets, which they use to make decisions in an intertemporal
framework (i.e., with decisions that spread over an indefinitely long number of periods).

AOs are an important topic today and are attracting a great deal of attention. Hamacher
t-conorm and t-norm [19] are the algebraic and Einstein t-conorm and t-norm [20] expanded variants,
respectively. Based on Hamacher operations, AOs play an efficient role in solving different MADM
problems. Liu [21] used Hamacher operations to develop AOs for interval-valued intuitionistic fuzzy
sets environment. Many MADM models have been developed using bipolar fuzzy numbers, t-norms,
and t-conorms, for instance, Wei et al. [22] proposed some BF Hamacher arithmetic and geometric
operators and investigated their basic properties. Gao et al. [23] introduced dual hesitant BF Hamacher
prioritized weighted average and geometric operators. Due to the existence of multi-polar information
in many real situations, the concept of m-polar fuzzy (mF) sets was introduced by Chen et al. [24] as
an extension of BF sets. Khameneh and Kilucman developed certain mF soft weighted AOs. We observe
that almost all AOs used BF numbers, intuitionistic fuzzy numbers, Pythagorean fuzzy numbers, or mF
numbers without using Hamacher operations. Akram et al. [25–31] introduced several decision-making
techniques. In this research article, our main focus is how to apply Hamacher operators to aggregate
the mF information. For further terminologies which are not discussed in the paper, the readers are
referred to [32–44].

The motivation of this article is described as follows:

1. The assessment of the best alternative in an mF environment is a very difficult MADM problem
and has several imprecise factors. In the present MADM techniques, assessment data is simply
portrayed by fuzzy and BF numbers which may prompt data mutilation.

2. As a prevalent set, mF numbers demonstrates extraordinary execution in providing multi-polar
vague, reliable, and inexact assessment information. Therefore, mF numbers might be the best
way for the evaluation of alternatives using information having multi-polarity.

3. Taking into account that Hamacher AOs are a straight forward, however ground-breaking,
approach for solving decision-making issues, this article, in general, aims to define Hamacher
AOs in the mF context to tackle difficult problems of choice.

4. Hamacher AOs make the decision results more precise and exact when applied to real-life MADM
based on the mF environment.

5. The proposed operators overcome the limitations of previously existing operators.

Thus, an mF decision-making approach based on Hamacher AOs is proposed to choose the
ideal alternative. The proposed method has three main benefits compared to other strategies. First,
the method presented uses mF numbers, which can more accurately explain the problems having
multiple attributes. Secondly, the proposed method is more efficient and versatile by using only one
parameter. Thirdly, it is very important and significant to use Hamacher AOs for mF numbers and
to solve practical problems by applying them. The proposed technique is more suitable in tackling
complex realistic issues like the selection of the best health care waste treatment methods.

The main contributions of this article are:

1. The concept of Hamacher AOs is extended to mF environment. Some fundamental properties are
discussed. These operators are more flexible and can be taken as the generalization of algebraic
and Einstein operators.

2. An algorithm is developed to handle complex realistic problems with multi-polar data.
3. Lastly, the strengths and characteristics of these operators are illustrated by comparison analysis.
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The remainder of this paper is organized as follows: In Section 2, we recall some basic notions
and then introduce certain Hamacher weighted averaging operators, namely mF Hamacher weighted
average (mFHWA), mF Hamacher ordered weighted average (mFHOWA), and mF Hamacher hybrid
average (mFHHA) operators. In this section, we also developed some Hamacher weighted geometric
operators, namely mF Hamacher weighted geometric (mFHWG), mFHOWG, and mF Hamacher hybrid
geometric (mFHHG) operators. In Section 3, we provide mathematical modeling of proposed operators
to solve real-life MADM problems. In Section 4, we solve three practical MADM problems by using the
proposed operators and ELECTRE-I method. In Section 5, we give a comparison analysis. In Section 6,
we give conclusion and future directions.

2. mF Hamacher Aggregation Operators

Definition 1 ([24]). An mF set over a universe U is a function ξ : U → [0, 1]m. The membership of each
object is represented by ξ(u) = (p1 ◦ ξ(u), p2 ◦ ξ(u), . . . , pm ◦ ξ(u)) where pr ◦ ξ : [0, 1]m → [0, 1] is the r-th
projection mapping.

Let ξ̂ = (p1 ◦ ξ, . . . , pm ◦ ξ) be an mF number, where pr ◦ ξ ∈ [0, 1] for each r = 1, 2, . . . , m.

Definition 2. The score function S of an mF number ξ̂ = (p1 ◦ ξ, . . . , pm ◦ ξ) is formulated as

S(ξ̂) =
1
m

( m

∑
r=1

(pr ◦ ξ)
)

, S(ξ̂) ∈ [0, 1].

Definition 3. The accuracy function H of an mF number ξ̂ = (p1 ◦ ξ, . . . , pm ◦ ξ) is given by

H(ξ̂) =
1
m

( m

∑
r=1

(−1)r(pr ◦ ξ − 1)
)

, H(ξ̂) ∈ [−1, 1].

Clearly, for an arbitrary mF number ξ̂, S(ξ̂) ∈ [0, 1].

Definition 4. Let ξ̂1 = (p1 ◦ ξ1, . . . , pm ◦ ξ1), and ξ̂2 = (p1 ◦ ξ2, . . . , pm ◦ ξ2) be two mF numbers. Then

1. ξ̂1 < ξ̂2, if S(ξ̂1) < S(ξ̂2).
2. ξ̂1 > ξ̂2, if S(ξ̂1) > S(ξ̂2).
3. ξ̂1 = ξ̂2, If S(ξ̂1) = S(ξ̂2) and H(ξ̂1) = H(ξ̂2).
4. ξ̂1 < ξ̂2, if S(ξ̂1) = S(ξ̂2), but H(ξ̂1) < H(ξ̂2).
5. ξ̂1 > ξ̂2, if S(ξ̂1) = S(ξ̂2), but H(ξ̂1) > H(ξ̂2).

Now we describe some fundamental operations on mF numbers as follows:

1. ξ̂1�ξ̂2 =
(

p1 ◦ ξ1 + p1 ◦ ξ2 − p1 ◦ ξ1.p1 ◦ ξ2, . . . , pm ◦ ξ1 + pm ◦ ξ2 − pm ◦ ξ1.pm ◦ ξ2

)
,

2. ξ̂1�ξ̂2 =
(

p1 ◦ ξ1.p1 ◦ ξ2, . . . , pm ◦ ξ1.pm ◦ ξ2

)
,

3. αξ̂ =
(
1− (1− p1 ◦ ξ)α, . . . , 1− (1− pm ◦ ξ)α

)
, α > 0,

4. (ξ̂)α =
(
(p1 ◦ ξ)α, . . . , (pm ◦ ξ)α

)
, α > 0,

5. ξ̂c =
(
1− p1 ◦ ξ, . . . , 1− pm ◦ ξ

)
,

6. ξ̂1 ⊆ ξ̂2, if and only if p1 ◦ ξ1 ≤ p1 ◦ ξ2, . . . , pm ◦ ξ1 ≤ pm ◦ ξ2,
7. ξ̂1 ∪ ξ̂2 =

(
max(p1 ◦ ξ1, p1 ◦ ξ2), . . . , max(pm ◦ ξ1, pm ◦ ξ2)

)
,

8. ξ̂1 ∩ ξ̂2 =
(

min(p1 ◦ ξ1, p1 ◦ ξ2), . . . , min(pm ◦ ξ1, pm ◦ ξ2)
)
.

Theorem 1. Let ξ̂1 = (p1 ◦ ξ1, . . . , pm ◦ ξ1(u)) and ξ̂2 = (p1 ◦ ξ2, . . . , pm ◦ ξ2) be two mF numbers,
α, α1, α2 > 0, then
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1. ξ̂1�ξ̂2 = ξ̂2�ξ̂1,
2. ξ̂1�ξ̂2 = ξ̂2�ξ̂1,
3. α(ξ̂1�ξ̂2) = α(ξ̂1)�α(ξ̂2),
4. (ξ̂1�ξ̂2)

α = (ξ̂1)
α�(ξ̂2)

α,
5. α1ξ̂1�α2ξ̂1 = (α1 + α2)ξ̂1,
6. (ξ̂1)

α1�(ξ̂2)
α2 = (ξ̂1)

α1+α2 ,
7.

(
(ξ̂1)

α1
)α2 = (ξ̂1)

α1α2 .

Proof. Straightforward.

2.1. Hamacher Operations of mF Numbers

Hamacher [19] introduced an extension of t-norm and t-conorm. Hamacher product ⊗ and
Hamacher sum ⊕ are respectively t-norm and t-conorm, which are given as follows, for all l, t ∈ [0, 1].

T (l, t) = l ⊗ t =
lt

λ + (1− λ)(l + t− lt)
, λ > 0. (1)

T ∗(l, t) = l ⊕ t =
l + t− lt− (1− λ)lt

1− (1− λ)lt
, λ > 0. (2)

In particular, when λ = 1 in Equations (1) and (2), we get algebraic t-norm and
t-conorm, respectively.

T (l, t) = l ⊗ t = lt, (3)

T ∗(l, t) = l ⊕ t = l + t− lt, (4)

and when λ = 2 in Equations (1) and (2), we obtain Einstein t-norm and t-conorm, respectively,
as follows:

T (l, t) = l ⊗ t =
lt

1 + (1− l)(1− t)
, λ > 0. (5)

T ∗(l, t) = l ⊕ t =
l + t

1 + lt
, λ > 0. (6)

With the help of Hamacher operations defined in [22,38] for bipolar fuzzy numbers, we now
present the Hamacher operations for mF numbers. Let ξ̂1 = (p1 ◦ ξ1, . . . , pm ◦ ξ1), ξ̂2 = (p1 ◦
ξ2, . . . , pm ◦ ξ2) and ξ̂ = (p1 ◦ ξ, . . . , pm ◦ ξ) be mF numbers. We define the following basic Hamacher
operations for mF numbers with λ > 0.

• ξ̂1 ⊕ ξ̂2 =
( p1 ◦ ξ1 + p1 ◦ ξ2 − p1 ◦ ξ1.p1 ◦ ξ2 − (1− λ)p1 ◦ ξ1.p1 ◦ ξ2

1− (1− λ)p1 ◦ ξ1.p1 ◦ ξ2
, . . . ,

pm ◦ ξ1 + pm ◦ ξ2 − pm ◦ ξ1.pm ◦ ξ2 − (1− λ)pm ◦ ξ1.pm ◦ ξ2

1− (1− λ)pm ◦ ξ1.pm ◦ ξ2

)
• ξ̂1 ⊗ ξ̂2 =

( p1 ◦ ξ1.p1 ◦ ξ2

λ+(1− λ)(p1 ◦ ξ1 + p1 ◦ ξ2 − p1 ◦ ξ1.p1 ◦ ξ2)
, . . . ,

pm ◦ ξ1.pm ◦ ξ2

λ+(1− λ)(pm ◦ ξ1 + pm ◦ ξ2 − pm ◦ ξ1.pm ◦ ξ2)

)
• αξ̂ =

( (1 + (λ− 1)p1 ◦ ξ)α − (1− p1 ◦ ξ)α

(1 + (λ− 1)p1 ◦ ξ)α + (λ− 1)(1− p1 ◦ ξ)α
, . . . ,

(1 + (λ− 1)pm ◦ ξ)α − (1− pm ◦ ξ)α

(1 + (λ− 1)pm ◦ ξ)α + (λ− 1)(1− pm ◦ ξ)α

)
, α > 0

• (ξ̂)α =
( λ(p1 ◦ ξ)α

(1 + (λ− 1)(1− p1 ◦ ξ))α + (λ− 1)(p1 ◦ ξ)α
, . . . ,

λ(pm ◦ ξ)α

(1 + (λ− 1)(1− pm ◦ ξ))α + (λ− 1)(pm ◦ ξ)α

)
, α > 0.
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2.2. mF Hamacher Arithmetic Aggregation Operators

We propose mF Hamacher arithmetic aggregation operators as follows:

Definition 5. Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) be a family of mF numbers where ‘j’ varies from 1 to n. Then,
an mF Hamacher weighted average (mFHWA) operator is a mapping from ξ̂n to ξ̂, which is defined as

mFHWAθ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1

(θj ξ̂ j) (7)

where θ = (θ1, θ2, . . . , θn)T represents the weight vector of ξ̂ j, for each ‘j’ varies from 1 to n, with θj > 0 and
n
∑

j=1
θj = 1.

Theorem 2. Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) be a family of mF numbers where ‘j’ varies from 1 to n.
The accumulated value of these mF numbers using the mFHWA operator is also an mF numbers, which
is given as

mFHWAθ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1

(θj ξ̂ j),

=
( ∏n

j=1
(
1 + (λ− 1)p1 ◦ ξ j

)θj −∏n
j=1
(
1− p1 ◦ ξ j

)θj

∏n
j=1
(
1 + (λ− 1)p1 ◦ ξ j

)θj + (λ− 1)∏n
j=1
(
1− p1 ◦ ξ j

)θj
, . . . ,

∏n
j=1
(
1 + (λ− 1)pm ◦ ξ j

)θj −∏n
j=1
(
1− pm ◦ ξ j

)θj

∏n
j=1
(
1 + (λ− 1)pm ◦ ξ j

)θj + (λ− 1)∏n
j=1
(
1− pm ◦ ξ j

)θj

)
. (8)

Proof. We use the mathematical induction technique to prove it.
Case 1. When n = 1 from Equation (8), we get

mFHWAθ(ξ̂1, , ξ̂2, . . . , ξ̂n) = θ1ξ̂1 = ξ̂1, (since θ1 = 1)

=
( 1 + (λ− 1)p1 ◦ ξ1 − (1− p1 ◦ ξ1)

(1 + (λ− 1)p1 ◦ ξ1) + (λ− 1)(1− p1 ◦ ξ1)
, . . . ,

1 + (λ− 1)pm ◦ ξ1 − (1− pm ◦ ξ1)

(1 + (λ− 1)pm ◦ ξ1) + (λ− 1)(1− pm ◦ ξ1)

)
.

Thus, for n = 1 Equation (8) holds.
Case 2. We now suppose that Equation (8) holds for n = s, where s ∈ N (set of natural numbers), then
we get

mFHWAθ(ξ̂1, ξ̂2, . . . , ξ̂s) =
s⊕

j=1

(θj ξ̂ j),

=
( ∏s

j=1
(
1 + (λ− 1)p1 ◦ ξ j

)θj −∏s
j=1
(
1− p1 ◦ ξ j

)θj

∏s
j=1
(
1 + (λ− 1)p1 ◦ ξ j

)θj + (λ− 1)∏s
j=1
(
1− p1 ◦ ξ j

)θj
, . . . ,

∏s
j=1
(
1 + (λ− 1)pm ◦ ξ j

)θj −∏s
j=1
(
1− pm ◦ ξ j

)θj

∏s
j=1
(
1 + (λ− 1)pm ◦ ξ j

)θj + (λ− 1)∏s
j=1
(
1− pm ◦ ξ j

)θj

)
. (9)
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For n = s + 1,

mFHWAθ(ξ̂1, ξ̂2, . . . , ξ̂s, ξ̂s+1) =
s⊕

j=1

(θj ξ̂ j)⊕ (θs+1ξ̂s+1),

=
( ∏s

j=1
(
1 + (λ− 1)p1 ◦ ξ j

)θj −∏s
j=1
(
1− p1 ◦ ξ j

)θj

∏s
j=1
(
1 + (λ− 1)p1 ◦ ξ j

)θj + (λ− 1)∏s
j=1
(
1− p1 ◦ ξ j

)θj
, . . . ,

∏s
j=1
(
1 + (λ− 1)pm ◦ ξ j

)θj −∏s
j=1
(
1− pm ◦ ξ j

)θj

∏s
j=1
(
1 + (λ− 1)pm ◦ ξ j

)θj + (λ− 1)∏s
j=1
(
1− pm ◦ ξ j

)θj

)
⊕

( (1 + (λ− 1)p1 ◦ ξs+1)
θs+1 − (1− p1 ◦ ξs+1)

θs+1

(1 + (λ− 1)p1 ◦ ξs+1)θs+1 + (λ− 1)(1− p1 ◦ ξs+1)θs+1
, . . . ,

(1 + (λ− 1)pm ◦ ξs+1)
θs+1 − (1− pm ◦ ξs+1)

θs+1

(1 + (λ− 1)pm ◦ ξs+1)θs+1 + (λ− 1)(1− pm ◦ ξs+1)θs+1

)

=
( ∏s+1

j=1

(
1 + (λ− 1)p1 ◦ ξ j

)θj −∏s+1
j=1

(
1− p1 ◦ ξ j

)θj

∏s+1
j=1

(
1 + (λ− 1)p1 ◦ ξ j

)θj + (λ− 1)∏s+1
j=1

(
1− p1 ◦ ξ j

)θj
, . . . ,

∏s+1
j=1

(
1 + (λ− 1)pm ◦ ξ j

)θj −∏s+1
j=1

(
1− pm ◦ ξ j

)θj

∏s+1
j=1

(
1 + (λ− 1)pm ◦ ξ j

)θj + (λ− 1)∏s+1
j=1

(
1− pm ◦ ξ j

)θj

)
.

Therefore, Equation (8) holds for n = s + 1. Thus, we conclude that Equation (8) holds for any
n ∈ N.

Example 1. Let ξ̂1 = (0.2, 0.5, 0.7, 0.3), ξ̂2 = (0.8, 0.6, 0.6, 0.4) and ξ̂3 = (0.1, 0.2, 0.4, 0.5) be 4F numbers
with a weight vector θ = (0.3, 0.5, 0.2)T for these 4F numbers. Then, for λ = 3,

mFHWAθ(ξ̂1, ξ̂2, ξ̂3) =
3⊕

j=1
(θj ξ̂ j)

=
( ∏3

j=1
(
1 + (λ− 1)p1 ◦ ξ j

)θj −∏3
j=1
(
1− p1 ◦ ξ j

)θj

∏3
j=1
(
1 + (λ− 1)p1 ◦ ξ j

)θj + (λ− 1)∏3
j=1
(
1− p1 ◦ ξ j

)θj
, . . . ,

∏3
j=1
(
1 + (λ− 1)p4 ◦ ξ j

)θj −∏3
j=1
(
1− p4 ◦ ξ j

)θj

∏3
j=1
(
1 + (λ− 1)p4 ◦ ξ j

)θj + (λ− 1)∏3
j=1
(
1− p4 ◦ ξ j

)θj

)

=
( (

1 + (2)0.2
)0.3 ×

(
1 + (2)0.8

)0.5 ×
(
1 + (2)0.1

)0.2 −
(
1− 0.2

)0.3 ×
(
1− 0.8

)0.5 ×
(
1− 0.1

)0.2(
1 + (2)0.2

)0.3 ×
(
1 + (2)0.8

)0.5 ×
(
1 + (2)0.1

)0.2
+ (2)

((
1− 0.2

)0.3 ×
(
1− 0.8

)0.5 ×
(
1− 0.1

)0.2) ,

(
1 + (2)0.5

)0.3 ×
(
1 + (2)0.6

)0.5 ×
(
1 + (2)0.2

)0.2 −
(
1− 0.5

)0.3 ×
(
1− 0.6

)0.5 ×
(
1− 0.2

)0.2(
1 + (2)0.5

)0.3 ×
(
1 + (2)0.6

)0.5 ×
(
1 + (2)0.2

)0.2
+ (2)

((
1− 0.5

)0.3 ×
(
1− 0.6

)0.5 ×
(
1− 0.2

)0.2) ,

(
1 + (2)0.7

)0.3 ×
(
1 + (2)0.6

)0.5 ×
(
1 + (2)0.4

)0.2 −
(
1− 0.7

)0.3 ×
(
1− 0.6

)0.5 ×
(
1− 0.4

)0.2(
1 + (2)0.7

)0.3 ×
(
1 + (2)0.6

)0.5 ×
(
1 + (2)0.4

)0.2
+ (2)

((
1− 0.7

)0.3 ×
(
1− 0.6

)0.5 ×
(
1− 0.4

)0.2) ,

(
1 + (2)0.3

)0.3 ×
(
1 + (2)0.4

)0.5 ×
(
1 + (2)0.5

)0.2 −
(
1− 0.3

)0.3 ×
(
1− 0.4

)0.5 ×
(
1− 0.5

)0.2(
1 + (2)0.3

)0.3 ×
(
1 + (2)0.4

)0.5 ×
(
1 + (2)0.5

)0.2
+ (2)

((
1− 0.3

)0.3 ×
(
1− 0.4

)0.5 ×
(
1− 0.5

)0.2))
= (0.5397, 0.4980, 0.5974, 0.3913).

We now give two particular cases of the mFHWA operator.



Symmetry 2019, 11, 1498 7 of 33

• When λ = 1, mFHWA operator reduces into mF weighted averaging (mFWA) operator as below:

mFWAw(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1

(θj ξ̂ j)

=
(

1−
n

∏
j=1

(
1− p1 ◦ ξ j

)θj , 1−
n

∏
j=1

(
1− p2 ◦ ξ j

)θj , . . . , 1−
n

∏
j=1

(
1− pm ◦ ξ j

)θj
)

. (10)

• When λ = 2, mFHWA operator reduces into mF Einstein weighted averaging (mFEWA) operator
as below:

mFEWAw(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1

(θj ξ̂ j)

=
(∏n

j=1
(
1 + p1 ◦ ξ j

)θj −∏n
j=1
(
1− p1 ◦ ξ j

)θj

∏n
j=1
(
1 + p1 ◦ ξ j

)θj + ∏n
j=1
(
1− p1 ◦ ξ j

)θj
, . . . ,

∏n
j=1
(
1 + pm ◦ ξ j

)θj −∏n
j=1
(
1− pm ◦ ξ j

)θj

∏n
j=1
(
1 + pm ◦ ξ j

)θj + ∏n
j=1
(
1− pm ◦ ξ j

)θj

)
. (11)

Theorem 3 (Idempotency Property). Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j), be a family of ‘n’ mF numbers. If all
these mF numbers are same, in other words, ξ̂ j = ξ̂, ∀ j = 1, 2, . . . , n, then

mFHWAθ(ξ̂1, ξ̂2, . . . , ξ̂n) = ξ̂. (12)

Proof. Since ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) = ξ̂, where ‘j’ varies from 1 to n.. Then, from Equation (8),
we get

mFHWAθ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1

(θj ξ̂ j),

=
( ∏n

j=1
(
1 + (λ− 1)p1 ◦ ξ j

)θj −∏n
j=1
(
1− p1 ◦ ξ j

)θj

∏n
j=1
(
1 + (λ− 1)p1 ◦ ξ j

)θj + (λ− 1)∏n
j=1
(
1− p1 ◦ ξ j

)θj
, . . . ,

∏n
j=1
(
1 + (λ− 1)pm ◦ ξ j

)θj −∏n
j=1
(
1− pm ◦ ξ j

)θj

∏n
j=1
(
1 + (λ− 1)pm ◦ ξ j

)θj + (λ− 1)∏n
j=1
(
1− pm ◦ ξ j

)θj

)
=
( (1 + (λ− 1)p1 ◦ ξ)θ − (1− p1 ◦ ξ)θ

(1 + (λ− 1)p1 ◦ ξ)θ + (λ− 1)(1− p1 ◦ ξ)θ
, . . . ,

(1 + (λ− 1)pm ◦ ξ)θ − (1− pm ◦ ξ)θ

(1 + (λ− 1)pm ◦ ξ)θ + (λ− 1)(1− pm ◦ ξ)θ

)
= (p1 ◦ ξ, p2 ◦ ξ, . . . , pm ◦ ξ), for λ = 1

= ξ̂.

Hence, mFHWAθ(ξ̂1, ξ̂2, . . . , ξ̂n) = ξ̂ holds if ξ̂ j = ξ̂, ∀ j = 1, 2, . . . , n.

The following properties, namely, boundedness and monotonicity, can be easily followed by
Definition 5. So, we omit their proofs.
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Theorem 4 (Boundedness Property). Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j), be a family of ‘n’ mF numbers,
ξ̂− =

⋂n
j=1(ξ j) and ξ̂+ =

⋃n
j=1(ξ j), then

ξ̂− ≤ mFHWAθ(ξ̂1, ξ̂2, . . . , ξ̂n) ≤ ξ̂+. (13)

Theorem 5 (Monotonicity Property). Let ξ̂ j and ξ̂ ′j j = 1, 2, . . . , n be two families of mF numbers. If ξ̂ j ≤
ξ̂ ′j, then

mFHWAθ(ξ̂1, ξ̂2, . . . , ξ̂n) ≤ mFHWAθ(ξ̂
′
1, ξ̂ ′2, . . . , ξ̂ ′n). (14)

We now propose mF Hamacher ordered weighted average operator.

Definition 6. Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) be a family of mF numbers where ‘j’ varies from 1 to n. An mF
Hamacher ordered weighted average (mFHOWA) operator is a mapping mFHOWA : ξ̂n → ξ̂ with weight vector

w = (w1, w2, . . . , wn)T where wj ∈ (0, 1] and
n
∑

j=1
wj = 1. Thus,

mFHOWAw(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1

(wj ξ̂σ(j)) (15)

where (σ(1), σ(2), . . . , σ(n)) is the permutation of the indices j = 1, 2, . . . , n, for which ξ̂σ(j−1) ≥ ξ̂σ(j),
∀ j = 1, 2, . . . , n.

Theorem 6. Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) be a family of ‘n’ mF numbers. The accumulated value of these
mF numbers using the mFHOWA operator is also an mF numbers, which is given by

mFHOWAw(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1
(wj ξ̂σ(j))

=
( ∏n

j=1
(
1 + (λ− 1)p1 ◦ ξσ(j)

)wj −∏n
j=1
(
1− p1 ◦ ξσ(j)

)wj

∏n
j=1
(
1 + (λ− 1)p1 ◦ ξσ(j)

)wj + (λ− 1)∏n
j=1
(
1− p1 ◦ ξσ(j)

)wj
, . . . ,

∏n
j=1
(
1 + (λ− 1)pm ◦ ξσ(j)

)wj −∏n
j=1
(
1− pm ◦ ξσ(j)

)wj

∏n
j=1
(
1 + (λ− 1)pm ◦ ξσ(j)

)wj + (λ− 1)∏n
j=1
(
1− pm ◦ ξσ(j)

)wj

)
. (16)

Proof. Its proof follows directly by similar arguments as used in Theorem 2.

Example 2. Let ξ̂1 = (0.3, 0.6, 0.4, 0.7), ξ̂2 = (0.2, 0.5, 0.3, 0.6), and ξ̂3 = (0.7, 0.6, 0.7, 0.8) be 4F numbers
with a weight vector w = (0.4, 0.3, 0.3)T for these 4F numbers. Then, scores and aggregated values of mF
numbers for λ = 3 can be computed as below:

S(ξ̂1) =
0.3 + 0.6 + 0.4 + 0.7

4
= 0.5, S(ξ̂2) =

0.2 + 0.5 + 0.3 + 0.6
4

= 0.4,

S(ξ̂3) =
0.7 + 0.6 + 0.7 + 0.8

4
= 0.7.

Since, S(ξ̂3) > S(ξ̂1) > S(ξ̂2), thus

ξ̂σ(1) = ξ̂3 = (0.7, 0.6, 0.7, 0.8), ξ̂σ(2) = ξ̂1 = (0.3, 0.6, 0.4, 0.7),

ξ̂σ(3) = ξ̂2 = (0.2, 0.5, 0.3, 0.6).
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Then, from Theorem 6,

mFHOWAw(ξ̂1, ξ̂2, ξ̂3) =
3⊕

j=1
(wj ξ̂σ(j))

=
( ∏3

j=1
(
1 + (λ− 1)p1 ◦ ξσ(j)

)wj −∏3
j=1
(
1− p1 ◦ ξσ(j)

)wj

∏3
j=1
(
1 + (λ− 1)p1 ◦ ξσ(j)

)wj + (λ− 1)∏3
j=1
(
1− p1 ◦ ξσ(j)

)wj
, . . . ,

∏3
j=1
(
1 + (λ− 1)pm ◦ ξσ(j)

)wj −∏3
j=1
(
1− pm ◦ ξσ(j)

)wj

∏3
j=1
(
1 + (λ− 1)pm ◦ ξσ(j)

)wj + (λ− 1)∏3
j=1
(
1− pm ◦ ξσ(j)

)wj

)

=
( (

1 + (2)0.7
)0.4 ×

(
1 + (2)0.3

)0.3 ×
(
1 + (2)0.2

)0.3 −
(
1− 0.7

)0.4 ×
(
1− 0.3

)0.3 ×
(
1− 0.2

)0.3(
1 + (2)0.7

)0.4 ×
(
1 + (2)0.3

)0.3 ×
(
1 + (2)0.2

)0.3
+ (2)

((
1− 0.7

)0.4 ×
(
1− 0.3

)0.3 ×
(
1− 0.2

)0.3) ,

(
1 + (2)0.6

)0.4 ×
(
1 + (2)0.6

)0.3 ×
(
1 + (2)0.5

)0.3 −
(
1− 0.6

)0.4 ×
(
1− 0.6

)0.3 ×
(
1− 0.5

)0.3(
1 + (2)0.6

)0.4 ×
(
1 + (2)0.6

)0.3 ×
(
1 + (2)0.5

)0.3
+ (2)

((
1− 0.6

)0.4 ×
(
1− 0.6

)0.3 ×
(
1− 0.5

)0.3) ,

(
1 + (2)0.7

)0.4 ×
(
1 + (2)0.4

)0.3 ×
(
1 + (2)0.3

)0.3 −
(
1− 0.7

)0.4 ×
(
1− 0.4

)0.3 ×
(
1− 0.3

)0.3(
1 + (2)0.7

)0.4 ×
(
1 + (2)0.4

)0.3 ×
(
1 + (2)0.3

)0.3
+ (2)

((
1− 0.7

)0.4 ×
(
1− 0.4

)0.3 ×
(
1− 0.3

)0.3) ,

(
1 + (2)0.8

)0.4 ×
(
1 + (2)0.7

)0.3 ×
(
1 + (2)0.6

)0.3 −
(
1− 0.8

)0.4 ×
(
1− 0.7

)0.3 ×
(
1− 0.6

)0.3(
1 + (2)0.8

)0.4 ×
(
1 + (2)0.7

)0.3 ×
(
1 + (2)0.6

)0.3
+ (2)

((
1− 0.8

)0.4 ×
(
1− 0.7

)0.3 ×
(
1− 0.6

)0.3))
= (0.4528, 0.5714, 0.5077, 0.7192).

In the following, we give two particular cases of mFHOWA operator.

• When λ = 1, mFHOWA operator converted into mF ordered weighted averaging (mFOWA)
operator as below:

mFOWAw(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1

(wj ξ̂σ(j))

=
(

1−
n

∏
j=1

(
1− p1 ◦ ξσ(j)

)wj , 1−
n

∏
j=1

(
1− p2 ◦ ξσ(j)

)wj , . . . , 1−
n

∏
j=1

(
1− pm ◦ ξσ(j)

)wj
)

. (17)

• When λ = 2, mFHOWA operator reduces into mF Einstein ordered weighted averaging
(mFEOWA) operator as below:

mFEOWAw(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1

(wj ξ̂σ(j))

=
(∏n

j=1
(
1 + p1 ◦ ξσ(j)

)wj −∏n
j=1
(
1− p1 ◦ ξσ(j)

)wj

∏n
j=1
(
1 + p1 ◦ ξσ(j)

)wj + ∏n
j=1
(
1− p1 ◦ ξσ(j)

)wj
, . . . ,

∏n
j=1
(
1 + pm ◦ ξσ(j)

)wj −∏n
j=1
(
1− pm ◦ ξσ(j)

)wj

∏n
j=1
(
1 + pm ◦ ξσ(j)

)wj + ∏n
j=1
(
1− pm ◦ ξσ(j)

)wj

)
. (18)

Theorem 7 (Idempotency Property). Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) be a family of ‘n’ mF numbers. If all
these mF numbers are same, i.e., ξ̂ j = ξ̂, ∀ j = 1, 2, . . . , n, then

mFHOWAw(ξ̂1, ξ̂2, . . . , ξ̂n) = ξ̂. (19)
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Proof. Since ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) = ξ̂, where ‘j’ varies from 1 to n. Then, from Equation (16),
we obtain

mFHOWAw(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1

(wj ξ̂σ(j)),

=
( ∏n

j=1
(
1 + (λ− 1)p1 ◦ ξσ(j)

)wj −∏n
j=1
(
1− p1 ◦ ξσ(j)

)wj

∏n
j=1
(
1 + (λ− 1)p1 ◦ ξσ(j)

)wj + (λ− 1)∏n
j=1
(
1− p1 ◦ ξσ(j)

)wj
, . . . ,

∏n
j=1
(
1 + (λ− 1)pm ◦ ξσ(j)

)wj −∏n
j=1
(
1− pm ◦ ξσ(j)

)wj

∏n
j=1
(
1 + (λ− 1)pm ◦ ξσ(j)

)wj + (λ− 1)∏n
j=1
(
1− pm ◦ ξσ(j)

)wj

)
=
( (1 + (λ− 1)p1 ◦ ξ)w − (1− p1 ◦ ξ)w

(1 + (λ− 1)p1 ◦ ξ)w + (λ− 1)(1− p1 ◦ ξ)w , . . . ,

(1 + (λ− 1)pm ◦ ξ)w − (1− pm ◦ ξ)w

(1 + (λ− 1)pm ◦ ξ)w + (λ− 1)(1− pm ◦ ξ)w

)
= (p1 ◦ ξ, p2 ◦ ξ, . . . , pm ◦ ξ), for λ = 1

= ξ̂.

Hence, mFHOWAw(ξ̂1, ξ̂2, . . . , ξ̂n) = ξ̂ holds if ξ̂ j = ξ̂, ∀ j = 1, 2, . . . , n.

Theorem 8 (Boundedness Property). Let ξ̂ j = (p1 ◦ ξ j, p2 ◦ ξ j, . . . , pm ◦ ξ j) be a family of ‘n’ mF numbers,
ξ̂− =

⋂n
j=1(ξ j) and ξ̂+ =

⋃n
j=1(ξ j), then

ξ̂− ≤ mFHOWAw(ξ̂1, ξ̂2, . . . , ξ̂n) ≤ ξ̂+. (20)

Theorem 9 (Monotonicity Property). Let ξ̂ j and ξ̂ ′j be two families of mF numbers where ‘j’ varies from 1 to

n. If ξ̂ j ≤ ξ̂ ′j, then

mFHOWAw(ξ̂1, ξ̂2, . . . , ξ̂n) ≤ mFHOWAw(ξ̂ ′1, ξ̂ ′2, . . . , ξ̂ ′n). (21)

Theorem 10 (Commutativity Property). Let ξ̂ j and ξ̂ ′j j = 1, 2, . . . , n be two families of mF numbers, then

mFHOWAw(ξ̂1, ξ̂2, . . . , ξ̂n) = mFHOWAw(ξ̂ ′1, ξ̂ ′2, . . . , ξ̂ ′n) (22)

where ξ̂ ′j is an arbitrary permutation of ξ̂ j.

In Definitions 5 and 6, we observe that mFHWA operator and mFHOWA operator weight mF
numbers and ordered arrangement of mF numbers, respectively. We now propose another operator,
namely, mF Hamacher hybrid averaging operator, which combines the qualities of mFHWA operator
and mFHOWA operator.

Definition 7. Let ξ̂ j = (p1 ◦ ξ j, p2 ◦ ξ j, . . . , pm ◦ ξ j) be a family of mF numbers where ‘j’ varies from 1 to n.
An mF Hamacher hybrid averaging (mFHHA) operator is given as below:

mFHHAw,θ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1

(wj
˜̂ξσ(j)), (23)
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where w = (w1, w2, . . . , wn)T is the associated-weight vector of the mF numbers ξ̂ j, where ‘j’ varies from

1 to n, wj ∈ (0, 1],
n
∑

j=1
wj = 1, ˜̂ξσ(j) is the jth biggest mF numbers, ˜̂ξσ(j) = (nθj)ξ̂ j, (j = 1, 2, . . . , n),

θ = (θ1, θ2, . . . , θn) is the weight vector, with θj ∈ [0, 1],
n
∑

j=1
θj = 1 and n serves as the balancing coefficient.

Note that if w = ( 1
n , 1

n , . . . , 1
n ), then mFHHA operator degenerates into mFHWA operator. When

θ = ( 1
n , 1

n , . . . , 1
n ), then mFHHA operator degenerates into mFHOWA operator. Therefore, mFHHA

operator is an extension of the operators, mFHWA and mFHOWA, which explains the degrees and
ordered arrangements of the given mF values.

Theorem 11. Let ξ̂ j = (p1 ◦ ξ j, p2 ◦ ξ j, . . . , pm ◦ ξ j) be a family of ‘n’ mF numbers. The accumulated value of
these mF numbers using the mFHHA operator is also an mF numbers, which is given by

mFHHAw,θ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1
(wj

˜̂ξσ(j))

=
( ∏n

j=1
(
1 + (λ− 1)p1 ◦ ξ̃σ(j)

)wj −∏n
j=1
(
1− p1 ◦ ξ̃σ(j)

)wj

∏n
j=1
(
1 + (λ− 1)p1 ◦ ξ̃σ(j)

)wj + (λ− 1)∏n
j=1
(
1− p1 ◦ ξ̃σ(j)

)wj
, . . . ,

∏n
j=1
(
1 + (λ− 1)pm ◦ ξ̃σ(j)

)wj −∏n
j=1
(
1− pm ◦ ξ̃σ(j)

)wj

∏n
j=1
(
1 + (λ− 1)pm ◦ ξ̃σ(j)

)wj + (λ− 1)∏n
j=1
(
1− pm ◦ ξ̃σ(j)

)wj

)
. (24)

Proof. Its proof follows immediately by similar arguments used in Theorem 2.

We give two particular cases of mFHHA operator as below:

• When λ = 1, mFHHA operator converted into mF hybrid averaging (mFHA) operator as below:

mFHAw,θ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1

(wj
˜̂ξσ(j))

=
(

1−
n

∏
j=1

(
p1 ◦ ξ̃σ(j)

)wj , 1−
n

∏
j=1

(
p2 ◦ ξ̃σ(j)

)wj , . . . , 1−
n

∏
j=1

(
pm ◦ ξ̃σ(j)

)wj
)

. (25)

• When λ = 2, mFHHA operator converted into mF Einstein hybrid averaging (mFEHA) operator
as below:

mFEHAw,θ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊕

j=1

(wj
˜̂ξσ(j))

=
(∏n

j=1
(
1 + p1 ◦ ξ̃σ(j)

)wj −∏n
j=1
(
1− p1 ◦ ξ̃σ(j)

)wj

∏n
j=1
(
1 + p1 ◦ ξ̃σ(j)

)wj + ∏n
j=1
(
1− p1 ◦ ξ̃σ(j)

)wj
, . . . ,

∏n
j=1
(
1 + pm ◦ ξ̃σ(j)

)wj −∏n
j=1
(
1− pm ◦ ξ̃σ(j)

)wj

∏n
j=1
(
1 + pm ◦ ξ̃σ(j)

)wj + ∏n
j=1
(
1− pm ◦ ξ̃σ(j)

)wj

)
. (26)
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Example 3. Let ξ̂1 = (0.8, 0.2, 0.6), ξ̂2 = (0.7, 0.4, 0.6) and ξ̂3 = (0.5, 0.6, 0.7) be 3F numbers with an
associated-weight vector w = (0.4, 0.4, 0.2)T for these 3F numbers and a weight vector θ = (0.3, 0.2, 0.5)T .
Then, from Definition 7, for λ = 3

˜̂ξ1 =
( (

1 + (λ− 1)p1 ◦ ξ1
)nw1 −

(
1− p1 ◦ ξ1

)nw1(
1 + (λ− 1)p1 ◦ ξ1

)nw1 + (λ− 1)
(
1− p1 ◦ ξ1

)nw1
,

(
1 + (λ− 1)p2 ◦ ξ1

)nw1 −
(
1− p2 ◦ ξ1

)nw1(
1 + (λ− 1)p2 ◦ ξ1

)nw1 + (λ− 1)
(
1− p2 ◦ ξ1

)nw1
,(

1 + (λ− 1)p3 ◦ ξ1
)nw1 −

(
1− p3 ◦ ξ1

)nw1(
1 + (λ− 1)p3 ◦ ξ1

)nw1 + (λ− 1)
(
1− p3 ◦ ξ1

)nw1

)
,

=
( (1 + 2(0.8)

)3(0.3) −
(
1− 0.8

)3(0.3)(
1 + 2(0.8)

)3(0.3)
+ 2
(
1− 0.8

)3(0.3)
,

(
1 + 2(0.2)

)3(0.3) −
(
1− 0.2

)3(0.3)(
1 + 2(0.2)

)3(0.3)
+ 2
(
1− 0.2

)3(0.3)
,

(
1 + 2(0.6)

)3(0.3) −
(
1− 0.6

)3(0.3)(
1 + 2(0.6)

)3(0.3)
+ 2
(
1− 0.6

)3(0.5)

)
,

= (0.7512, 0.1792, 0.5481).

Similarly,

˜̂ξ2 =
( (1 + 2(0.7)

)3(0.2) −
(
1− 0.7

)3(0.2)(
1 + 2(0.7)

)3(0.2)
+ 2
(
1− 0.7

)3(0.2)
,

(
1 + 2(0.4)

)3(0.2) −
(
1− 0.4

)3(0.2)(
1 + 2(0.4)

)3(0.2)
+ 2
(
1− 0.4

)3(0.2)
,

(
1 + 2(0.6)

)3(0.2) −
(
1− 0.6

)3(0.2)(
1 + 2(0.6)

)3(0.2)
+ 2
(
1− 0.6

)3(0.2)

)
,

= (0.4528, 0.2373, 0.3725),

and

˜̂ξ3 =
( (1 + 2(0.5)

)3(0.5) −
(
1− 0.5

)3(0.5)(
1 + 2(0.5)

)3(0.3)
+ 2
(
1− 0.5

)3(0.5)
,

(
1 + 2(0.6)

)3(0.5) −
(
1− 0.6

)3(0.5)(
1 + 2(0.6)

)3(0.5)
+ 2
(
1− 0.6

)3(0.5)
,

(
1 + 2(0.7)

)3(0.5) −
(
1− 0.7

)3(0.5)(
1 + 2(0.7)

)3(0.5)
+ 2
(
1− 0.7

)3(0.5)

)
,

= (0.7000, 0.7986, 0.8782).

Then, scores and aggregated values of mF numbers for λ = 3 can be computed as below:

S( ˜̂ξ1) =
0.7512 + 0.1792 + 0.5481

3
= 0.4928, S( ˜̂ξ2) =

0.4528 + 0.2373 + 0.3725
3

= 0.3542,

S( ˜̂ξ3) =
0.7000 + 0.7986 + 0.8782

3
= 0.7923.

Since, S( ˜̂ξ3) > S( ˜̂ξ1) > S( ˜̂ξ2), thus

˜̂ξσ(1) =
˜̂ξ3 = (0.7000, 0.7986, 0.8782), ˜̂ξσ(2) =

˜̂ξ1 = (0.7512, 0.1792, 0.5481),
˜̂ξσ(3) =

˜̂ξ2 = (0.4528, 0.2373, 0.3725).
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Then, from Theorem 11,

mFHHAw,θ(ξ̂1, ξ̂2, ξ̂3) =
3⊕

j=1

(wj ξ̂σ(j))

=
( ∏n

j=1
(
1 + (λ− 1)p1 ◦ ξ̃σ(j)

)wj −∏n
j=1
(
1− p1 ◦ ξ̃σ(j)

)wj

∏n
j=1
(
1 + (λ− 1)p1 ◦ ξ̃σ(j)

)wj + (λ− 1)∏n
j=1
(
1− p1 ◦ ξ̃σ(j)

)wj
, . . . ,

∏n
j=1
(
1 + (λ− 1)pm ◦ ξ̃σ(j)

)wj −∏n
j=1
(
1− pm ◦ ξ̃σ(j)

)wj

∏n
j=1
(
1 + (λ− 1)pm ◦ ξ̃σ(j)

)wj + (λ− 1)∏n
j=1
(
1− pm ◦ ξ̃σ(j)

)wj

)

=
( (

1 + (2)0.7000
)0.4 ×

(
1 + (2)0.7512

)0.4 ×
(
1 + (2)0.4528

)0.2 −
(
1− 0.7000

)0.4 ×
(
1− 0.7512

)0.4 ×
(
1− 0.4528

)0.2(
1 + (2)0.7000

)0.4 ×
(
1 + (2)0.7512

)0.4 ×
(
1 + (2)0.4528

)0.2
+ (2)

((
1− 0.7000

)0.4 ×
(
1− 0.7512

)0.4 ×
(
1− 0.4528

)0.2) ,

(
1 + (2)0.7986

)0.4 ×
(
1 + (2)0.1792

)0.4 ×
(
1 + (2)0.2373

)0.2 −
(
1− 0.7986

)0.4 ×
(
1− 0.1792

)0.4 ×
(
1− 0.2373

)0.2(
1 + (2)0.7986

)0.4 ×
(
1 + (2)0.1792

)0.4 ×
(
1 + (2)0.2373

)0.2
+ (2)

((
1− 0.7986

)0.4 ×
(
1− 0.1792

)0.4 ×
(
1− 0.2373

)0.2) ,

(
1 + (2)0.8782

)0.4 ×
(
1 + (2)0.5481

)0.4 ×
(
1 + (2)0.3725

)0.2 −
(
1− 0.8782

)0.4 ×
(
1− 0.5481

)0.4 ×
(
1− 0.3725

)0.2(
1 + (2)0.8782

)0.4 ×
(
1 + (2)0.5481

)0.4 ×
(
1 + (2)0.3725

)0.2
+ (2)

((
1− 0.8782

)0.4 ×
(
1− 0.5481

)0.4 ×
(
1− 0.3725

)0.2) )
= (0.6817, 0.4899, 0.6968).

2.3. mF Hamacher Geometric Aggregation Operators

We now proposes different types of Hamacher geometric aggregation operators with mF numbers,
namely, mFHWG operator, mFHOWG operator, and mFHHG operator.

Definition 8. Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) be a family of mF numbers where ‘j’ varies from 1 to n.
An mFHWG operator of is a function mFHWG : ξ̂n → ξ̂, which is defined as follows:

mFHWGθ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊗

j=1

(ξ̂ j)
θj (27)

where θ = (θ1, θ2, . . . , θn)T denotes the weight vector, with θj ∈ (0, 1],
n
∑

j=1
θj = 1.

Theorem 12. Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) be a family of ‘n’ mF numbers. The accumulated value of these
mF numbers using the mFHWG operator is also an mF numbers, which is given as

mFHWGθ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊗

j=1

(ξ̂ j)
θj ,

=
( λ ∏n

j=1
(

p1 ◦ ξ j
)θj

∏n
j=1
(
1 + (λ− 1)(1− p1 ◦ ξ j)

)θj + (λ− 1)∏n
j=1
(

p1 ◦ ξ j
)θj

, . . . ,

λ ∏n
j=1
(

pm ◦ ξ j
)θj

∏n
j=1
(
1 + (λ− 1)(1− pm ◦ ξ j)

)θj + (λ− 1)∏n
j=1
(

pm ◦ ξ j
)θj

)
. (28)

Proof. It can be easily followed using mathematical induction.

Example 4. Let ξ̂1 = (0.5, 0.7, 0.4), ξ̂2 = (0.8, 0.5, 0.4) and ξ̂3 = (0.3, 0.4, 0.5) be 3F numbers with a weight
vector θ = (0.3, 0.6, 0.1)T for these 3F numbers. Then, for λ = 3,
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mFHWGθ(ξ̂1, ξ̂2, ξ̂3) =
3⊗

j=1

(ξ̂ j)
θj ,

=
( λ ∏3

j=1
(

p1 ◦ ξ j
)θj

∏3
j=1
(
1 + (λ− 1)(1− p1 ◦ ξ j)

)θj + (λ− 1)∏3
j=1
(

p1 ◦ ξ j
)θj

, . . . ,

λ ∏3
j=1
(

p3 ◦ ξ j
)θj

∏3
j=1
(
1 + (λ− 1)(1− p3 ◦ ξ j)

)θj + (λ− 1)∏3
j=1
(

p3 ◦ ξ j
)θj

)

=
( (

3(0.5)0.3(0.8)0.6(0.3)0.1)(
1 + 2(1− 0.5)

)0.3 ×
(
1 + 2(1− 0.8)

)0.6 ×
(
1 + 2(1− 0.3)

)0.1
+ (2)

(
(0.5)0.3(0.8)0.6(0.3)0.1

) ,

(
3(0.7)0.3(0.5)0.6(0.4)0.1)(

1 + 2(1− 0.7)
)0.3 ×

(
1 + 2(1− 0.5)

)0.6 ×
(
1 + 2(1− 0.4)

)0.1
+ (2)

(
(0.7)0.3(0.5)0.6(0.4)0.1

) ,

(
3(0.4)0.3(0.4)0.6(0.5)0.1)(

1 + 2(1− 0.4)
)0.3 ×

(
1 + 2(1− 0.4)

)0.6 ×
(
1 + 2(1− 0.5)

)0.1
+ (2)

(
(0.4)0.3(0.4)0.6(0.5)0.1

) )
= (0.6507, 0.5463, 0.4094).

Theorem 13 (Idempotency Property). Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) be a family of ‘n’ mF numbers. If all
these mF numbers are same, i.e., ξ̂ j = ξ̂, ∀ j = 1, 2, . . . , n, then

mFHWGθ(ξ̂1, ξ̂2, . . . , ξ̂n) = ξ̂. (29)

Theorem 14 (Boundedness Property). Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) be a family of ‘n’ mF numbers,
ξ̂− =

⋂n
j=1(ξ j) and ξ̂+ =

⋃n
j=1(ξ j), then

ξ̂− ≤ mFHWGθ(ξ̂1, ξ̂2, . . . , ξ̂n) ≤ ξ̂+. (30)

Theorem 15 (Monotonicity Property). Let ξ̂ j and ξ̂ ′j, (j = 1, 2, . . . , n) be two families of mF numbers. If

ξ̂ j ≤ ξ̂ ′j, then

mFHWGθ(ξ̂1, ξ̂2, . . . , ξ̂n) ≤ mFHWGθ(ξ̂
′
1, ξ̂ ′2, . . . , ξ̂ ′n). (31)

We give two particular cases of mFHWG operator.

• When λ = 1, mFHWG operator converted into mF weighted geometric (mFWG) operator as below:

mFWGθ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊗

j=1

(ξ̂ j)
θj

=
( n

∏
j=1

(
p1 ◦ ξ j

)θj ,
n

∏
j=1

(
p2 ◦ ξ j

)θj , . . . ,
n

∏
j=1

(
pm ◦ ξ j

)θj
)

. (32)

• When λ = 2, mFHWG operator reduces into mF Einstein weighted geometric (mFEWG) operator
as below:

mFEWGθ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊗

j=1
(ξ̂ j)

θj

=
( 2 ∏n

j=1
(

p1 ◦ ξ j
)θj

∏n
j=1
(
2− p1 ◦ ξ j)

)θj + ∏n
j=1
(

p1 ◦ ξ j
)θj

, . . . ,
2 ∏n

j=1
(

pm ◦ ξ j
)θj

∏n
j=1
(
2− pm ◦ ξ j)

)θj + ∏n
j=1
(

pm ◦ ξ j
)θj

)
. (33)

We now propose mFHOWG operator.
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Definition 9. Let ξ̂ j = (p1 ◦ ξ j, p2 ◦ ξ j, . . . , pm ◦ ξ j), j = 1, 2, . . . , n be a family of mF numbers.
An mFHOWG operator is a mapping mFHOWG : ξ̂n → ξ̂ with weight vector w = (w1, w2, . . . , wn),

for which wj > 0 and
n
∑

j=1
wj = 1. Thus,

mFHOWGw(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊗

j=1

(wj ξ̂σ(j)) (34)

where (σ(1), σ(2), . . . , σ(n)) is the permutation of the indices ‘j’ varies from 1 to n, for which ξ̂σ(j−1) ≥ ξ̂σ(j),
∀ j = 1, 2, . . . , n.

Theorem 16. Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) be a family of ‘n’ mF numbers. The accumulated value of these
mF numbers using the mFHOWG operator is also an mF numbers, which is given by

mFHOWGw(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊗

j=1

(ξ̂σ(j))
wj

=
( λ ∏n

j=1
(

p1 ◦ ξσ(j)
)wj

∏n
j=1
(
1 + (λ− 1)(1− p1 ◦ ξσ(j))

)wj + (λ− 1)∏n
j=1
(

p1 ◦ ξσ(j)
)wj

, . . . ,

λ ∏n
j=1
(

pm ◦ ξσ(j)
)wj

∏n
j=1
(
1 + (λ− 1)(1− pm ◦ ξσ(j))

)wj + (λ− 1)∏n
j=1
(

pm ◦ ξσ(j)
)wj

)
. (35)

Example 5. Let ξ̂1 = (0.5, 0.6, 0.8), ξ̂2 = (0.3, 0.5, 0.6) and ξ̂3 = (0.6, 0.7, 0.8) be 3F numbers with a weight
vector w = (0.2, 0.5, 0.3)T for these 3F numbers. Then, scores and aggregated values of mF numbers for λ = 3
can be computed as below:

S(ξ̂1) =
0.5 + 0.6 + 0.8

3
= 0.6333, S(ξ̂2) =

0.3 + 0.5 + 0.6
3

= 0.4667,

S(ξ̂3) =
0.6 + 0.7 + 0.8

3
= 0.7.

Since, S(ξ̂3) > S(ξ̂1) > S(ξ̂2), thus

ξ̂σ(1) = ξ̂3 = (0.6, 0.7, 0.8), ξ̂σ(2) = ξ̂1 = (0.5, 0.6, 0.8),

ξ̂σ(3) = ξ̂2 = (0.3, 0.5, 0.6).

Then, from Theorem 16,

mFHOWGθ(ξ̂1, ξ̂2, ξ̂3) =
3⊗

j=1

(ξ̂σ(j))
θj ,

=
( λ ∏3

j=1
(

p1 ◦ ξσ(j)
)θj

∏3
j=1
(
1 + (λ− 1)(1− p1 ◦ ξσ(j))

)θj + (λ− 1)∏3
j=1
(

p1 ◦ ξσ(j)
)θj

, . . . ,

λ ∏3
j=1
(

p3 ◦ ξσ(j)
)θj

∏3
j=1
(
1 + (λ− 1)(1− p3 ◦ ξσ(j))

)θj + (λ− 1)∏3
j=1
(

p3 ◦ ξσ(j)
)θj

)

=
( 3

(
(0.6)0.2(0.5)0.5(0.3)0.3)(

1 + 2(1− 0.6)
)0.2 ×

(
1 + 2(1− 0.5)

)0.5 ×
(
1 + 2(1− 0.3)

)0.3
+ 2
(
(0.6)0.2(0.5)0.5(0.3)0.3

) ,

3
(
(0.7)0.2(0.6)0.5(0.5)0.3)(

1 + 2(1− 0.7)
)0.2 ×

(
1 + 2(1− 0.6)

)0.5 ×
(
1 + 2(1− 0.5)

)0.3
+ 2
(
(0.7)0.2(0.6)0.5(0.5)0.3

) ,

3
(
(0.8)0.2(0.8)0.5(0.6)0.3)(

1 + 2(1− 0.8)
)0.2 ×

(
1 + 2(1− 0.8)

)0.5 ×
(
1 + 2(1− 0.6)

)0.3
+ 2
(
(0.8)0.2(0.8)0.5(0.6)0.3

) )
= (0.4512, 0.5885, 0.7394).
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We give two particular cases of mFHOWG operator.

• When λ = 1, mFHOWG operator reduces into mF ordered weighted geometric (mFOWG)
operator as

mFOWGw(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊗

j=1

(ξ̂σ(j))
wj

=
( n

∏
j=1

(
p1 ◦ ξσ(j)

)wj ,
n

∏
j=1

(
p2 ◦ ξσ(j)

)wj , . . . ,
n

∏
j=1

(
pm ◦ ξσ(j)

)wj
)

. (36)

• When λ = 2, mFHOWG operator reduces into mF Einstein ordered weighted geometric
(mFEOWG) operator as below:

mFEOWGw(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊗

j=1

(ξ̂ j)
wj

=
( 2 ∏n

j=1
(

p1 ◦ ξσ(j)
)wj

∏n
j=1
(
2− p1 ◦ ξσ(j))

)wj + ∏n
j=1
(

p1 ◦ ξσ(j)
)wj

, . . . ,

2 ∏n
j=1
(

pm ◦ ξσ(j)
)wj

∏n
j=1
(
2− pm ◦ ξσ(j))

)wj + ∏n
j=1
(

pm ◦ ξσ(j)
)wj

)
. (37)

For the mFHOWG operator, the following properties can be easily shown.

Theorem 17 (Idempotency Property). Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) be a family of ‘n’ mF numbers. If all
these mF numbers are same, in other words, ξ̂ j = ξ̂, ∀ j = 1, 2, . . . , n, then

mFHOWGw(ξ̂1, ξ̂2, . . . , ξ̂n) = ξ̂. (38)

Theorem 18 (Boundedness Property). Let ξ̂ j = (p1 ◦ ξ j, . . . , pm ◦ ξ j) be a family of mF ‘n’ numbers,
ξ̂− =

⋂n
j=1(ξ̂1, ξ̂2, . . . , ξ̂n) and ξ̂+ =

⋃n
j=1(ξ̂1, ξ̂2, . . . , ξ̂n), then

ξ̂− ≤ mFHOWGw(ξ̂1, ξ̂2, . . . , ξ̂n) ≤ ξ̂+. (39)

Theorem 19 (Monotonicity Property). Let ξ̂ j and ξ̂ ′j, (j = 1, 2, . . . , n) be two families of mF numbers. If

ξ̂ j ≤ ξ̂ ′j, then

mFHOWGw(ξ̂1, ξ̂2, . . . , ξ̂n) ≤ mFHOWGw(ξ̂ ′1, ξ̂ ′2, . . . , ξ̂ ′n). (40)

Theorem 20 (Commutativity Property). Let ξ̂ j and ξ̂ ′j j = 1, 2, . . . , n be two families of mF numbers.

If ξ̂ j ≤ ξ̂ ′j, then

mFHOWGw(ξ̂1, ξ̂2, . . . , ξ̂n) = mFHOWGw(ξ̂ ′1, ξ̂ ′2, . . . , ξ̂ ′n), (41)

where ξ̂ ′j is any permutation of ξ̂ j, j = 1, 2, . . . , n.

In Definitions 5 and 6, we observe that mFHWG operator and mFHOWG operator weight mF
numbers and their ordered arrangement, respectively. We now propose another operator, namely,
mF Hamacher hybrid averaging operator, which combine the features of these operators.
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Definition 10. Let ξ̂ j = (p1 ◦ ξ j, p2 ◦ ξ j, . . . , pm ◦ ξ j) be a family of mF numbers where ‘j’ varies from 1 to n.
An mF Hamacher hybrid geometric (mFHHG) operator is given as below:

mFHHGw,θ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊗

j=1

( ˜̂ξσ(j))
wj , (42)

where (σ(1), σ(2), . . . , σ(n)) is the permutation of (1, 2, . . . , n), for which ξ̂σ(j−1) ≥ ξ̂σ(j), ∀ j = 1, 2, . . . , n
and w = (w1, w2, . . . , wn)T is the associated-weight vector of the mF numbers (ξ̂1, ξ̂2, . . . , ξ̂n), wj ∈

(0, 1],
n
∑

j=1
wj = 1. ˜̂ξσ(j) is the jth biggest mF numbers, ˜̂ξσ(j) = (nθj)ξ̂ j, (j = 1, 2, . . . , n), θ = (θ1, θ2, . . . , θn)T

represents the weight vector, with θj > 0,
n
∑

j=1
θj = 1 and n serves as the balancing coefficient.

Theorem 21. Let ξ̂ j = (p1 ◦ ξ j, p2 ◦ ξ j, . . . , pm ◦ ξ j), j = 1, 2, . . . , n be a family of mF numbers.
The accumulated value of these mF numbers using the mFHHG operator is also an mF numbers, which
is given by

mFHHGw,θ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊗

j=1
( ˜̂ξσ(j))

wj

=
( λ ∏n

j=1
(

p1 ◦ ξ̃σ(j)
)wj

∏n
j=1
(
1 + (λ− 1)(1− p1 ◦ ξ̃σ(j))

)wj + (λ− 1)∏n
j=1
(

p1 ◦ ξ̃σ(j)
)wj

, . . . ,

λ ∏n
j=1
(

pm ◦ ξ̃σ(j)
)wj

∏n
j=1
(
1 + (λ− 1)(1− pm ◦ ξ̃σ(j))

)wj + (λ− 1)∏n
j=1
(

pm ◦ ξ̃σ(j)
)wj

)
. (43)

Proof. It can be easily proved by mathematical induction technique.

Example 6. Let ξ̂1 = (0.5, 0.4, 0.7), ξ̂2 = (0.8, 0.5, 0.7) and ξ̂3 = (0.7, 0.7, 0.8) be 3F numbers with an
associated-weight vector w = (0.3, 0.4, 0.3)T for these 3F numbers and a weight vector θ = (0.3, 0.5, 0.2)T .
Then, from Definition 7, for λ = 3

˜̂ξ1 =
( λ

(
p1 ◦ ξ1

)nθ1(
1 + (λ− 1)(1− p1 ◦ ξ1)

)nθ1 + (λ− 1)
(

p1 ◦ ξ1
)nθ1

,

λ
(

p2 ◦ ξ1
)nθ1(

1 + (λ− 1)(1− p2 ◦ ξ1)
)nθ1 + (λ− 1)

(
p2 ◦ ξ1

)nθ1
,

λ
(

p3 ◦ ξ1
)nθ1(

1 + (λ− 1)(1− p3 ◦ ξ1)
)nθ1 + (λ− 1)

(
p3 ◦ ξ1

)nθ1

)
,

=
( 3(0.5)3(0.3)(

1 + 2(1− 0.5)
)3(0.3)

+ 2
(
0.5
)3(0.3)

,
3(0.8)3(0.3)(

1 + 2(1− 0.8)
)3(0.3)

+ 2
(
0.8
)3(0.3)

,

3(0.6)3(0.3)(
1 + 2(1− 0.6)

)3(0.3)
+ 2
(
0.6
)3(0.3)

)
,

= (0.5472, 0.8208, 0.6399).
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Similarly,

˜̂ξ2 =
( 3(0.4)3(0.5)(

1 + 2(1− 0.4)
)3(0.5)

+ 2
(
0.4
)3(0.5)

,
3(0.5)3(0.5)(

1 + 2(1− 0.5)
)3(0.5)

+ 2
(
0.5
)3(0.5)

,

3(0.7)3(0.5)(
1 + 2(1− 0.7)

)3(0.5)
+ 2
(
0.7
)3(0.5)

)
,

= (0.2014, 0.3000, 0.5499),

and

˜̂ξ3 =
( 3(0.7)3(0.2)(

1 + 2(1− 0.7)
)3(0.2)

+ 2
(
0.7
)3(0.2)

,
3(0.7)3(0.2)(

1 + 2(1− 0.7)
)3(0.2)

+ 2
(
0.7
)3(0.2)

,

3(0.8)3(0.2)(
1 + 2(1− 0.8)

)3(0.2)
+ 2
(
0.8
)3(0.2)

)
,

= (0.8237, 0.8237, 0.8826).

Then, scores and aggregated values of mF numbers for λ = 3 can be computed as below:

S( ˜̂ξ1) =
0.5472 + 0.8208 + 0.6399

3
= 0.6692, S( ˜̂ξ2) =

0.2014 + 0.3000 + 0.5499
3

= 0.3504,

S( ˜̂ξ3) =
0.8237 + 0.8237 + 0.8826

3
= 0.8433.

Since, S( ˜̂ξ3) > S( ˜̂ξ1) > S( ˜̂ξ2), thus

˜̂ξσ(1) =
˜̂ξ3 = (0.8237, 0.8237, 0.8826), ˜̂ξσ(2) =

˜̂ξ1 = (0.5472, 0.8208, 0.6399),
˜̂ξσ(3) =

˜̂ξ2 = (0.2014, 0.3000, 0.5499).

Then, from Theorem 16,

mFHOWGθ(ξ̂1, ξ̂2, ξ̂3) =
3⊗

j=1

(ξ̂σ(j))
θj ,

=
( λ ∏3

j=1
(

p1 ◦ ξσ(j)
)θj

∏3
j=1
(
1 + (λ− 1)(1− p1 ◦ ξσ(j))

)θj + (λ− 1)∏3
j=1
(

p1 ◦ ξσ(j)
)θj

, . . . ,

λ ∏3
j=1
(

p3 ◦ ξσ(j)
)θj

∏3
j=1
(
1 + (λ− 1)(1− p3 ◦ ξσ(j))

)θj + (λ− 1)∏3
j=1
(

p3 ◦ ξσ(j)
)θj

)

=
( 3

(
(0.8237)0.3(0.5472)0.4(0.2014)0.3)(

1 + 2(1− 0.8237)
)0.3 ×

(
1 + 2(1− 0.5472)

)0.4 ×
(
1 + 2(1− 0.2014)

)0.3
+ 2
(
(0.8237)0.3(0.5472)0.4(0.2014)0.3

) ,

3
(
(0.8237)0.3(0.8208)0.4(0.3000)0.3)(

1 + 2(1− 0.8237)
)0.3 ×

(
1 + 2(1− 0.8208)

)0.4 ×
(
1 + 2(1− 0.3000)

)0.3
+ 2
(
(0.8237)0.3(0.8208)0.4(0.3000)0.3

) ,

3
(
(0.8826)0.3(0.6399)0.4(0.5499)0.3)(

1 + 2(1− 0.8826)
)0.3 ×

(
1 + 2(1− 0.6399)

)0.4 ×
(
1 + 2(1− 0.5499)

)0.3
+ 2
(
(0.8826)0.3(0.6399)0.4(0.5499)0.3

) ),

= (0.4905, 0.6453, 0.6705).

We now give two particular cases of mFHHG operator.
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• When λ = 1, mFHHG operator converted into mF hybrid geometric (mFHG) operator as below:

mFHGw,θ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊗

j=1

( ˜̂ξσ(j))
wj

=
( n

∏
j=1

(
p1 ◦ ξ̃σ(j)

)wj ,
n

∏
j=1

(
p2 ◦ ξ̃σ(j)

)wj , . . . ,
n

∏
j=1

(
pm ◦ ξ̃σ(j)

)wj
)

. (44)

• When λ = 2, mFHHG operator converted into mF Einstein hybrid geometric (mFEHG) operator
as below:

mFEHGw,θ(ξ̂1, ξ̂2, . . . , ξ̂n) =
n⊗

j=1

( ˜̂ξσ(j))
wj

=
( 2 ∏n

j=1
(

p1 ◦ ξ̃σ(j)
)wj

∏n
j=1
(
2− p1 ◦ ξ̃σ(j))

)wj + ∏n
j=1
(

p1 ◦ ξ̃σ(j)
)wj

, . . . ,

2 ∏n
j=1
(

pm ◦ ξ̃σ(j)
)wj

∏n
j=1
(
2− pm ◦ ξ̃σ(j))

)wj + ∏n
j=1
(

pm ◦ ξ̃σ(j)
)wj

)
. (45)

3. Mathematical Approach for MADM Using mF Information

We next handle the MADM situations with mF information by applying the mF Hamacher
aggregation operators proposed in the preceding sections. The following assumptions or notations
are used to represent the MADM problem for the efficient selection of country affected by human
decision-making with mF information. Let A = {A1, A2, . . . , Ak} be a set of objects (alternatives) and
T = {T1, T2, . . . , Tn} be the set of attributes. Let θ = {θ1, θ2, . . . , θn} be a weight vector for attributes

where θj > 0, j = 1, 2, . . . , n,
n
∑

j=1
θj = 1. Suppose that Ŝ = (ŝij)k×n =

(
p1 ◦ ξij, p2 ◦ ξij, . . . , pm ◦ ξij

)
k×n

is an mF decision matrix, where pr ◦ Aij, r = 1, 2, . . . , m denote the membership degrees given by the
decision-makers that the object Ai satisfies the attribute tj, pr ◦ A ∈ [0, 1], r = 1, 2, . . . , m.

We give the following Algorithm 1 to solve a MADM problem by applying the mFHWA
(or mFHWG) operator.
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Algorithm 1: Steps to solve MADM problem by applying the mFHWA (or mFHWG) operator

1. Input:
U, the universe with k alternatives.
T, the set having n attributes.
θ = (θ1, θ2, . . . , θn), the weight vector for attributes.

2. Use the mFHWA operator to evaluate the information in mF decision matrix Ŝ, determine the
preference values ŝi, i = 1, 2, . . . , k of the object Ai.

êi = mFHWAθ(ξ̂i1, ξ̂i2, . . . , ξ̂in) =
n⊕

j=1

(θj ξ̂ij)

=
( ∏n

j=1
(
1 + (λ− 1)p1 ◦ ξij

)θj −∏n
j=1
(
1− p1 ◦ ξij

)θj

∏n
j=1
(
1 + (λ− 1)p1 ◦ ξij

)θj + (λ− 1)∏n
j=1
(
1− p1 ◦ ξij

)θj
, . . . ,

∏n
j=1
(
1 + (λ− 1)pm ◦ ξij

)θj −∏n
j=1
(
1− pm ◦ ξij

)θj

∏n
j=1
(
1 + (λ− 1)pm ◦ ξij

)θj + (λ− 1)∏n
j=1
(
1− pm ◦ ξij

)θj

)
.

Alternatively, if we apply mFHWG operator then

êi = mFHWGθ(ξ̂i1, ξ̂i2, . . . , ξ̂in) =
n⊗

j=1

(ξ̂ij)
θj ,

=
( λ ∏n

j=1
(

p1 ◦ ξij
)θj

∏n
j=1
(
1 + (λ− 1)(1− p1 ◦ ξij)

)θj + (λ− 1)∏n
j=1
(

p1 ◦ ξij
)θj

, . . . ,

λ ∏n
j=1
(

pm ◦ ξij
)θj

∏n
j=1
(
1 + (λ− 1)(1− pm ◦ ξij)

)θj + (λ− 1)∏n
j=1
(

pm ◦ ξij
)θj

)
.

3. Compute the scores S(êi), i = 1, 2, . . . , k.
4. Rank the objects ui, i = 1, 2, . . . , k based on their score values S(êi), i = 1, 2, . . . , k. If two

alternatives have same score, then use the accuracy function to rank the objects.

Output: The alternative having the highest score in step 4 will be the decision alternative.

4. Applications

4.1. Assessment of Health Care Waste Treatments Alternatives

A waste management system’s fundamental task is to control, process, store, and dispose waste in
accordance with national requirements and international obligations, taking into account the economic
and socio-political factors involved. A suitable technology has to be chosen for each step due to the
range of procedures, techniques, and equipment available for different steps of a waste management
scheme. There is a committee which selects five health care waste treatment alternatives, which are
listed as below.
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A1 : Incineration

A2 : Steam Sterilization

A3 : Microwaves

A4 : Land Fill and Dumps

A5 : Emulsification.

These waste treatments are assessed on the basis of four factors.

T1 : Economic Factors

T2 : Environmental Factors

T3 : Technical Factors

T4 : Social Factors.

Each factor has been divided into three characteristics to make a 3F number:

• The “Economic Factors” include cost and resources, transport regulations, and
physical infrastructure.

• The “Environmental Factors” include geographical conditions, geological conditions, and
availability of resources.

• The “Technical Factors” include waste characteristics, complexity and maintainability of facilities,
and state of research and development.

• The “Social Factors” include social acceptability, communication, societal responsibilities, and
social equity.

1. The 3F decision matrix is given in Table 1.

Table 1. 3F decision matrix.

T1 T2 T3 T4

A1 (0.60, 0.40, 0.50) (0.80, 0.20, 0.60) (0.20, 0.30, 0.50) (0.8, 0.7 0.3)
A2 (0.50, 0.70, 0.30) (0.60, 0.40, 0.60) (0.40, 0.50, 0.70) (0.4, 0.6, 0.9)
A3 (0.80, 0.40, 0.60) (0.40, 0.50, 0.40) (0.30, 0.60, 0.90) (0.2, 0.6, 0.7)
A4 (0.50, 0.40, 0.40) (0.30, 0.50, 0.60) (0.30, 0.70, 0.40) (0.7, 0.2, 0.5)
A5 (0.40, 0.60, 0.50) (0.40, 0.50, 0.50) (0.50, 0.40, 0.60) (0.2, 0.5, 0.9)

2. The weights assigned by the experts are given as

θ1 = 0.40, θ2 = 0.20, θ3 = 0.30, θ4 = 0.10 where,
4

∑
j=1

θj = 1.

We proceed to select the most suitable health care waste treatment alternative by using the
mFHWA operator. The steps are as follows:
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Step 1 Assume λ = 3. Use the mFHWA operator to calculate the performance values ei of the
health care waste treatment alternatives.

ê1 = (0.57433, 0.36685, 0.50257),

ê2 = (0.48273, 0.58007, 0.57729),

ê3 = (0.5529, 0.50409, 0.70785),

ê4 = (0.42756, 0.50339, 0.45310),

ê5 = (0.41163, 0.51359, 0.59164).

Step 2 Compute the scores S(êi) of all 3F numbers êi.

S(ê1) = 0.481284,

S(ê2) = 0.54669,

S(ê3) = 0.58803,

S(ê4) = 0.46135,

S(ê5) = 0.50562.

Step 3 Rank all the health care waste treatment alternatives according to the scores S(êi), 1 ≤ i ≤ 5
of all 3F numbers,

A3 > A2 > A5 > A1 > A4.

Step 4 A3 is the best alternative.

If the mFHWG operator is used for selection, the best alternative can be chosen in a similar manner.
Now the steps are as follows:

Step 1 Suppose λ = 3. Use the mFHWG operator to calculate the performance values êi of the
health care waste treatment alternatives.

ê1 = (0.50316, 0.34501, 0.49608),

ê2 = (0.47699, 0.564823, 0.51952),

ê3 = (0.45521, 0.49591, 0.65444),

ê4 = (0.40822, 0.47455, 0.44650),

ê5 = (0.42129, 0.47285, 0.56738).

Step 2 Compute the scores S(êi) of all 3F numbers êi.

S(ê1) = 0.44808,

S(ê2) = 0.52044,

S(ê3) = 0.535187,

S(ê4) = 0.44309,

S(ê5) = 0.487175.

Step 3 Rank all the health care waste treatment alternatives,

A3 > A2 > A5 > A1 > A4.

Step 4 A3 is the best alternative.

We apply the mF-ELECTRE-I approach to the same problem.
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1. Table 2 represents the 3F decision matrix.

Table 2. 3F weighted decision matrix.

T1 T2 T3 T4

C1 (0.24, 0.16, 0.20) (0.16, 0.04, 0.12) (0.06, 0.09, 0.15) (0.08, 0.07, 0.03)
C2 (0.20, 0.28, 0.12) (0.12, 0.08, 0.12) (0.12, 0.15, 0.21) (0.04, 0.06, 0.09)
C3 (0.32, 0.16, 0.24) (0.08, 0.10, 0.08) (0.09, 0.18, 0.27) (0.02, 0.06, 0.07)
C4 (0.20, 0.16, 0.16) (0.06, 0.10, 0.12) (0.09, 0.21, 0.12) (0.07, 0.02, 0.05)
C5 (0.16, 0.24, 0.20) (0.08, 0.10, 0.10) (0.15, 0.12, 0.18) (0.02, 0.05, 0.09)

2. Tables 3 and 4 represent the 3F concordance and 3F discordance sets, respectively.

Table 3. 3F concordance set.

j 1 2 3 4 5

F1j - {1, 2} {2, 4} {1, 2, 4} {1, 2, 4}
F2j {1, 2, 3, 4} - {2, 4} {1, 2, 3, 4} {1, 2, 3, 4}
F3j {1, 3} {1, 3} - {1, 3, 4} {1, 3}
F4j {3} {} {2} - {2}
F5j {1, 3} {1} {2, 4} {1, 2, 3, 4} -

Table 4. 3F discordance set.

j 1 2 3 4 5

G1j - {1, 2, 3, 4} {1, 3} {3} {1, 3}
G2j {1, 2} - {1, 3} {} {1, 3}
G3j {2, 4} {2, 4} - {2} {2, 4}
G4j {1, 2, 4} {1, 2, 3, 4} {1, 3, 4} - {1, 2, 3, 4}
G5j {1, 2, 4} {1, 2, 3, 4} {1, 3} {2} -

3. The 3F concordance matrix is constructed as:

F =


− 0.6 0.3 0.7 0.7
1 − 0.3 1 1

0.7 0.7 − 0.8 0.7
0.3 0 0.2 − 0.2
0.7 0.4 0.3 1 −

 .

4. The 3F concordance level f = 0.7805.
5. The 3F discordance matrix is constructed as:

G =


− 1 1 1 1
1 − 1 0 1

0.7041 0.28867 − 0.29233 0.18077
0.91630 1 1 − 1

1 1 1 0.22867 −

 .

6. The 3F discordance level g = 0.58.
7. The 3F concordance dominance and 3F discordance dominance matrix are constructed as:
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H =


− 1 0 1 1
1 − 0 1 1
1 1 − 1 1
0 0 0 − 0
1 0 0 1 −

 ,

L =


− 0 0 0 0
0 − 0 1 0
1 1 − 1 1
0 0 0 − 0
0 0 0 1 −

 .

8. The 3F aggregate dominance matrix is constructed as:

M =


− 0 0 0 0
0 − 0 1 0
1 1 − 1 1
0 0 0 − 0
0 0 0 1 −

 .

9. The following graph shows the preference relation of the health care treatments (see Figure 1).

Figure 1. Outranking relation of treatments alternatives.

Therefore, A3 is the best choice.

4.2. Selection of the Best Company for Investment

Each investment and investment decision entails certain degree of risk. The most obvious factor
to consider is the financial performance of the company. The acronym “ESG” collectively refers
to economic, social, and governance factors. ESG integration is the method of consideration of
economic, social, and governance factors in the investment cycle. Company information is another
important factor in assessing a potential business investment. Suppose that an investor wants to
invest in a company. Let {C1, C2, C3, C4, C5} be the set of five companies. The investor chooses three
characteristics to assess companies which are given as:

T1 : Financial Performance

T2 : Company Information

T3 : ESG Integration.

Each attribute has been divided into four characteristics to make a 4F number.

• The attribute “Financial Performance” includes tax returns, balance sheets, cash flow projections,
and current accounts receivables.
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• The attribute “Company Information” includes company’s history, accomplishments, product or
service offerings, and business plans.

• The attribute “ESG Integration” includes pollution prevention, energy efficiency, regulatory
standards, and adherence to environmental safety.

1. The 4F decision matrix is given in Table 5.

Table 5. 4F decision matrix.

T1 T2 T3

C1 (0.36, 0.45, 0.50, 0.41) (0.25, 0.40, 0.61, 0.50) (0.50, 0.42, 0.53, 0.63)
C2 (0.52, 0.70, 0.46, 0.56) (0.36, 0.57, 0.48, 0.73) (0.64, 0.54, 0.72, 0.60)
C3 (0.25, 0.35, 0.40, 0.35) (0.24, 0.37, 0.56, 0.50) (0.49, 0.38, 0.42, 0.57)
C4 (0.73, 0.81, 0.72, 0.69) (0.65, 0.73, 0.66, 0.82) (0.75, 0.81, 0.80, 0.72)
C5 (0.64, 0.71, 0.60, 0.50) (0.50, 0.60, 0.50, 0.70) (0.70, 0.70, 0.60, 0.50)

2. Weights assigned by the investor are given as,

θ1 = 0.45, θ2 = 0.25, θ3 = 0.30 where,
3

∑
j=1

θj = 1.

We select the best company for investment by using the mFHWA operator.

Step 1 Assume λ = 3. Use the mFHWA operator to calculate the performance values êi of
the companies.

ê1 = (0.3766, 0.42864, 0.5378, 0.5034),

ê2 = (0.5217, 0.6244, 0.5536, 0.61924),

ê3 = (0.3219, 0.3539, 0.4479, 0.4573),

ê4 = (0.7179, 0.7921, 0.7332, 0.7363),

ê5 = (0.6275, 0.6817, 0.5762, 0.5560).

Step 2 Compute the scores S(êi) of all 4F numbers êi.

S(ê1) = 0.46161,

S(ê2) = 0.57974,

S(ê3) = 0.39525,

S(ê4) = 0.74486,

S(ê5) = 0.61035.

Step 3 Rank all alternatives for investment according to the scores S(êi), 1 ≤ i ≤ 5 of all
4F numbers,

C4 > C5 > C2 > C1 > C3.

Step 4 Therefore, C4 is the most suitable company for investment.

If the mFHWG operator is used for selection, the best alternative can be chosen in a similar manner.
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Step 1 Assume λ = 3. Use the mFHWG operator to calculate the performance values êi of
the alternatives.

ê1 = (0.36652, 0.42819, 0.53575, 0.49436),

ê2 = (0.51044, 0.61822, 0.53856, 0.61352),

ê3 = (0.3074, 0.36384, 0.4435, 0.4474),

ê4 = (0.7159, 0.7901, 0.7289, 0.7315),

ê5 = (0.62142, 0.6792, 0.5743, 0.5477).

Step 2 Compute the scores S(êi) of all 4F numbers êi.

S(ê1) = 0.456205,

S(ê2) = 0.570185,

S(ê3) = 0.390535,

S(ê4) = 0.7416,

S(ê5) = 0.60566.

Step 3 Rank all companies for investment based on the scores S(êi), 1 ≤ i ≤ 5 of all 4F numbers,

C4 > C5 > C2 > C1 > C3.

Step 4 Therefore, C4 is the best alternative.

We apply the mF-ELECTRE-I method to the same problem.

3. Table 6 represents the 4F weighted decision matrix.

Table 6. 4F weighted decision matrix.

T1 T2 T3

C1 (0.162, 0.2025, 0.225, 0.1845) (0.0625, 0.18, 0.2745, 0.125) (0.15, 0.126, 0.159, 0.189)
C2 (0.234, 0.315, 0.207, 0.252) (0.09, 0.1425, 0.12, 0.1825) (0.192, 0.162, 0.216, 0.18)
C3 (0.1125, 0.1575, 0.18, 0.1575) (0.06, 0.0925, 0.14, 0.125) (0.147, 0.114, 0.126, 0.171)
C4 (0.3285, 0.3645, 0.324, 0.3105) (0.1625, 0.1825, 0.165, 0.205) (0.225, 0.243, 0.24, 0.216)
C5 (0.288, 0.3195, 0.27, 0.225) (0.125, 0.15, 0.125, 0.175) (0.21, 0.21, 0.18, 0.15)

4. Tables 7 and 8 represent the 4F concordance and 4F discordance sets, respectively.

Table 7. 4F concordance set.

j 1 2 3 4 5

F1j - {2} {1, 2, 3} {} {2}
F2j {1, 3} - {1, 2, 3} {} {3}
F3j {} {} - {} {}
F4j {1, 2, 3} {1, 2, 3} {1, 2, 3} - {1, 2, 3}
F5j {1, 3} {1, 2, 3} {1, 2, 3} {} -
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Table 8. 4F discordance set.

j 1 2 3 4 5

G1j - {1, 3} {} {1, 2, 3} {1, 3}
G2j {2} - {} {1, 2, 3} {1, 2, 3}
G3j {1, 2, 3} {1, 2, 3} - {1, 2, 3} {1, 2, 3}
G4j {} {} {} - {}
G5j {2} {3} {} {1, 2, 3} -

5. The 4F concordance matrix is constructed as:

F =


− 0.25 1 0 0.25

0.75 − 1 0 0.3
0 0 − 0 0
1 1 1 − 1

0.75 1 1 0 −

 .

6. The 4F concordance level f = 0.515.
7. The 4F discordance matrix is constructed as:

G =


− 0.8800 0 1 1
1 − 0 1 1
1 1 − 1 1
0 0 0 − 0

0.9445 0.7953 0 1 −

 .

8. The 4F discordance level g = 0.6309.
9. The 4F concordance dominance and 4F discordance dominance matrix are constructed as:

H =


− 0 1 0 0
1 − 1 0 0
0 0 − 0 0
1 1 1 − 1
1 1 1 0 −

 ,

L =


− 0 1 0 0
0 − 1 0 0
0 0 − 0 0
1 1 1 − 1
0 0 1 0 −

 .

10. The 4F aggregate dominance matrix is evaluated as:

M =


− 0 1 0 0
0 − 1 0 0
0 0 − 0 0
1 1 1 − 1
0 0 1 0 −

 .

11. The following graph shows the preference relation of the companies (see Figure 2).
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Figure 2. Outranking relation of companies.

Therefore, C4 is the best company for investment.

4.3. Selection of Most Affected Country by Human Trafficking

In human trafficking, traffickers use force, coercion, or fraud to lure their victims into commercial
sexual exploitation or labor. These people are vulnerable due to different reasons like emotional or
psychological susceptibleness, lack of a social welfare system, economic hardships, political instability,
or natural disaster. Based on the latest surveys, it can be easily observed that millions of children,
women, and men become part of human trafficking all over the world, including Saudi Arabia,
China, Russia, Kuwait, and Iran. It is also observed that victims of traffickers can be of any gender,
age, or nationality. Traffickers use manipulation, or fake promises of high-paying jobs or romantic
connection to attract victims into trafficking. The trauma triggered by the traffickers can be so extreme
that people may not even recognize themselves as victims. The main attributes or causes of human
trafficking are political instability, poverty, debt, natural disasters, demand, and addiction.

Let C = {C1 = Saudi Arabia, C2 = China, C3 = Russsia, C4 = Kuwait, C5 = Iran} be a set of five
countries and let T = {T1, T2, T3, T4} be the set of four attributes, where

T1 denotes “Poverty”,
T2 denotes “Debt”,
T3 denotes “Demand”,
T4 denotes “Natural Disaster”.

Further characterizations of above attributes are force, fraud, or lure. The purpose of this
application is to evaluate the above countries Ci’s, i = 1, 2, . . . , 5 concerning the worst in human
trafficking with the help of 3F numbers given by the decision-makers under the attributes Tj’s,
j = 1, 2, 3, 4. Let θ = (0.4, 0.3, 0.3) be the weight vector for the preceding characteristics. The 3F
decision matrix is given as below(See Table 9):

Table 9. 3F decision matrix.

T1 T2 T3 T4

C1 (0.3,0.6,0.2) (0.2,0.5,0.6) (0.7,0.6,0.1) (0.5,0.8,0.3)
C2 (0.6,0.9,0.3) (0.4,0.8,0.1) (0.5,0.2,0.5) (0.7,0.4,0.2)
C3 (0.7,0.7,0.6) (0.4,0.3,0.4) (0.1,0.3,0.4) (0.4,0.2,0.5)
C4 (0.5,0.7,0.3) (0.7,0.8,0.1) (0.4,0.5,0.6) (0.7,0.8,0.2)
C5 (0.8,0.6,0.4) (0.1,0.2,0.5) (0.3,0.7,0.4) (0.2,0.8,0.3)

For illustration, the 3F number (0.3, 0.6, 0.2) in the top left entry of the 3F decision matrix means
that in the country Saudi Arabia C1 with respect to people in poverty who become a part of human
trafficking are sub-classified as follows: 30% due to force, 60% due to fraud, 20% due to lure.
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To compute the worst country regarding human trafficking, we apply the two operators, namely,
mFHWA and mFHWG, to construct methods to MADM problems with mF information, which are
given as follows:

1. Take λ = 3. We apply the mFHWA operator to find the preference values êi of the countries Ci
regarding human trafficking.

ê1 = (0.3582, 0.6220, 0.3382), ê2 = (0.5580, 0.7653, 0.2404),

ê3 = (0.5078, 0.4620, 0.5041), ê4 = (0.5998, 0.7395, 0.2523),

ê5 = (0.4732, 0.5595, 0.4115).

2. Determine the scores S(êi) of overall 3F numbers êi of the countries Ci involved in
human trafficking:

S(ê1) = 0.4395, S(ê2) = 0.5212, S(ê3) = 0.4913, S(ê4) = 0.5305, S(ê5) = 0.4814.

3. Now rank all the countries based on score values S(êi), (i = 1, 2, . . . , 5) based on overall 3F
numbers: C4 > C2 > C3 > C5 > C1.

4. C4 has high rate human trafficking.

Similarly, we use the mFHWG operator to select the affected country.

1. Take λ = 3. Use the mFHWG operator to find the preference values êi of the countries Ci
regarding human trafficking.

ê1 = (0.3295, 0.6078, 0.2940), ê2 = (0.5447, 0.6800, 0.2146),

ê3 = (0.4577, 0.4087, 0.4959), ê4 = (0.5858, 0.7290, 0.2200),

ê5 = (0.3337, 0.4943, 0.4061).

2. Determine the scores S(êi) of overall 3F numbers êi, (i = 1, 2, . . . , 5) of the countries Ci involved
in human trafficking:

S(ê1) = 0.4104, S(ê2) = 0.4798, S(ê3) = 0.4541, S(ê4) = 0.5116, S(ê5) = 0.4114.

3. Now rank all the countries based on score values S(ei), (i = 1, 2, . . . , 5) based on overall 3F
numbers: C4 > C2 > C3 > C5 > C1.

4. C4 has a high rate of human trafficking.

The method used in the application to select the worst country affected by human trafficking is
explained in Figure 3.
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Figure 3. Flowchart of selecting the worst country affected by human trafficking.

5. Comparison Analysis and Discussion

In this section, a comparative study is conducted with the mF-ELECTRE-I method to validate the
practicality of the proposed approach based on Hamacher aggregation operators.

1. It can be seen from the results of the second application that if the operators mFHWA or mFHWG
are used, respectively, then the final ranking is C4 > C5 > C2 > C1 > C3. However, the final
scores are slightly different. From these results, it is clear that C4 is the best choice for investment
and C3 is the worst choice for investment. If the mF-ELECTRE-I approach is used, then the optimal
alternative is C4. The final results are the same when using both approaches.

2. The mF-ELECTRE-I approach is known as a flexible approach relative to other ELECTRE-I
extensions. This approach does not result in a single alternative, but rather in a small subset of
favorable alternatives. It is very difficult for the decision-makers to rank all alternatives.

3. If more mF numbers are involved using mFHWA (or mFHWG) operators, the number of operations
and calculations will increase exponentially. However, the proposed method can more flexibly
explain the assessment details and maintain the integrity of original decision-making data, which
makes the final results more closely match realistic decision-making issues. The proposed method
ranks all the alternatives as compared to the mF-ELECTRE-I method.

6. Conclusions

Most problems in real life have a structure that fits into the framework of multi-polar data
that coexist with multiple attributes. As theoretical models develop in order to encompass wider
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settings, the MADM techniques with better performance need to be adapted to tackle more complex
decision-making issues.

In this article we have contributed to the development of MADM with the analysis of problems in
an m-polar fuzzy environment. As a preparation to their utilization in decision-making, the theoretical
basis of aggregation operators need to be carefully considered. The shortcomings of existing methods
plus the beneficial characteristics of Hamacher aggregation operators led us to consider their ability to
produce suitable combinations of mF numbers.

Consequently we have introduced arithmetic and geometric operations to construct m-polar fuzzy
aggregation operators that closely follow the motivation of Hamacher operations. They include the mF
Hamacher weighted average operator (mFHWA), mF Hamacher ordered weighted average operator
(mFHOWA), mF Hamacher hybrid weighted average operator (mFHHWA), mF Hamacher weighted
geometric operator (mFHWG), mF Hamacher ordered weighted geometric operator (mFHOWG), and
mF Hamacher hybrid weighted geometric operator (mFHHWG). The fundamental characteristics of
these operators are discussed so that the practitioners can select the version that better fits their needs.

We have utilized these operators to expand a number of strategies to address MADM problems.
A comparative analysis of our proposed procedure with the mF-ELECTRE-I approach is performed.
Finally, practical examples for the selection of health care waste treatment methods, selection of
best company for investment, and the selection of most affected country by human trafficking are
given. Altogether they build up a procedure and make a case for the pertinence and adequacy of the
proposed approach.

In a nutshell, the main contribution of this article is that it consolidates both the role of Hamacher
aggregation operators and the advantageous features of m-polar fuzzy numbers. Once again this
model of uncertain knowledge proves its versatility for portraying inexact, imprecise data in complex
conditions. The operators also demonstrate that they are highly adaptable, hence becoming a powerful
tool that might be applied for further uses. In future research, we will extend the driving ideas of our
models to an m-polar fuzzy soft set environment. Their study will prepare us to consider intertemporal
settings like in Alcantud et al. [45].
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