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Abstract: In this paper, the original CQ algorithm, the relaxed CQ algorithm, the gradient projection
method (GPM) algorithm, and the subgradient projection method (SPM) algorithm for the convex
split feasibility problem are reviewed, and a renewed SPM algorithm with S-subdifferential functions
to solve nonconvex split feasibility problems in finite dimensional spaces is suggested. The weak
convergence theorem is established.
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1. Introduction

The split feasibility problem [1] (subgradient projection method (SPM)) is the issue of finding a
vector u satisfying:

u ∈ C and Au ∈ Q;

here, both the nonempty underlying sets C ⊆ Rn and Q ⊆ Rm are closed convex, and A is a matrix of
m rows and n columns. Since the SFPwas raised by Censor [1], it has been rapidly applied in signal
processing [2], image restoration [3], intensity modulated radiation therapy (IMRT) [4], and other
fields. Besides, different types of iterative algorithms are used to solve the SFP (see [4–22] and the
references therein).

The original algorithm used to solve SFP appeared in [1] involved calculating the inverse of
matrix A (not necessarily symmetrical, and suppose the inverse A−1 exists). In fact, it is very difficult
to calculate the inverse of matrix A. Thus, the following CQ algorithm presented by Byrne [3] seemed
to be more popular:

uk+1 = PC
(
uk − ρk A∗

(
I − PQ

)
Auk

)
, k ≥ 1, (1)

where PC and PQ represent the vertical projections on C and Q, respectively, the initial value u1 ∈ Rn,
A∗ means the adjoint of A, and ρk ∈ (0, 2/σ) with σ relating to the spectral radius of the matrix A∗A.
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In some other references [2,10], they wrote the spectral radius of the matrix A∗A by ‖A‖2. In the
sequel, ‖ · ‖means the two-norm. It is found that Algorithm (1) is a special example of the gradient
projection method [10] (GPM) associated with convex minimization. That is, let:

f (u) =
1
2

∥∥Au− PQ(Au)
∥∥2 ,

and consider the convex minimization problem [10]:

min
u∈C

f (u).

Recall that the GPM algorithm for the above convex minimization problem is:

uk+1 = PC (uk − ρk∇ f (uk)) , k ≥ 1, (2)

The stepsize ρk in the CQ algorithm (1) and the GPM algorithm (2) depends heavily on the matrix
norm ‖A‖. However, it is difficult to calculate or estimate the norm ‖A‖ in reality. Thus, another
way to construct a different stepsize independent of norm ‖A‖ is expected. Yang [23] proposed the
following stepsize:

ρk =
λk

‖∇ f (xk)‖
, (3)

where λk satisfies:
∞

∑
k=1

λk = ∞ and
∞

∑
k=1

λ2
k < ∞. (4)

Yang [23] proved the convergence of the GPM algorithm (2) under (3) and (4). Besides, the following
two more conditions are needed:

• The boundedness of subset Q;
• The full column rank of matrix A.

However, the conditions above are still very strict, so the application area of the GPM algorithm
(2) is limited. Thus, López et al. [2] renewed the stepsize (3) as:

ρk =
λk f (xk)

‖∇ f (xk)‖2 , 0 < λk < 4. (5)

Then, López et al. [2] analyzed the weak convergence of the GPM algorithm (2) with the stepsize (5).
On the other hand, although C and Q are convex sets, the projections onto them may not be easy

to implement. To overcome this difficulty, Yang [24] presented the relaxed CQ algorithm, in which
C0 = {u ∈ Rn : c(u) ≤ 0} and Q0 = {v ∈ Rm : q(v) ≤ 0} are lower level sets of subdifferentiable
convex functions c : Rn → R and q : Rm → R at zero, respectively. Recall that the relaxed CQ
algorithm:

uk+1 = PCk,0(uk − ρk A∗(I − PQk,0)Auk), ρk ∈
(

0, 2/‖A‖2
)

, k ≥ 1, (6)

where:
Ck,0 = {u ∈ Rn : c(uk) + 〈φk, u− uk〉 ≤ 0} , φk ∈ ∂c(uk),

and:
Qk,0 = {v ∈ Rm : q(Auk) + 〈ϕk, v− Auk〉 ≤ 0} , ϕk ∈ ∂q(Auk).

Define a function:
fk(u) =

1
2

∥∥∥Au− PQk,0(Au)
∥∥∥2

; (7)
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hence, its gradient:
∇ fk(u) = A∗

(
Au− PQk,0(Au)

)
.

López et al. [2] improved this relaxed CQ algorithm (6) as follows:

uk+1 = PCk,0 (uk − ρk∇ fk(uk)) , k ≥ 1, (8)

where:

ρk =
λk fk(uk)

‖∇ fk(uk)‖2 , 0 < λk < 4. (9)

Thus, the convergence of Algorithm (8) with the stepsize (9) need not calculate or estimate the norm of
matrix A.

Guo [25] reformulated the relaxed CQ algorithm (6) into a subgradient projection method (SPM)
by studying the subgradient projector of convex continuous functions. He denoted the subgradient
projector related to (c, zero, sc) and ( fk, zero, ∇ fk) by Gc0 and G f 0

k
, respectively. Let Rλk , f 0

k
= I +

λk

(
G f 0

k
− I
)

, then:

uk+1 = Gc0

(
Rλk , f 0

k
(uk)

)
, 0 < λk < 2, (10)

converges iteratively to a point ũ such that ũ ∈ C0 and Aũ ∈ Q0.
In this paper, the CQ algorithm (1), the relaxed CQ algorithm (6), the GPM algorithm (2), and

the SPM algorithm (10) for the convex SFP are reviewed, the definition of the S-subdifferential with
respect to a set S is introduced, the SFP is generalized to a nonconvex case where the functions c and q
are both continuous and S-subdifferentiable, then the supposed algorithm converges iteratively to a
solution of nonconvex SFP. The S-subgradient projector of a continuous function has a pivotal role in
structuring the iterative algorithm to solve the nonconvex SFP.

2. Preliminaries

First of all, we write uk ⇀ u [5] to show that {uk} converges weakly to u. Let nonempty set
S ⊆ Rn be closed and the vertical projection [16] PS from Rn onto S be defined by the following form:

PS(u) := argminv∈S‖u− v‖, ∀u ∈ Rn.

Definition 1. [26] Let f : Rn → (−∞,+∞).

The domain of f is:
dom f = {u ∈ Rn : f (u) < +∞} .

The graph of f is:
gra f = {(u, ξ) ∈ Rn ×R : f (u) = ξ} .

The epigraph of f is:
epi f = {(u, ξ) ∈ Rn ×R : f (u) ≤ ξ} .

The lower level set of f at height ξ ∈ R is:

lev≤ξ f = {u ∈ Rn : f (u) ≤ ξ} .

To define S-subgradient projector of continuous functions, we need the following definition.

Definition 2 ([25]). Given a set S ⊆ Rn and a constant r f > 0, a vector x ∈ Rn is said to be an S-subgradient
of function f : Rn → R at u if:

〈v− u, x〉+ f (u) +
r f

2
d2

S(u) ≤ f (v) +
r f

2
d2

S(v), ∀v ∈ Rn.
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The set of all S-subgradients of function f at u is called the S-subdifferential of f at u and is denoted by:

∂S,r f f (u) =
{

x ∈ Rn : 〈v− u, x〉+ f (u) +
r f

2
d2

S(u) ≤ f (v) +
r f

2
d2

S(v), ∀v ∈ Rn
}

(11)

where dS(u) = infv∈S ‖u− v‖ is the usual distance related to the two-norm from point u to set S.

Note that if S = Rn, the S-subdifferential collapses to the Fenchel subdifferential; so does r = 0.
The definition of the Fenchel subdifferential is given below.

Definition 3 ([26]). Let f : Rn → (−∞,+∞) (not necessarily convex), and define its Fenchel subdifferential
at u,

∂ f (u) := {x ∈ Rn : 〈v− u, x〉+ f (u) ≤ f (v), ∀v ∈ Rn} . (12)

When f is convex, ∂ f (u) is the usual subdifferential.

Lemma 1 ([25]). Let Cξ = lev≤ξ f 6= ∅, Cξ ⊆ S ⊆ Rn, S be closed and convex, and f : Rn → R be the
S-subdifferential on Rn. Then, there exists a constant r f > 0 and for any u /∈ Cξ such that:

s f (u) ∈ ∂S,r f f (u)⇒ s f (u) 6= 0.

Therefore, we can define the S-subgradient projector.

Definition 4 ([25]). Assume that f : Rn → R is continuous and S-subdifferential on Rn with respect to S.
Let the lower level sets of f at height ξ ∈ R be such that Cξ = lev≤ξ f 6= ∅. Let Cξ ⊆ S ⊆ Rn and S be
closed and convex. Assume that ∂S,r f f (u) is the S-subdifferential of f with respect to S and s f (u) ∈ ∂S,r f f (u).
The S-subgradient projector onto Cξ related to ( f , ξ, s f ) is:

GS, f ξ : Rn → Rn

u 7→
{

u + ξ− f (u)
‖s f (u)‖2 s f (u), u /∈ Cξ

u, u ∈ Cξ .

Lemma 2 ([25]). Let S ⊆ Rn be closed and convex and f : Rn → R be the S-subdifferential on Rn. Then, there
exists a constant r f > 0 such that:

x ∈ ∂S,r f f (u)⇔ x ∈ ∂ f (u) + r f (I − PS)(u).

3. Nonconvex Split Feasibility Problem

In this part, we take a look at the nonconvex split feasibility problem. Let us look at some
hypothetical situations. Assume that:

(1) continuous, but not necessarily convex functions c : Rn → R and q : Rm → R are the
S-subdifferential, and c and q are locally Lipschitzian in addition.

(2) the lower level sets of c and q at height ξ ∈ R, ξ > 0 are defined by Cξ = {u ∈ Rn : c(u) ≤ ξ} and
Qξ = {v ∈ Rm : q(v) ≤ ξ} .

(3) the set of solutions to SFP is nonempty, that is there exists at least one element ũ ∈ Cξ such that
Aũ ∈ Qξ , where A is an m× n matrix.

(4) U ⊆ Rn and V ⊆ Rm are closed convex subsets such that Cξ ⊆ U and Qξ ⊆ V.
(5) c and q are the S-subdifferential on Rn and Rm with respect to U and V, respectively.
(6) ∂U,rc c(u) and ∂V,rq q(v) are the S-subdifferential of c and q with respect to U and V, respectively.

(7) both ∂U,rc c(u) and ∂V,rq q(v) are not empty; let sc(u) ∈ ∂U,rc c(u) and sq(v) ∈ ∂V,rq q(v).
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In such conditions, the S-subgradient projector onto Cξ related to (c, ξ, sc) is:

GU,cξ : Rn → Rn

u 7→
{

u + ξ−c(u)
‖sc(u)‖2 sc(u), u /∈ Cξ

u, u ∈ Cξ .

The S-subgradient projector onto Qξ related to (q, ξ, sq) is:

GV,qξ : Rm → Rm

v 7→
{

v + ξ−q(v)
‖sq(v)‖2 sq(v), v /∈ Qξ

v, v ∈ Qξ .

For k ≥ 1 and φk ∈ ∂U,rc c(uk), give a set:

Ck,ξ = {u ∈ Rn : c(uk) + 〈φk, u− uk〉 ≤ ξ} ,

and for ϕk ∈ ∂V,rq q(Auk), give another set:

Qk,ξ = {v ∈ Rm : q(Auk) + 〈ϕk, v− Auk〉 ≤ ξ} . (13)

Then, we can define a function like (7),

fk(u) =
1
2

∥∥∥Au− PQk,ξ (Au)
∥∥∥2

,

where the set Qk,ξ is mentioned in (13), so the gradient of fk at u is:

∇ fk(u) = A∗
(

Au− PQk,ξ (Au)
)

.

Then, we can improve the relaxed CQ algorithm by:

uk+1 = PCk,ξ (uk − ρk∇ fk(uk)) , (14)

where:

ρk =
λk fk(uk)

‖∇ fk(uk)‖2 .

For any uk ∈ Rn, by [27], we get:

PCk,ξ (uk) = uk +
(ξ − c(uk) + 〈φk, uk〉)− 〈φk, uk〉

‖φk‖2 φk

= uk +
ξ − c(uk)

‖φk‖2 φk

= GU,cξ (uk).

Denote the S-subgradient projector related to ( fk, 0, ∇ fk) by G f 0
k
, that is,

G f 0
k

: Rn → Rn

u 7→
{

u + − fk(u)
‖∇ fk(u)‖2∇ fk(u), Au /∈ Qk,ξ

u, Au ∈ Qk,ξ .

(15)
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Let Rλk , f 0
k
= I + λk

(
G f 0

k
− I
)

, and by (14), we obtain:

uk+1 = PCk,ξ (uk − ρk∇ fk(uk))

= GU,cξ

(
uk −

λk fk(uk)

‖∇ fk(uk)‖2∇ fk(uk)

)
= GU,cξ

(
Rλk , f 0

k
(uk)

)
.

Now, we suggest the S-subgradient projection method with the S-subdifferential functions for
solving nonconvex SFP by:

uk+1 = GU,cξ

(
Rλk , f 0

k
(uk)

)
. (16)

Theorem 1. Assume that (1)–(7) are satisfied and infkλk(2− λk) > 0. Then, {un} generated by (16) weakly
converges to a point ũ such that ũ ∈ Cξ and Aũ ∈ Qξ .

Proof. Let w be any point in the solution set; that is, w ∈ Cξ and Aw ∈ Qξ . Since ϕk ∈ ∂V,rq q(Auk),
for any Aw ∈ Qξ , from (11), we attain:

q(Auk) + 〈ϕk, Aw− Auk〉 ≤ q(Aw) +
rq

2
d2

V(Aw)−
rq

2
d2

V(Auk)

= q(Aw)−
rq

2
d2

V(Auk)

≤ q(Aw) ≤ ξ.

Hence, we achieve Aw ∈ Qk,ξ . Moreover, fk(w) = 0.
Next, we consider two cases.
If Auk ∈ Qk,ξ , by the definition of G f 0

k
, then:

〈
G f 0

k
(uk)− w, G f 0

k
(uk)− uk

〉
=
〈

G f 0
k
(uk)− w, uk − uk

〉
= 0.

If Auk /∈ Qk,ξ , it is deduced from (12), (15) and fk(w) = 0 that:

〈
G f 0

k
(uk)− w, G f 0

k
(uk)− uk

〉
=

〈
uk +

− fk(uk)

‖∇ fk(uk)‖2∇ fk(uk)− w, uk +
− fk(uk)

‖∇ fk(uk)‖2∇ fk(uk)− uk

〉
=

〈
uk − w,

− fk(uk)

‖∇ fk(uk)‖2∇ fk(uk)

〉
+

f 2
k (uk)

‖∇ fk(uk)‖2

=
fk(uk)

‖∇ fk(uk)‖2 〈w− uk,∇ fk(uk)〉+
f 2
k (uk)

‖∇ fk(uk)‖2

≤ fk(uk)

‖∇ fk(uk)‖2 ( fk(w)− fk(uk)) +
f 2
k (uk)

‖∇ fk(uk)‖2

= 0.

Whether or not Auk belongs to Qk,ξ , we have:〈
G f 0

k
(uk)− w, G f 0

k
(uk)− uk

〉
≤ 0. (17)

Likewise, we get: 〈
GU,cξ

(
Rλk , f 0

k
(uk)

)
− w, GU,cξ

(
Rλk , f 0

k
(uk)

)
− Rλk , f 0

k
(uk)

〉
≤ 0. (18)
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From the definition of Rλk , f 0
k

and (17), we estimate:

‖Rλk , f 0
k
(uk)− w‖2 =

∥∥∥uk + λk

(
G f 0

k
(uk)− uk

)
− w

∥∥∥2

=‖uk − w‖2 + 2λk

〈
uk − G f 0

k
(uk), G f 0

k
(uk)− uk

〉
+ 2λk

〈
G fk

(uk)− w, G f 0
k
(uk)− uk

〉
+ λ2

k

∥∥∥G f 0
k
(uk)− uk

∥∥∥2

≤‖uk − w‖2 − λk(2− λk)
∥∥∥G f 0

k
(uk)− uk

∥∥∥2
.

This together with (16) and (18) implies that:

‖uk+1 − w‖2 =
∥∥∥GU,cξ

(
Rλk , f 0

k
(uk)

)
− w

∥∥∥2

=
∥∥∥Rλk , f 0

k
(uk) + GU,cξ

(
Rλk , f 0

k
(uk)

)
− Rλk , f 0

k
(uk)− w

∥∥∥2

≤
∥∥∥Rλk , f 0

k
(uk)− w

∥∥∥2
−
∥∥∥GU,cξ

(
Rλk , f 0

k
(uk)

)
− Rλk , f 0

k
(uk)

∥∥∥2

≤ ‖uk − w‖2 − λk(2− λk)
∥∥∥G f 0

k
(uk)− uk

∥∥∥2
−
∥∥∥GU,cξ (Rλk , f 0

k
(uk))− Rλk , f 0

k
(uk)

∥∥∥2
.

(19)

By infkλk(2− λk) > 0, we gain the Fejér monotonicity:

‖uk+1 − w‖2 ≤ ‖uk − w‖2, k ≥ 1.

Thus, we receive the existence of limk→∞ ‖uk − w‖, so the boundedness of {uk} is obtained.
By (19), we can find:

λk(2− λk)
∥∥∥G f 0

k
(uk)− uk

∥∥∥2
+
∥∥∥GU,cξ (Rλk , f 0

k
(uk))− Rλk , f 0

k
(uk)

∥∥∥2
≤ ‖uk − w‖2 − ‖uk+1 − w‖2.

By infkλk(2− λk) > 0 and let vk = Rλk , f 0
k
(uk), we get:

lim
k→∞

∥∥∥G f 0
k
(uk)− uk

∥∥∥ = lim
k→∞

∥∥∥GU,cξ (vk)− vk

∥∥∥ = 0. (20)

One can see that:∥∥∥G f 0
k
(uk)− uk

∥∥∥ =

∥∥∥∥uk +
− fk(uk)

‖∇ fk(uk)‖2∇ fk(uk)− uk

∥∥∥∥ =
fk(uk)

‖∇ fk(uk)‖
. (21)

We observe from ∇ fk(w) = 0 that:

‖∇ fk(uk)‖ = ‖∇ fk(uk)−∇ fk(w)‖ ≤ ‖A‖2‖uk − w‖.

Therefore, {∇ fk(uk)} is bounded. From (20) and (21), we have lim
k→∞

fk(uk) = 0, which means:

lim
k→∞

∥∥∥Auk − PQk,ξ Auk

∥∥∥ = 0. (22)

Since q is locally Lipschitz, we have the local boundedness of ∂q; therefore, we get that ∂q is
bounded on the bounded set; so is I − PS. From Lemma 2, we obtain that ∂V,rq q is bounded on the
bounded set; thus, there exists δ > 0 such that ‖ϕk‖ ≤ δ. Since PQk,ξ Auk ∈ Qk,ξ , we conclude:

q(Auk) ≤ ξ +
〈

ϕk, Auk − PQk,ξ (Auk)
〉
≤ ξ + δ

∥∥∥Auk − PQk,ξ (Auk)
∥∥∥ .
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As {uk} is bounded, we can find a subsequence {uki
} of {uk} such that uki

⇀ ũ. Then, the
continuity of q and (22) imply that:

q(Aũ) = lim
i→∞

q(Auki
) ≤ ξ.

Hence, Aũ ∈ Qξ .
Since vk = Rλk , f 0

k
(uk), we have vki

= Rλki
, f 0

ki
(uki

), and then, from (20), we have that:

lim
i→∞
‖vki
− uki

‖ = lim
i→∞

λki

∥∥∥∥G f 0
ki
(uki

)− uki

∥∥∥∥ = 0.

Since uki
⇀ ũ, we have vki

⇀ ũ. Next, two cases are considered.
If vki

∈ Cξ , i.e., c(vki
) ≤ ξ and GU,cξ (vki

) = vki
, so

max
{

c(vki
)− ξ, 0

}
= 0

and:
‖sc(vki

)‖
∥∥∥GU,cξ (vki

)− vki

∥∥∥ = 0.

Hence, max
{

c(vki
)− ξ, 0

}
= ‖sc(vki

)‖
∥∥∥GU,cξ (vki

)− vki

∥∥∥.
If vki

/∈ Cξ , i.e., c(vki
) > ξ, hence, max{c(vki

)− ξ, 0} = c(vki
)− ξ.

‖sc(vki
)‖
∥∥∥GU,cξ (vki

)− vki

∥∥∥ = ‖sc(vki
)‖
∥∥∥∥vki

+
ξ − c(vki

)

‖sc(vki
)‖2 sc(vki

)− vki

∥∥∥∥ = c(vki
)− ξ.

No matter whether vki
belongs to Cξ or not, we have max

{
c(vki

)− ξ, 0
}
= ‖sc(vki

)‖
∥∥∥GU,cξ (vki

)− vki

∥∥∥.
From Lemma 2, there exists κ > 0 such that {vki

} lies in B(ũ; κ) and:

τ = sup ‖∂c(B(x̃; κ))‖+ rc sup
i≥1

∥∥(I − PS)vki

∥∥ < +∞.

Hence,
‖sc(vki

)‖ ≤ τ, i ≥ 1.

By (20), we have:

max {c(ũ)− ξ, 0} ≤ lim
i→∞

max
{

c(vki
)− ξ, 0

}
≤ τ lim

i→∞

∥∥∥GU,cξ (vki
)− vki

∥∥∥ = 0.

Thus, c(ũ) ≤ ξ, in other words, ũ ∈ Cξ ; this together with Aũ ∈ Qξ shows that the proof is done.

Remark 1. We raise two questions:

1, Can the result presented in Theorem 1 hold in infinity spaces?
2, Since we only obtain weak convergence of the proposed algorithm in this paper, how do we modify the

algorithm so that the strong convergence is guaranteed?

Remark 2. Let {λk} be a sequence such that infkλk(2− λk) > 0, but in the process of proving the convergence
of the subgradient projection algorithm, Guo [25] used λk = 1 in particular. In our proof, we do not use that.

4. Conclusions

In this paper, we studied the SFP in the nonconvex case. In finite dimensional spaces, we gave
two S-subdifferentiable functions and then structured nonconvex sets based on the epigraph. By the
nonzero of the S-subgradient of the S-subdifferentiable function, we introduced the S-subgradient
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projector of the continuous function, but not necessarily convex. Under this S-subgradient projector,
we transferred the GPM into the SPM, that is we suggested the S-subgradient projection method
with S-subdifferential functions for solving nonconvex SFP. The weak convergence theorem
was guaranteed.
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