
symmetryS S

Article

Novel Multi-Level Dynamic Traffic Load-Balancing
Protocol for Data Center

Sheeba Memon 1 , Jiawei Huang 1,* , Hussain Saajid 2 , Naadiya Khuda Bux 1 ,
Arshad Saleem 3 and Yazan Aljeroudi 4

1 School of Information Science and Engineering, Central South University Changsha,
Changsha 410083, China; sheeba.memon@csu.edu.cn (S.M.); naadiya.khudabux@csu.edu.cn (N.K.B.)

2 School of Computer Science and Engineering, Dalian University of Technology Dalian, Dalian 116024, China;
sunny_sau@hotmail.com

3 Shaheed Benazir Bhutto University, Shaheed Benazirabad, Landhi-Nawabshah 67450, Pakistan;
arshadsaleem1968@gmail.com

4 Mechanical Engineering Department, International Islamic University Malaysia,
Kuala Lumpur 53100, Malaysia; yazan.aljeroudi@gmail.com

* Correspondence: jiaweihuang@csu.edu.cn; Tel.: +86-0731-8883-0212

Received: 17 December 2018; Accepted: 21 January 2019; Published: 28 January 2019
����������
�������

Abstract: Typically, the production data centers function with various risk factors, such as for instance
the network dynamicity, topological asymmetry, and switch failures. Hence, the load-balancing
schemes should consider the sensing accurate path circumstances as well as the reduction of
failures. However, under dynamic traffic, current load-balancing schemes use the fixed parameter
setting, resulting in suboptimal performances. Therefore, we propose a multi-level dynamic
traffic load-balancing (MDTLB) protocol, which uses an adaptive approach of parameter setting.
The simulation results show that the MDTLB outperforms the state-of-the-art schemes in terms of
both the flow completion time and throughput in typical data center applications.

Keywords: data centers; load balance; parameter setting

1. Introduction

The exponential growth of the information technology (IT) industry and its storage demand
forces to move toward cloud computing, in which a huge amount of computing and storage resources
are provided in large data centers [1,2]. These data centers are designed with high-speed, highly
configured servers. The cloud servers are used to offer web searches, Amazon Elastic Compute
Cloud (EC2), Microsoft azure storage, and personal and business storage [3–5]. As a consequence, the
cloud servers handle a huge amount of data, and the interconnected networks and server resources
eventually become unstable, which hits the performance of the network bandwidth [6]. Due to this,
the network bandwidth, the latency-sensitive web services, and applications are suffering from a long
network latency tail [7]. An illustrating image of the data center traffic load is shown in Figure 1.

The multi-rooted topologies have been adopted for data center networks. This is to provide the
high bisection bandwidth [8]. The existing multipath topologies are used to deliver the alternative
routing paths between any two end-hosts under different switches.

The load balancing for multiple paths with the utilization of whole network resources can
improve throughput as well as reduce latency for data center applications [9]. The production data
centers are used to operate under several uncertainty factors. The uncertainty factors are mainly the
dynamicity of the traffics, unstable links, device heterogeneity, and switch failures [10]. To overcome
these situations due to uncertain circumstances, the load-balancing technique is seriously effective.

Symmetry 2019, 11, 145; doi:10.3390/sym11020145 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-7811-062X
https://orcid.org/0000-0002-3565-0930
https://orcid.org/0000-0002-4999-008X
https://orcid.org/0000-0001-6416-5881
http://dx.doi.org/10.3390/sym11020145
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/11/2/145?type=check_update&version=2

Symmetry 2019, 11, 145 2 of 22

Using the load-balancing technique, the accuracy of the path-sensing conditions and path rerouting
according to the path conditions can be improved. However, many of these protocols are unaffected
by path conditions; the approach is to split blindly at a fixed granularity. The proposal was made by
ignoring traffic conditions; however, it can be seen that it affects the performance, especially when
asymmetry arises [7,11]. The flowlet-based proposals have been proposed to sense the path conditions.
However, it facilitates rerouting only when the flowlet emerges. The flowlet formation depends
on various factors that are related to the applications and the transport layer. As a result, using a
flowlet-based reaction to the path conditions does not provide a timely reaction to congestion [10].
In addition, switch modification-based approaches (CONGA and HULA) are based on switching or
hardware modification that imposes impracticalities [12,13]. Among other solutions, Hermes has been
impressing through its better performance [14]. Hermes accomplishes per-flow load balancing to enact
faster rerouting following the network status. It applies packets to react timely to overcome uncertainty
challenges. However, it also imposes the congestion mismatch and packet reordering as well; in such
conditions, Hermes reduces the frequency of rerouting to avoid congestion. Moreover, Hermes uses
the unsystematic hashing, round robin, and seeks the best path to route and reroute based on the path
conditions as well as flow status. However, stability is a key concern for the condition when flows
interact in the network [10]. The bursty network congestion has been well addressed in [15–17] at the
transport and link layers. Their performances can be further improved with the support from the load
balancing schemes at network layer.Symmetry 2019, 11, x FOR PEER REVIEW 2 of 21

Figure 1. Data center image of application.

The multi-rooted topologies have been adopted for data center networks. This is to provide the
high bisection bandwidth [8]. The existing multipath topologies are used to deliver the alternative
routing paths between any two end-hosts under different switches.

The load balancing for multiple paths with the utilization of whole network resources can
improve throughput as well as reduce latency for data center applications [9]. The production data
centers are used to operate under several uncertainty factors. The uncertainty factors are mainly the
dynamicity of the traffics, unstable links, device heterogeneity, and switch failures [10]. To overcome
these situations due to uncertain circumstances, the load-balancing technique is seriously effective.
Using the load-balancing technique, the accuracy of the path-sensing conditions and path rerouting
according to the path conditions can be improved. However, many of these protocols are unaffected
by path conditions; the approach is to split blindly at a fixed granularity. The proposal was made by
ignoring traffic conditions; however, it can be seen that it affects the performance, especially when
asymmetry arises [7,11]. The flowlet-based proposals have been proposed to sense the path
conditions. However, it facilitates rerouting only when the flowlet emerges. The flowlet formation
depends on various factors that are related to the applications and the transport layer. As a result,
using a flowlet-based reaction to the path conditions does not provide a timely reaction to
congestion [10]. In addition, switch modification-based approaches (CONGA and HULA) are based
on switching or hardware modification that imposes impracticalities [12,13]. Among other solutions,
Hermes has been impressing through its better performance [14]. Hermes accomplishes per-flow
load balancing to enact faster rerouting following the network status. It applies packets to react
timely to overcome uncertainty challenges. However, it also imposes the congestion mismatch and
packet reordering as well; in such conditions, Hermes reduces the frequency of rerouting to avoid
congestion. Moreover, Hermes uses the unsystematic hashing, round robin, and seeks the best path
to route and reroute based on the path conditions as well as flow status. However, stability is a key
concern for the condition when flows interact in the network [10]. The bursty network congestion
has been well addressed in [15–17] at the transport and link layers. Their performances can be
further improved with the support from the load balancing schemes at network layer.

The main contribution of this article is a multi-level dynamic traffic load-balancing (MDTLB)
protocol. The key idea is to design a protocol using the functionalities of Hermes, multiple levels of
path characterization, and an adaptive approach to setting parameters. Two algorithms are
proposed, namely, the judging algorithm and the rerouting algorithm.

The rest of the article is organized as follows. Section 2 discusses the background study, and
Section 3 provides the motivation of the study. Section 4 discusses the methodology of the proposed
approach. Section 5 presents the result and discussion of the proposed approach, while Section 6
demonstrates the related works. Finally, Section 7 contains the findings and the conclusion.

Figure 1. Data center image of application.

The main contribution of this article is a multi-level dynamic traffic load-balancing (MDTLB)
protocol. The key idea is to design a protocol using the functionalities of Hermes, multiple levels of
path characterization, and an adaptive approach to setting parameters. Two algorithms are proposed,
namely, the judging algorithm and the rerouting algorithm.

The rest of the article is organized as follows. Section 2 discusses the background study, and
Section 3 provides the motivation of the study. Section 4 discusses the methodology of the proposed
approach. Section 5 presents the result and discussion of the proposed approach, while Section 6
demonstrates the related works. Finally, Section 7 contains the findings and the conclusion.

2. Background

The advancement of data center and virtualization technologies has led cloud storage. The concept
of the cloud computing paradigm delivers through online network accesses shared resources that are
configurable as well as flexible resources. Thereby, load-balancing protocol and its approaches are
significant in cloud servers. The load-balancing protocols are mainly designed with the consideration

Symmetry 2019, 11, 145 3 of 22

of three types of flows (static, dynamic proactive, and dynamic reactive) and the granularity [7].
The static flow is then allocated to the available paths through applying the fixed conditions by the
use of the hash for each packet header. Conversely, this technique is inflexible to the scenarios of
throughput-oriented flows, while it is consigned to the same path. In such a situation, the flows cannot
move to other less utilized paths. Meanwhile, the dynamic reactive flow is able to move across any of
the available paths subject to available bandwidth. The dynamic reactive flow provides a significant
result. However, it increases higher complexity in measuring link utilization, flow counting, and
estimating the best flow. On the other hand, the dynamic proactive allows the flows to become assigned
to the available paths in a fixed assignment, where the initial assignment is mainly performed according
to the available bandwidth. This approach is better compared to static flow and dynamic reactive
flow in terms of implementation overhead, flexibility, and performance. Four kinds of granularity are
observed such as per packet, per flow, flowlets, and per flow cell.

• Per packet: Can be used for the best load balance; however, due to the higher reordering, there
are chances to attain insignificant reordering.

• Flowlets: Due to the variation of the candidate path latencies, the flowlet’s size changes
enthusiastically. If the latency rates are higher, the flowlets become large. It is obvious that
it applies per packet and per flow technique. Therefore, the load balancing is then fine as well as
coarse-grained. As a result, the flowlets become promising in load balancing for asymmetric paths.
Nevertheless, the flowlets causes a small flow reordering, which can interrupt the execution times.

• Per flow cell: It uses the fixed size with the consideration of tens of packets. The most positive
effect of per flow cell is that it uses simplified load balancing to reduce the possible reordering
of small flows. However, it rises the reordering for larger flows, which can be fragmented into
several flow cells.

3. Motivation of the Study

This study is focused on improving the performance of the load balancer to avoid the problem of
congestion mismatch. This section discusses the concept of the congestion mismatch.

3.1. Congestion Mismatch Problem with an Example

To avoid the congestion mismatch issues, the algorithm may consider the flow-based rate of the
congestion state using the condition of the paths and the routing. Regarding the event of rerouting,
there are chances of mismatches. This is happening because of the sending rate and the rerouting
state of the new path. The dynamic rerouting within a flow allows the various congestion states of the
paths to adjust the rate of newer paths. This occurrence is then stated as congestion mismatch [14].
To illustrate the consequences of the congestion mismatch problem, two scenarios are considered.
The first scenario is considered under asymmetric topologies for the same flow sizes, A and B, and the
second scenario is for a heterogeneous network. The second scenario presents the load distributions
according to link capacities. Figure 2 depicts the dynamic routing protocols of Presto and Digit-Reversal
Bouncing (DRB) [7].

In Figure 2a we have a simple three to two leaf-spine topology with a broken link from L0 to
S1. Also, we have two types of flows: flow A, which is a data center transmission control protocol
(DCTCP) from L0 to L2, and flow B, which is a user datagram protocol (UDP) flow from L1 to L2.
The result of congestion mismatch is low throughput and queue oscillations when equal weights are
adopted for different paths. The throughput is oscillating around 1 Gbps, as shown in Figure 2c, while
the queue size is around 100 KB, as shown in Figure 2b. This is interpreted by the vigorous rerouting;
the congestion feedback (i.e., explicit congestion notification (ECN)) of the upper path constrains the
congestion window, resulting in throughput loss in the bottom path. Furthermore, when flow B with
a larger window shifts from the bottom path to the upper path, the upper path cannot immediately
absorb such a burst, causing queue length oscillations.

Symmetry 2019, 11, 145 4 of 22

A variation in the size of the queues appears in the S0–L2 link, whereas the low throughput can be
measured in flow B. Furthermore, observing the distribution of loads according to capacities is shown
in Figure 3. In the S0–L1 link, L1 suffers from low throughput, and the S0–L1 link has a limitation
regarding queue size variations.
Symmetry 2019, 11, x FOR PEER REVIEW 4 of 21

(a) Symmetric network (b) Queue size of flow B

(c) Throughput of flow B

Figure 2. Asymmetry because of broken link between L0 and S1, when the link capacity is 10 G [7].

In Figure 2a we have a simple three to two leaf-spine topology with a broken link from L0 to S1.
Also, we have two types of flows: flow A, which is a data center transmission control protocol
(DCTCP) from L0 to L2, and flow B, which is a user datagram protocol (UDP) flow from L1 to L2.
The result of congestion mismatch is low throughput and queue oscillations when equal weights are
adopted for different paths. The throughput is oscillating around 1 Gbps, as shown in Figure 2c,
while the queue size is around 100 KB, as shown in Figure 2b. This is interpreted by the vigorous
rerouting; the congestion feedback (i.e., explicit congestion notification (ECN)) of the upper path
constrains the congestion window, resulting in throughput loss in the bottom path. Furthermore,
when flow B with a larger window shifts from the bottom path to the upper path, the upper path
cannot immediately absorb such a burst, causing queue length oscillations.

A variation in the size of the queues appears in the S0–L2 link, whereas the low throughput can
be measured in flow B. Furthermore, observing the distribution of loads according to capacities is
shown in Figure 3. In the S0–L1 link, L1 suffers from low throughput, and the S0–L1 link has a
limitation regarding queue size variations.

Figure 2. Asymmetry because of broken link between L0 and S1, when the link capacity is 10 G [7].

Symmetry 2019, 11, x FOR PEER REVIEW 5 of 21

(a) Hybrid network (b) Throughput of flow A

Figure 3. Different capacities of paths between the L0 S0 and L0 S1 links [7].

In addition, we show that congestion mismatch remains harmful even if we distribute the flows
proportionally to path capacity. To illustrate this, we consider a heterogeneous network with 1 C
and 10 C paths, as shown in Figure 3a. We spread the flows using a 1:10 ratio to match the path
capacities, and expect both paths to be fully utilized.

However, as shown in Figure 3b, flow A can only achieve an overall throughput of around five
Gbps. To understand the reason, assume that the first 10 flow cells go through the 10 C path. Since
the path is not congested, the protocol will increase the congestion window without realizing that
the subsequent flow cell will go through the 1 C path. With a large congestion window, the 11th flow
cell is sent at a higher rate on the 1 C path, causing a rapid queue buildup on the output port of spine
S0 to leaf L2. As the queue length exceeds the ECN marking threshold, the DCTCP will reduce the
window upon receiving ECN-marked ACKs without realizing that such a reduction will affect the
following flow cells on the 10 C path. As a result, such a congestion mismatch still causes throughput
loss and queue oscillations.

3.2. Summary

Our analysis leads us to conclude that the congestion mismatch problem occurs due to the
continuous path rerouting, which is happening because of the sending rate and the rerouting state of
the new path and the dynamic rerouting within a flow that allows the various congestion states of
the paths to adjust the rate of newer paths. These outcomes inspire us to handle the congestion
mismatch problem by reducing rerouting to the minimum. We overcome the mismatching problem
that is proved by improving the flow completion time (FCT) and the throughput, and we
implemented our scheme to not reroute until it is a critical situation such as failure or very bad
paths, so that the rerouting is minimized as much as possible.

4. Proposed Multi-Level Traffic Load Balancing MDTLB

4.1. Basic Concept

The existing Hermes applies the thresholds and parameters to depict the path, identify the best
possible path through the confirmation of the lower round trip time (RTT) measurement, and lower
the rate of congestion mismatch. Hence, the congested path can be identified while there are higher
RTT and ECN. It is obvious that the higher RTT can be lowered due to the stack latency of the
network, and the higher ECN fraction comes from some of the inaccurate samples. Else, the path is
stated to be gray in all of the other cases. This characterization approach is sensitive to the
parameters setting. It causes a non-steady performance that may increase the congestion mismatch
effect on the performance instead of decreasing it due to the wrong threshold values. However, a
multi-level path judging with dynamic thresholds-based heuristic characterization of the path is

Figure 3. Different capacities of paths between the L0 S0 and L0 S1 links [7].

Symmetry 2019, 11, 145 5 of 22

In addition, we show that congestion mismatch remains harmful even if we distribute the flows
proportionally to path capacity. To illustrate this, we consider a heterogeneous network with 1 C and
10 C paths, as shown in Figure 3a. We spread the flows using a 1:10 ratio to match the path capacities,
and expect both paths to be fully utilized.

However, as shown in Figure 3b, flow A can only achieve an overall throughput of around five
Gbps. To understand the reason, assume that the first 10 flow cells go through the 10 C path. Since
the path is not congested, the protocol will increase the congestion window without realizing that the
subsequent flow cell will go through the 1 C path. With a large congestion window, the 11th flow cell
is sent at a higher rate on the 1 C path, causing a rapid queue buildup on the output port of spine S0 to
leaf L2. As the queue length exceeds the ECN marking threshold, the DCTCP will reduce the window
upon receiving ECN-marked ACKs without realizing that such a reduction will affect the following
flow cells on the 10 C path. As a result, such a congestion mismatch still causes throughput loss and
queue oscillations.

3.2. Summary

Our analysis leads us to conclude that the congestion mismatch problem occurs due to the
continuous path rerouting, which is happening because of the sending rate and the rerouting state
of the new path and the dynamic rerouting within a flow that allows the various congestion states
of the paths to adjust the rate of newer paths. These outcomes inspire us to handle the congestion
mismatch problem by reducing rerouting to the minimum. We overcome the mismatching problem
that is proved by improving the flow completion time (FCT) and the throughput, and we implemented
our scheme to not reroute until it is a critical situation such as failure or very bad paths, so that the
rerouting is minimized as much as possible.

4. Proposed Multi-Level Traffic Load Balancing MDTLB

4.1. Basic Concept

The existing Hermes applies the thresholds and parameters to depict the path, identify the best
possible path through the confirmation of the lower round trip time (RTT) measurement, and lower
the rate of congestion mismatch. Hence, the congested path can be identified while there are higher
RTT and ECN. It is obvious that the higher RTT can be lowered due to the stack latency of the network,
and the higher ECN fraction comes from some of the inaccurate samples. Else, the path is stated
to be gray in all of the other cases. This characterization approach is sensitive to the parameters
setting. It causes a non-steady performance that may increase the congestion mismatch effect on
the performance instead of decreasing it due to the wrong threshold values. However, a multi-level
path judging with dynamic thresholds-based heuristic characterization of the path is more realistic
regarding reducing a congestion mismatch issue than a simple threshold-based approach.

4.2. Design Considerations

The design of the protocol is composed of two parts: an adaptive parameter-setting algorithm,
and a rerouting algorithm. The detailed discussion is as below:

4.2.1. Parameters

The parameters setting for flow-related variables parameters is shown in Table 1, the path level
variables are presented in Table 2, and the parameters for the developed protocol are provided in
Table 3.

Symmetry 2019, 11, 145 6 of 22

Table 1. Flow Level Variables.

Flow Level Variable Meaning

i ftimeout Set if the flow experiences a timeout
Ssent Size sent from the flow
ntimeout Number of times out that the flow experiences
rsent Sending rate of the flow

Table 2. Path Level Variables.

Path level variable Meaning

ntimeout Number of timeout events of path
fretransmission Fraction of retransmission events of path
Type Path condition

Table 3. Path Level Variables.

TECN Threshold for Fraction of ECN

TRTT_LowS Static Threshold for low RTT,
TRTT_highS Static Threshold for high RTT
TRTT_LowD Dynamic Threshold for low RTT
TRTT_highD Dynamic Threshold for high RTT

∆RTT Threshold for notably better RTT
∆ECN Threshold for notably better ECN fraction

4.2.2. Adaptive Parameters Settings

To overcome the parameters setting sensitivity of Hermes, this article proposed two steps of
improvement:

1. The first is to increase the number of path levels to give the scheme more awareness of the path’s
status. Hence, the path is divided into five types {very good, good, gray, bad, and very bad}, as
shown in Figure 4.

2. The second step is to make the judging dynamic by introducing static and dynamic TRTT

thresholds, as shown in Figure 5 and pseudocode one. The user sets the static thresholds,
while the dynamic thresholds are set by the system using an adaptive way to determine the best
threshold value based on the network load. It is important to note that TRTT can be used as the
main judging thresholds. This is because the measurements of TRTT are more accurate and can
give a wider range than TECN to distinguish between path levels.

The judging algorithm is illustrated in pseudocode one and Figure 6.

1. for each path p do:
2. if fECN < T ECN and TRTT < TRTT_LowS then type = very good
3. else if fECN < T ECN and TRTT < TRTT_LowD then type = good
4. else if fECN > T ECN and TRTT > TRTT_highS then type = bad
5. else if fECN >T ECN and TRTT > TRTT_highD then type = very bad
6. else type = gray
7. if (ntimeout > 3 and no packet is ACKed) or (fretransmission > 1% and type 6= bad or very bad), then type =
failed
end for

Symmetry 2019, 11, 145 7 of 22

If (good portion is small) or (good portion is medium and bad portion is big) or (good portion is big and bad
portion is big) then changeRatio = ChangeRatio + 10
Else if (good portion is big and bad portion is not big) then changeRatio = ChangeRatio − 10
End

Symmetry 2019, 11, x FOR PEER REVIEW 7 of 21

Figure 4. Block diagram of path judging logic. Figure 4. Block diagram of path judging logic.

Symmetry 2019, 11, 145 8 of 22

Symmetry 2019, 11, x FOR PEER REVIEW 8 of 21

Figure 5. Block diagram of dynamic threshold logic.

The judging algorithm is illustrated in pseudocode one and Figure 6.
1. for each path p do:
2. if fECN < T ECN and TRTT < Tୖ_୭୵ୗthen type = very good
3. else if fECN < T ECN and TRTT < ࢝ࡸ_ࢀࢀࡾࢀୈthen type = good
4. else if fECN > T ECN and TRTT > Tୖ_୦୧୦ୗ then type = bad
5. else if fECN >T ECN and TRTT > ࢎࢍࢎ_ࢀࢀࡾࢀୈ then type = very bad
6. else type = gray
7. if (݊௧௨௧ > 3 and no packet is ACKed) or(1% < ࢙࢙࢙ࢇ࢚࢘ࢋ࢘ࢌ and type ≠ bad or very bad), then type

= failed
end for

If (good portion is small) or (good portion is medium and bad portion is big) or (good portion is
big and bad portion is big) then changeRatio = ChangeRatio + 10

Else if (good portion is big and bad portion is not big) then changeRatio = ChangeRatio − 10
End

Figure 5. Block diagram of dynamic threshold logic.
Symmetry 2019, 11, x FOR PEER REVIEW 9 of 21

Figure 6. Multi-level path judging.

4.2.3. Rerouting Logic

The proposed algorithm for rerouting logic is designed that will find the best available path for
every flow. The idea of the proposed logic can be derived as: if there is new flow, then, the process is
to begin to search for very good paths; if the search result does not find any (none), then the process
searches for gray if none chose the path randomly. In such cases, the proposed approach chose a
path with the smallest local sending rate from the available paths. If there is old flow with a very bad
path with a small rate and the sent size is less than size threshold S, then the approach is applied to
find a better path from the very good, good, or gray. If there is no better path than the current one, it
leaves and cancels the rerouting process. An illustration can be seen in Figure 7.

Figure 7. Rerouting logic.

Figure 6. Multi-level path judging.

4.2.3. Rerouting Logic

The proposed algorithm for rerouting logic is designed that will find the best available path for
every flow. The idea of the proposed logic can be derived as: if there is new flow, then, the process is

Symmetry 2019, 11, 145 9 of 22

to begin to search for very good paths; if the search result does not find any (none), then the process
searches for gray if none chose the path randomly. In such cases, the proposed approach chose a path
with the smallest local sending rate from the available paths. If there is old flow with a very bad path
with a small rate and the sent size is less than size threshold S, then the approach is applied to find a
better path from the very good, good, or gray. If there is no better path than the current one, it leaves
and cancels the rerouting process. An illustration can be seen in Figure 7.

Symmetry 2019, 11, x FOR PEER REVIEW 9 of 21

Figure 6. Multi-level path judging.

4.2.3. Rerouting Logic

The proposed algorithm for rerouting logic is designed that will find the best available path for
every flow. The idea of the proposed logic can be derived as: if there is new flow, then, the process is
to begin to search for very good paths; if the search result does not find any (none), then the process
searches for gray if none chose the path randomly. In such cases, the proposed approach chose a
path with the smallest local sending rate from the available paths. If there is old flow with a very bad
path with a small rate and the sent size is less than size threshold S, then the approach is applied to
find a better path from the very good, good, or gray. If there is no better path than the current one, it
leaves and cancels the rerouting process. An illustration can be seen in Figure 7.

Figure 7. Rerouting logic. Figure 7. Rerouting logic.

The logic of rerouting is illustrated in pseudocode two.

Symmetry 2019, 11, 145 10 of 22

1. for every packet do
2. Assume its corresponding flow is f and path is p
3. if f is a new flow or f.iftimeout ==true or ptype == failed then
4. {p’} = all very good paths
5. if {p’} 6= Φ then
6. P* = Argminp�{p’}(p.rp)

/* Select a very good path with the smallest local sending rate/*
7. else
8. {p"} = all good paths
9. if {p"} 6= Φ then
10. P* = Argminp�{p"}(p.rp)

/* Select a good path with the smallest local sending rate */
else

11. {p"’} = all gray paths
12. if {p"’} 6= Φ then
13. p* = Argminp�{p"’}(p.rp)
14. else
15. p* = a randomly selected path with no failure
16. else if p:type == very bad then
17. if f.ssent < S and f.rf < R then
18. {P’} = all very good paths notably better than p
19. / ∀p’� {P’}, we have p.tRTT – p’.tRTT > ∆RTT and p.fECN – p’.fECN > ∆ECN */
20. if {p’} 6= Φ then
21. P* = Argminp�{p’}(p.rp)
22. else
23. {p"} = all good paths notably better than p
24. if {p"} 6= Φ then
25. P* = Argminp�{p"}(p.rp)
26. /* Select a good path with the smallest local sending rate */
27. else
28. {p"’} = all gray paths notably better than p
29. if {p"’} 6= Φ then
30. p* = Argmin p�{p"’}(p.rp)
31. else
32. p = p /* Do not reroute */
33. return p* /* The new routing path */

4.2.4. Example of Proposed Scheme

Suppose we have two paths, P1 and P2, which both have the capacity of 10 G, and were received
for flows A, B, C, D, E, F, G, H, and I. As illustrated in Figure 8 and Table 4, the following events
describe the system response for this scenario:

1. Flow A started; the status of paths is unknown, so they are grey; the portion of good paths equals
the portion of bad paths (0), so no need to change the dynamic thresholds, and our routing logic
will choose any of the paths, let us say P1.

2. Flow B started; the judging of paths will be bad for P1 due to traffic and grey for P2; the routing
logic will choose P2; the portion of bad paths is greater than the portion of good paths, so the
dynamic threshold should be increased by 10%.

3. Flow C started and due to the change of the dynamic threshold from the previous step, the
judging logic will be good for P1 and bad for P2; as a result, the routing logic will choose
P1, and the portion of good paths equals the portion of bad paths, so no need to change the
dynamic thresholds.

Symmetry 2019, 11, 145 11 of 22

4. Flow D started, the judging logic will be bad for P1 and P2; the routing logic will choose either
P1 or P2, let us say P1; the portion of bad paths is greater than the portion of good paths, so the
dynamic thresholds should be increased by 10%.

5. Flow E started, and due to the change of dynamic thresholds from the previous step, the judging
logic will be very bad for P1 and good for P2; the routing logic will choose P2, and the portion of
good paths equals the portion of bad paths, so no need to change the dynamic thresholds.

6. Flow F started, the judging logic will be very bad for P1 and bad for P2; the routing logic will
choose P2, the portion of bad paths is greater than the portion of good paths, so the dynamic
thresholds should be increased by 10%.

7. Flow G started, and due to the change of dynamic threshold from the previous step, the judging
logic will be very good for P1 and good for P2; the routing logic will choose P1, and the portion of
bad paths is smaller than the portion of good paths, so the dynamic thresholds should decrease
by 10%.

8. Flow H started, and due to the change of dynamic threshold from the previous step, the judging
logic will be good for P1 and good for P2; the routing logic will chose either P1 or P2, let us say
P2; the portion of bad paths is smaller than the portion of good paths, so the dynamic thresholds
should decrease by 10%.

9. Flow I started, and the judging logic will be good for P1 and bad for P2; thus, the routing logic
will choose P1, and the portion of good paths equals to the portion of bad paths, so no need to
change the dynamic thresholds.

Symmetry 2019, 11, x FOR PEER REVIEW 11 of 21

4. Flow D started, the judging logic will be bad for P1 and P2; the routing logic will choose either
P1 or P2, let us say P1; the portion of bad paths is greater than the portion of good paths, so the
dynamic thresholds should be increased by 10%.

5. Flow E started, and due to the change of dynamic thresholds from the previous step, the
judging logic will be very bad for P1 and good for P2; the routing logic will choose P2, and the
portion of good paths equals the portion of bad paths, so no need to change the dynamic
thresholds.

6. Flow F started, the judging logic will be very bad for P1 and bad for P2; the routing logic will
choose P2, the portion of bad paths is greater than the portion of good paths, so the dynamic
thresholds should be increased by 10%.

7. Flow G started, and due to the change of dynamic threshold from the previous step, the judging
logic will be very good for P1 and good for P2; the routing logic will choose P1, and the portion
of bad paths is smaller than the portion of good paths, so the dynamic thresholds should
decrease by 10%.

8. Flow H started, and due to the change of dynamic threshold from the previous step, the judging
logic will be good for P1 and good for P2; the routing logic will chose either P1 or P2, let us say
P2; the portion of bad paths is smaller than the portion of good paths, so the dynamic
thresholds should decrease by 10%.

9. Flow I started, and the judging logic will be good for P1 and bad for P2; thus, the routing logic
will choose P1, and the portion of good paths equals to the portion of bad paths, so no need to
change the dynamic thresholds.

Figure 8. The example of the multi-level dynamic traffic load-balancing (MDTLB) method.

Table 4. Example summary.

Events 1 2 3 4 5 6 7 8 9
Flow A B C D E F G H I

P1 type Grey Bad Good Bad Very Bad
Very
Bad

Very
Good

Good Good

P2 type Grey Gray Bad Bad Good Bad Good Good Bad
chosen path P1 P2 P1 P1 P2 P2 P1 P2 P1

Dynamic
thresholds

No
change

+10%
No

change
+10%

No
change

+10% −10% −10%
No

change

5. Results and Discussion

The proposed algorithm was implemented in a Network Simulator 3 (NS3) environment. The
simulation environment was configured using the selected parameters. The simulation parameters
are listed in Table 5. We tested MDTLB under a symmetric 4 4 leaf-spine topology, as shown in

Figure 8. The example of the multi-level dynamic traffic load-balancing (MDTLB) method.

Table 4. Example summary.

Events 1 2 3 4 5 6 7 8 9

Flow A B C D E F G H I
P1 type Grey Bad Good Bad Very Bad Very Bad Very Good Good Good
P2 type Grey Gray Bad Bad Good Bad Good Good Bad

chosen path P1 P2 P1 P1 P2 P2 P1 P2 P1
Dynamic

thresholds No change +10% No change +10% No change +10% −10% −10% No change

5. Results and Discussion

The proposed algorithm was implemented in a Network Simulator 3 (NS3) environment.
The simulation environment was configured using the selected parameters. The simulation parameters
are listed in Table 5. We tested MDTLB under a symmetric 4 × 4 leaf-spine topology, as shown in

Symmetry 2019, 11, 145 12 of 22

Figure 9, with 64 hosts connected by 10 Gbps links. We simulate a 2:1 oversubscription at the leaf level
similar to the typical data center deployments.

Table 5. Simulation Parameters.

Values Parameters

runMode MDTLB, TLB (Hermes), Conga, Presto, DRB, ECMP, Clove, DRILL,
LetFlow

transportProt Tcp
enableLargeDupAck False

enableLargeSynRetries False
enableFastReConnection False
enableLargeDataRetries False

For each leaf serverCount 8
spineCount 4
leafCount 4
linkCount 1

spineLeafCapacity 10
leafServerCapacity 10 Gbps

linkLatency 10 us

cdfFileName data mining: VL2_CDF, web search: DCTCP_CDF, general flows:
(VL2_DF + DCTCP_CDF)/2

load [0.3, 0.5, 0.7, 0.9]
MDTLBMinRTTS 40 us
MDTLBHighRTTS 180 us

Initial MDTLBMinRTTD 40 us
Initial MDTLBHighRTTD 180 us

MDTLBBetterPathRTT 1 us
MDTLBT1 100 us

MDTLBECNPortionLow 0.1
MDTLBProbingEnable True
MDTLBProbingInterval 50 us

MDTLBSmooth True
MDTLBRerouting True

MDTLBS 64,000 byte
MDTLBReverseACK True

quantifyRTTBase 10
MDTLBFlowletTimeout 5 ms

Symmetry 2019, 11, x FOR PEER REVIEW 12 of 21

Figure 9, with 64 hosts connected by 10 Gbps links. We simulate a 2:1 oversubscription at the leaf
level similar to the typical data center deployments.

We evaluate and measure the performance of the proposed MDTLB by two main metrics: the
(normalized) flow completion time (FCT) and the throughput. To do so, general flow, data mining,
and the web search workload were used. The observation of the FCT of general flows, with three
types of flows, are also shown separately for short flows, long flows, and both short and long flows
in Figure 10. Similarly, in Figures 11 and 12, the observation was made for the flow completion time
(FCT) of web search and data-mining, respectively. In all of the figures of FCT, the results were
normalized to MDTLB protocol in order to have better visualization for comparing results.

Figure 9. Leaf-Spine topology.

Table 5. Simulation Parameters.

Values Parameters

runMode MDTLB,TLB (Hermes), Conga, Presto,
DRB, ECMP, Clove, DRILL, LetFlow

transportProt Tcp
enableLargeDupAck False

enableLargeSynRetries False
enableFastReConnection False
enableLargeDataRetries False

For each leaf serverCount 8
spineCount 4
leafCount 4
linkCount 1

spineLeafCapacity 10
leafServerCapacity 10 Gbps

linkLatency 10 us

cdfFileName
data mining: VL2_CDF, web search:

DCTCP_CDF , general flows: (VL2_DF +
DCTCP_CDF)/2

load [0.3 , 0.5 , 0.7 , 0.9]
MDTLBMinRTTS 40 us
MDTLBHighRTTS 180 us

Initial MDTLBMinRTTD 40 us
Initial MDTLBHighRTTD 180 us

MDTLBBetterPathRTT 1 us
MDTLBT1 100 us

MDTLBECNPortionLow 0.1
MDTLBProbingEnable True

Figure 9. Leaf-Spine topology.

Symmetry 2019, 11, 145 13 of 22

We evaluate and measure the performance of the proposed MDTLB by two main metrics: the
(normalized) flow completion time (FCT) and the throughput. To do so, general flow, data mining,
and the web search workload were used. The observation of the FCT of general flows, with three
types of flows, are also shown separately for short flows, long flows, and both short and long flows in
Figure 10. Similarly, in Figures 11 and 12, the observation was made for the flow completion time (FCT)
of web search and data-mining, respectively. In all of the figures of FCT, the results were normalized
to MDTLB protocol in order to have better visualization for comparing results.

Symmetry 2019, 11, x FOR PEER REVIEW 13 of 21

MDTLBProbingInterval 50 us
MDTLBSmooth True

MDTLBRerouting True
MDTLBS 64,000 byte

MDTLBReverseACK True
quantifyRTTBase 10

MDTLBFlowletTimeout 5 ms

(a) Short Flows FCT

(b) Long flows FCT

(c) Overall FCT of both short and long flows

Figure 10. Flow completion time of various loads for the general flows in the symmetric topology
with three types of flows: (a) short flows FCT; (b) long flows FCT; (c) and overall FCT of both short
and long flows.

Figure 10. Flow completion time of various loads for the general flows in the symmetric topology with
three types of flows: (a) short flows FCT; (b) long flows FCT; (c) and overall FCT of both short and
long flows.

Symmetry 2019, 11, 145 14 of 22
Symmetry 2019, 11, x FOR PEER REVIEW 14 of 21

(a) Short flows FCT

(b) Long flows FCT

(c) Overall FCT of both short and long flows

Figure 11. Flow completion time of various loads for the web search application in the symmetric
topology with three types of flows: (a) short flows FCT; (b) long flows FCT; (c) and overall FCT of
both short and long flows.

Figure 11. Flow completion time of various loads for the web search application in the symmetric
topology with three types of flows: (a) short flows FCT; (b) long flows FCT; (c) and overall FCT of both
short and long flows.

Symmetry 2019, 11, 145 15 of 22Symmetry 2019, 11, x FOR PEER REVIEW 15 of 21

(a) Short flows FCT

(b) Long flows FCT

(c) Overall FCT of both short and long flows.

Figure 12. Flow completion time of various loads for the data-mining application in the symmetric
topology with three types of flows: (a) short flows FCT; (b) long flows FCT; (c) and overall FCT of
both short and long Flows.

From the above results, the following observation can be made:
Under general workload

Figure 12. Flow completion time of various loads for the data-mining application in the symmetric
topology with three types of flows: (a) short flows FCT; (b) long flows FCT; (c) and overall FCT of both
short and long Flows.

Symmetry 2019, 11, 145 16 of 22

From the above results, the following observation can be made:
Under general workload
As we observe in Figure 10, we use the FCT of short flows, long flows, and a combination of both

short and long flows with general flows to compare the MDTLB performance with other protocols.
All of the FCTs were normalized to MDTLB for easy visualization. It is observed that MDTLB

achieves less FCT than ECMP, because ECMP suffers more from hash collisions at a higher load.
Moreover, MDTLB performs better at an 80% to 90% load compared to Clove and Herms for all types
of flows, because MDTLB has better visibility and can react to the congestion. Furthermore, for all
ranges expect 0.5–0.6, MDTLB had less FCT than most of the other protocols. MDTLB has lower a FCT
than LetFlow, Drill, Presto, and CONGA for the range 0.3–0.5, because we observe that MDTLB reacts
to the congestion in a more timely manner. Also, it is observed that MDTLB has achieved less than
all of the other protocols in the range 0.7 until 0.9. Another observation is that the performance of
MDTLB was more superior in long flows than other protocols, as we see in Figure 10b in comparison
with Figure 10a,c.

Here, we focus on the FCT of short flows, long flows, and both short and long flows with the
web search and data-mining workloads, which are both widely used workloads from deployed data
centers, as shown in Figures 11 and 12, respectively.

Under the web-search workload
We observe that MDTLB has an average performance compared with other protocols. The reason

is that the web-search considers bursty small flows. The frequent arrival of flows then creates flow
gaps by breaking large flows into small flows. As shown in Figure 11, the FCT of MDTLB achieves one
with the increasing load as compared to other protocols. However, excessive rerouting opportunities
may negatively affect small flows without caution rerouting. As we can see in Figure 11a,c, the FCT
for small flows grow dramatically as the load increases, which is because small flows are broken into
several flowlets under heavy load; thus, they are heavily affected by packet reordering and congestion
mismatch. In comparison, we observed that the FCT of MDTLB was lower compared with ECMP,
Hermes, Clove, LetFlow, and CONGA due to being interpreted by the multi-level path characterization
of MDTLB and the adaptive settings of the threshold.

Under the data-mining workload
In Figure 12, we observe that the MDTLB performance is better then Clove, Hermes, and Drill,

because the data-mining workload is less bursty, and so the visibility of the network congestion
becomes especially important to balance the load effectively. Also, we observe that MDTLB has
achieved a higher FCT than DRB. Figure 12b shows that MDTLB outperforms ECMP, CONGA, Clove,
Letflow, Presto, DRB, Hermes, and Drill; this is because MDTLB can effectively resolve the collision of
large flows due to the multi-level setting aspects in it. However, MDTLB provides an FCT lower than
most protocols, including DRB, when the workload increases. Furthermore, our protocol has achieved
a lower FCT than Hermes, LetFlow, and Clove, because these solutions without good visibility can
hardly balance the traffic.

The average throughput was evaluated for the different flows. Then, a comparison study has
been made between the proposed protocol and the existing protocols (shown in Figures 13–15). It is
observed that MDTLB has achieved the best throughput compared with existing protocols for data-
mining flows. It is also evident that the proposed protocol is the top among three existing protocols for
general flows with CONGA and Presto, while it was among the top five protocols for web flow. This is
consistent with the nature of web-search flows that have small bursts flows.

Symmetry 2019, 11, 145 17 of 22Symmetry 2019, 11, x FOR PEER REVIEW 17 of 21

Figure 13. Average throughput comparison among the protocols for the general load.

Figure 14. Average throughput comparison among the protocols for the web search load.

Figure 15. Average throughput comparison among the protocols for the data-mining load.

6. Related Work

The most recent and related algorithms, schemes, and protocols studies are discussed for the
data center load balancing. Table 6 shows the summary of the existing scheme under the algorithm
or mechanism functionality.

Researchers have proposed Presto, DRB, and RPS using per-packet per flow cell-based flow
congestion load-balancing schemes [7,11]. Many researchers had proposed congestion-aware

Figure 13. Average throughput comparison among the protocols for the general load.

Symmetry 2019, 11, x FOR PEER REVIEW 17 of 21

Figure 13. Average throughput comparison among the protocols for the general load.

Figure 14. Average throughput comparison among the protocols for the web search load.

Figure 15. Average throughput comparison among the protocols for the data-mining load.

6. Related Work

The most recent and related algorithms, schemes, and protocols studies are discussed for the
data center load balancing. Table 6 shows the summary of the existing scheme under the algorithm
or mechanism functionality.

Researchers have proposed Presto, DRB, and RPS using per-packet per flow cell-based flow
congestion load-balancing schemes [7,11]. Many researchers had proposed congestion-aware

Figure 14. Average throughput comparison among the protocols for the web search load.

Symmetry 2019, 11, x FOR PEER REVIEW 17 of 21

Figure 13. Average throughput comparison among the protocols for the general load.

Figure 14. Average throughput comparison among the protocols for the web search load.

Figure 15. Average throughput comparison among the protocols for the data-mining load.

6. Related Work

The most recent and related algorithms, schemes, and protocols studies are discussed for the
data center load balancing. Table 6 shows the summary of the existing scheme under the algorithm
or mechanism functionality.

Researchers have proposed Presto, DRB, and RPS using per-packet per flow cell-based flow
congestion load-balancing schemes [7,11]. Many researchers had proposed congestion-aware

Figure 15. Average throughput comparison among the protocols for the data-mining load.

6. Related Work

The most recent and related algorithms, schemes, and protocols studies are discussed for the
data center load balancing. Table 6 shows the summary of the existing scheme under the algorithm or
mechanism functionality.

Researchers have proposed Presto, DRB, and RPS using per-packet per flow cell-based flow
congestion load-balancing schemes [7,11]. Many researchers had proposed congestion-aware switching
techniques to balance the data center loads. However, from the assessment, it is evident that most of
the schemes suffer from the congestion mismatch in an asymmetric condition [12,18].

In continuation, to recover, the congestion mismatch issue advanced programmable switches that
were engaged [13]. The main target was to achieve better visibility and throughput. Flowlet switching
had projected balancing the traffic surrounded by parallel paths. Nevertheless, the flowlet has the
limitation of reacting to the congestion situations under stable conditions that lead it to have slower

Symmetry 2019, 11, 145 18 of 22

convergence and suboptimal performance. A flowlet weighted round-robin based algorithm had been
imposed at the end host where the path weight was estimated using piggybacked ECN signals [19].

A multipath transmission control protocol (MPTCP) [20,21] has been using as a transport protocol
to routes subflows toward multiple paths. This is because it cannot change paths, which is why
the MPTCP routed paths congestion mismatch issue is very low [22–24]. However, it carries some
limitations on the modification of the end host networking stacks, which really gives the challenge for
the multiple customers. On top of that, there are bad incast scenarios. A DRILL-based load-balancing
solution had appeared, which mainly maintained the per-packet load to overcome the microbursts
under heavy load conditions [25]. Moreover, it has also a limitation for the asymmetric topologies
that leads to the congestion mismatch issue. Another solution, namely flowbender [26], has appeared
to reroute the flows blindly whenever the congestions are detected. This technique is used to apply
the random and dynamic rerouting to carry the suboptimal performance under high load conditions.
In reference [27], random packet spraying (RPS) is proposed. RPS is a random based load-balancing
routing algorithm, which randomly assigns packets to one of the available shortest paths to the
destination. CLOVE-ECN [28] adopts per-flowlet weighted round-robin attend hosts, where the path
weights are calculated based on piggybacked ECN signals, due to their limited visibility and slow
reaction to congestion. The authors in [29] presented DiffFlow with the help of SDN using random
packet spraying (RPS) and a new load-balancing solution to detect the long flows and forward packets.
In [30], the authors presented a mechanism named flow distribution aware load balancing in order to
decrease the flow completion time and obtain higher scalability. Furthermore, the DFFR algorithm [31]
was proposed to balance the flows in the data center networks. It is a scalable, distributed, and
adaptive algorithm designed for maximizing network resources. A data center load-balancer named
Beamer is developed to guarantee a stateless mux operation [32]. Moreover, in [33], the authors
introduced a load-balancing protocol that was based on sampling named Luopan in order to overcome
the shortcomings of the existing protocols.

Symmetry 2019, 11, 145 19 of 22

Table 6. Summary of existing scheme under uncertainties.

Chemes
Sensing Uncertainties Reacting to Uncertainties Advanced

Hardware
Sensitivity to

Parameter
Settings

Evaluation Method

Congestion Switch Failure Minimum
Switchable Unit Switching Method and Frequency

Presto [11] Oblivious Oblivious Flow cell
(Fixed-sized unit) Per-flow cell round robin No No Real physical network

DRB [7] Oblivious Oblivious Packet Per-packet round robin No No NS-3 with testbed real physical
network

LetFLow [19] Oblivious Oblivious Flowlet Per-flowlet random hashing Yes No NS-3

DRILL [25] Local awareness
(Switch) Oblivious Packet Per-packet rerouting (according to local

congestion) Yes No OMNET++ Simulator

CONGA [12] Global awareness
(Switch) Oblivious Flowlet Per-flowlet rerouting (according to

global congestion) Yes No Based on OMNET++ Simulator
and real hardware testbed

HULA [13] Global awareness
(Switch) Oblivious Flowlet Per-flowlet rerouting (according to

global congestion) Yes No NS-2 Simulator

FlowBender [26] Global awareness
(End host) Oblivious packet Reactive and random rerouting (when

congested) No No NS-3 and real physical testbed

CLOVE-ECN [28] Global awareness
(End host) Oblivious Flowlet Flowlet Per-flowlet weighted round

robin (according to global congestion) No No NS-2

Hermes [14] Global awareness
(End host) Aware Packet Timely yet cautious rerouting (based on

global congestion and failure) No No NS-3

MDTLB Global awareness
(End host) Aware Packet Rerouting logic (based on global

congestion and failure) and path judging No Yes NS-3

Symmetry 2019, 11, 145 20 of 22

7. Conclusions and Future Work

This paper investigated different load-balancing mechanisms and algorithms, as well as protocols,
and also discussed several of the load-balancing problems. The key consideration was to minimize
the congestion mismatch problems in the proposed and designed protocol. A multi-level dynamic
traffic load-balancing protocol is proposed to overcome the uncertainties (traffic dynamics, topology
asymmetry, failures, and capability) issues. The proposed approach has used the multi-state path
conditions and path characterizing parameters. The MDTLB simulation results outperform HERMES in
terms of both FCT and throughput. Furthermore, MDTLB has achieved the best throughput compared
with other protocols for data mining flows.

In the future, it will be based and tested on hardware that emulate different scenarios such as
symmetry and asymmetry topologies. We can also improve the way of judging paths by implementing
the dynamic thresholding method by taking TECN as the secondary input to decision-making logic.

Author Contributions: S.M., J.H., H.S., and N.K.B. conceived and designed the whole system; S.M., J.H. designed
algorithm and model; S.M. and Y.A. conducted the experiment; S.M. wrote the research paper.

Funding: This work is supported by National Natural Science Foundation of China (61872387, 61572530, 61872403)
and CERNET Innovation Project (Grant No. NGII20160113, NGII20170107).

Conflicts of Interest: I declare that none of the authors have a conflict of interest.

References

1. Greenberg, A.; Hamilton, J.; Maltz, D.A.; Patel, P. The cost of a cloud: Research problems in data center
networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 39, 68–73. [CrossRef]

2. Singh, A.; Korupolu, M.; Mohapatra, D. Server-storage virtualization: Integration and load balancing in
data centers. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, Austin, TX, USA,
21 November 2008; p. 53.

3. Dillon, T.; Wu, C.; Chang, E. Cloud computing: Issues and challenges. In Proceedings of the Advanced
Information Networking and Applications (AINA), Perth, Australia, 20–13 April 2010; pp. 27–33.

4. Grossman, R.L. The case for cloud computing. IT Prof. 2009, 11, 23–27. [CrossRef]
5. Chappell, D. Introducing the Windows Azure Platform. Available online: https://www.google.

com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjEk-fjjpDgAhWaa94KHTC-
CUEQFjABegQICRAC&url=http%3A%2F%2Fwww.davidchappell.com%2Fwriting%2Fwhite_papers%
2FIntroducing_the_Windows_Azure_Platform%2C_v1.4--Chappell.pdf&usg=AOvVaw3BMon_
jPUkscNOo26bp5nL (accessed on 16 December 2018).

6. Kannan, L.N.; Zeto, R.W.; Chen, L.; Xu, F.; Jalan, R. System and method to balance servers based on server
load status. United States Patent U.S. 9,215,275, 15 December 2015.

7. Cao, J.; Xia, R.; Yang, P.; Guo, C.; Lu, G.; Yuan, L.; Zheng, Y.; Wu, H.; Xiong, Y.; Maltz, D. Per-packet
load-balanced, low-latency routing for clos-based data center networks. In Proceedings of the Ninth
ACM Conference on Emerging Networking Experiments and Technologies, Santa Barbara, CA, USA,
9–12 December 2013; pp. 49–60.

8. Shafiee, M.; Ghaderi, J. A simple congestion-aware algorithm for load balancing in datacenter networks.
IEEE/ACM Trans. Netw. 2017, 25, 3670–3682. [CrossRef]

9. Shi, Q.; Wang, F.; Feng, D.; Xie, W. ALB: Adaptive Load Balancing Based on Accurate Congestion Feedback for
Asymmetric Topologies; IEEE/ACM: Banff, AB, Canada, 2018.

10. Noormohammadpour, M.; Raghavendra, C.S. Datacenter Traffic Control: Understanding Techniques and
Tradeoffs. IEEE Commun. Surv. Tutor. 2017, 20, 1492–1525. [CrossRef]

11. He, K.; Rozner, E.; Agarwal, K.; Felter, W.; Carter, J.; Akella, A. Presto: Edge-based load balancing for
fast datacenter networks. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, New York, NY, USA, 17–21 2015 August; Volume 45, pp. 465–478.

http://dx.doi.org/10.1145/1496091.1496103
http://dx.doi.org/10.1109/MITP.2009.40
https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjEk-fjjpDgAhWaa94KHTC-CUEQFjABegQICRAC&url=http%3A%2F%2Fwww.davidchappell.com%2Fwriting%2Fwhite_papers%2FIntroducing_the_Windows_Azure_Platform%2C_v1.4--Chappell.pdf&usg=AOvVaw3BMon_jPUkscNOo26bp5nL
https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjEk-fjjpDgAhWaa94KHTC-CUEQFjABegQICRAC&url=http%3A%2F%2Fwww.davidchappell.com%2Fwriting%2Fwhite_papers%2FIntroducing_the_Windows_Azure_Platform%2C_v1.4--Chappell.pdf&usg=AOvVaw3BMon_jPUkscNOo26bp5nL
https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjEk-fjjpDgAhWaa94KHTC-CUEQFjABegQICRAC&url=http%3A%2F%2Fwww.davidchappell.com%2Fwriting%2Fwhite_papers%2FIntroducing_the_Windows_Azure_Platform%2C_v1.4--Chappell.pdf&usg=AOvVaw3BMon_jPUkscNOo26bp5nL
https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjEk-fjjpDgAhWaa94KHTC-CUEQFjABegQICRAC&url=http%3A%2F%2Fwww.davidchappell.com%2Fwriting%2Fwhite_papers%2FIntroducing_the_Windows_Azure_Platform%2C_v1.4--Chappell.pdf&usg=AOvVaw3BMon_jPUkscNOo26bp5nL
https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjEk-fjjpDgAhWaa94KHTC-CUEQFjABegQICRAC&url=http%3A%2F%2Fwww.davidchappell.com%2Fwriting%2Fwhite_papers%2FIntroducing_the_Windows_Azure_Platform%2C_v1.4--Chappell.pdf&usg=AOvVaw3BMon_jPUkscNOo26bp5nL
http://dx.doi.org/10.1109/TNET.2017.2751251
http://dx.doi.org/10.1109/COMST.2017.2782753

Symmetry 2019, 11, 145 21 of 22

12. Alizadeh, M.; Edsall, T.; Dharmapurikar, S.; Vaidyanathan, R.; Chu, K.; Fingerhut, A.; Matus, F.;
Pan, R.; Yadav, N.; Varghese, G. CONGA: Distributed congestion-aware load balancing for datacenters.
In Proceedings of the 2014 ACM conference on SIGCOMM, New York, NY, USA, 17–22 August 2014;
Volume 44, pp. 503–514.

13. Katta, N.; Hira, M.; Kim, C.; Sivaraman, A.; Rexford, J. Hula: Scalable load balancing using programmable
data planes. In Proceedings of the Symposium on SDN Research ACM, Santa Clara, CA, USA, 14 March
2016; p. 10.

14. Zhang, H.; Zhang, J.; Bai, W.; Chen, K.; Chowdhury, M. Resilient datacenter load balancing in the wild.
In Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Los Angeles,
CA, USA, 21–25 August 2017; pp. 253–266.

15. Huang, J.; Huang, Y.; Wang, J.; He, T. Adjusting Packet Size to Mitigate TCP Incast in Data Center Networks
with COTS Switches. IEEE Trans. Cloud Comput. 2018. [CrossRef]

16. Ruan, C.; Wang, J.; Jiang, W.; Huang, J.; Min, G.; Pan, Y. FSQCN: Fast and Simple Quantized Congestion
Notification in Data Center Ethernet. J. Netw. Comput. Appl. 2017, 83, 53–62. [CrossRef]

17. Zhang, T.; Wang, J.; Huang, J.; Chen, J.; Pan, Y.; Min, G. Tuning the aggressive TCP behavior for highly
concurrent HTTP connections in intra-datacenter. IEEE/ACM Trans. Netw. 2017, 25, 3808–3822. [CrossRef]

18. Wang, P.; Xu, H.; Niu, Z.; Han, D.; Xiong, Y.; Wang, P.; Xu, H.; Niu, Z.; Han, D.; Xiong, Y. Expeditus:
Congestion-Aware Load Balancing in Clos Data Center Networks. IEEE/ACM Trans. Netw. (TON) 2017, 25,
3175–3188. [CrossRef]

19. Vanini, E.; Pan, R.; Alizadeh, M.; Taheri, P.; Edsall, T. Let It Flow: Resilient Asymmetric Load Balancing with
Flowlet Switching. In Proceedings of the NSDI, Boston, MA, USA, 27–29 March 2017; pp. 407–420.

20. Dong, P.; Yang, W.; Tang, W.; Huang, J.; Wang, H.; Pan, Y.; Wang, J. Reducing transport latency for short
flows with multipath TCP. J. Netw. Comput. Appl. 2018, 108, 20–36. [CrossRef]

21. Bonaventure, O.; Paasch, C.; Detal, G. Use Cases and Operational Experience with Multipath TCP. Available
online: https://inl.info.ucl.ac.be/publications/use-cases-and-operational-experience-multipath-tcp.html
(accessed on 16 December 2018).

22. Iwasaki, Y.; Ono, S.; Saruwatari, S.; Watanabe, T. Design and Implementation of OpenFlow Networks for
Medical Information Systems. In Proceedings of the IEEE Global Communications Conference, Singapore,
4–8 December 2017; pp. 1–7.

23. Frömmgen, A.; Rizk, A.; Erbshäußer, T.; Weller, M.; Koldehofe, B.; Buchmann, A.; Steinmetz, R.
A programming model for application-defined multipath TCP scheduling. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference, Las Vegas, NV, USA, 11–15 December 2017; pp. 134–146.

24. Vo, P.L.; Le, T.A.; Tran, N.H. mFAST: A Multipath Congestion Control Protocol for High Bandwidth-Delay
Connection. Mob. Netw. Appl. 2018, 1–9. [CrossRef]

25. Ghorbani, S.; Yang, Z.; Godfrey, P.; Ganjali, Y.; Firoozshahian, A. DRILL: Micro load balancing for low-latency
data center networks. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, Los Angeles, CA, USA, 21–25 August 2017; pp. 225–238.

26. Kabbani, A.; Vamanan, B.; Hasan, J.; Duchene, F. Flowbender: Flow-level adaptive routing for improved
latency and throughput in datacenter networks. In Proceedings of the 10th ACM International on Conference
on emerging Networking Experiments and Technologies, Sydney, Australia, 2–5 December 2014; pp. 149–160.

27. Dixit, A.; Prakash, P.; Hu, Y.C.; Kompella, R.R. On the impact of packet spraying in data center networks.
In Proceedings of the INFOCOM, Turin, Italy, 14–19 April 2013; pp. 2130–2138.

28. Katta, N.; Hira, M.; Ghag, A.; Kim, C.; Keslassy, I.; Rexford, J. CLOVE: How I learned to stop worrying about
the core and love the edge. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks, Atlanta,
GA, USA, 9–10 November 2016; pp. 155–161.

29. Carpio, F.; Engelmann, A.; Jukan, A. DiffFlow: Differentiating short and long flows for load balancing in
data center networks. arXiv, 2016; preprint. arXiv:1604.05107.

30. Wang, S.; Zhang, J.; Huang, T.; Pan, T.; Liu, J.; Liu, Y. Flow distribution-aware load balancing for the
datacenter. Comput. Commun. 2017, 106, 136–146. [CrossRef]

31. Cheung, C.M.; Leung, K.C. DFFR: A flow-based approach for distributed load balancing in Data Center
Networks. Comput. Commun. 2018, 116, 1–8. [CrossRef]

http://dx.doi.org/10.1109/TCC.2018.2810870
http://dx.doi.org/10.1016/j.jnca.2017.01.025
http://dx.doi.org/10.1109/TNET.2017.2759300
http://dx.doi.org/10.1109/TNET.2017.2731986
http://dx.doi.org/10.1016/j.jnca.2018.02.005
https://inl.info.ucl.ac.be/publications/use-cases-and-operational-experience-multipath-tcp.html
http://dx.doi.org/10.1007/s11036-018-1143-7
http://dx.doi.org/10.1016/j.comcom.2017.03.005
http://dx.doi.org/10.1016/j.comcom.2017.11.001

Symmetry 2019, 11, 145 22 of 22

32. Olteanu, V.; Agache, A.; Voinescu, A.; Raiciu, C. Stateless datacenter load-balancing with beamer.
In Proceedings of the 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI),
Renton, WA, USA, 9–11 April 2018; Volume 18, pp. 125–139.

33. Wang, P.; Trimponias, G.; Xu, H.; Geng, Y. Luopan: Sampling-Based Load Balancing in Data Center Networks.
IEEE Trans. Parallel Distrib. Syst. 2019, 30, 133–145. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPDS.2018.2858815
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Motivation of the Study
	Congestion Mismatch Problem with an Example
	Summary

	Proposed Multi-Level Traffic Load Balancing MDTLB
	Basic Concept
	Design Considerations
	Parameters
	Adaptive Parameters Settings
	Rerouting Logic
	Example of Proposed Scheme

	Results and Discussion
	Related Work
	Conclusions and Future Work
	References

