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Abstract: The search for complete graph invariants is an important problem in graph theory and
computer science. Two networks with a different structure can be distinguished from each other by
complete graph invariants. In order to find a complete graph invariant, we introduce the generalized
permanental polynomials of graphs. Let G be a graph with adjacency matrix A(G) and degree matrix
D(G). The generalized permanental polynomial of G is defined by PG(x, µ) = per(xI − (A(G)−
µD(G))). In this paper, we compute the generalized permanental polynomials for all graphs on at
most 10 vertices, and we count the numbers of such graphs for which there is another graph with the
same generalized permanental polynomial. The present data show that the generalized permanental
polynomial is quite efficient for distinguishing graphs. Furthermore, we can write PG(x, µ) in the
coefficient form ∑n

i=0 cµi(G)xn−i and obtain the combinatorial expressions for the first five coefficients
cµi(G) (i = 0, 1, . . . , 4) of PG(x, µ).

Keywords: generalized permanental polynomial; coefficient; co-permanental

1. Introduction

A graph invariant f is a function from the set of all graphs into any commutative ring, such that f
has the same value for any two isomorphic graphs. Graph invariants can be used to check whether
two graphs are not isomorphic. If a graph invariant f satisfies the condition that f (G) = f (H) implies
G and H are isomorphic, then f is called a complete graph invariant. The problem of finding complete
graph invariants is closely related to the graph isomorphism problem. Up to now, no complete graph
invariant for general graphs has been found. However, some complete graph invariants have been
identified for special cases and graph classes (see, for example, [1]).

Graph polynomials are graph invariants whose values are polynomials, which have been
developed for measuring the structural information of networks and for characterizing graphs [2].
Noy [3] surveyed results for determining graphs that can be characterized by graph polynomials. In a
series of papers [1,4–6], Dehmer et al. studied highly discriminating descriptors to distinguish graphs
(networks) based on graph polynomials. In [5], it was found that the graph invariants based on the
zeros of permanental polynomials are quite efficient in distinguishing graphs. Balasubramanian and
Parthasarathy [7,8] introduced the bivariate permanent polynomial of a graph and conjectured that
this graph polynomial is a complete graph invariant. In [9], Liu gave counterexamples to the conjecture
by a computer search.

In order to find almost complete graph invariants, we introduce a graph polynomial by employing
graph matrices and the permanent of a square matrix. We will see that this graph polynomial turns
out to be quite efficient when we use it to distinguish graphs (networks).

The permanent of an n× n matrix M with entries mij (i, j = 1, 2, . . . , n) is defined by

per(M) = ∑
σ

n

∏
i=1

miσ(i),
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where the sum is over all permutations σ of {1, 2, . . . , n}. Valiant [10] proved that computing the
permanent is #P-complete, even when restricted to (0,1)-matrices. The permanental polynomial of M,
denoted by π(M, x), is defined to be the permanent of the characteristic matrix of M; that is,

π(M, x) = per(xIn −M),

where In is the identity matrix of size n.
Let G = (V(G), E(G)) be a graph with adjacency matrix A(G) and degree matrix D(G).

The Laplacian matrix and signless Laplacian matrix of G are defined by L(G) = D(G)− A(G) and
Q(G) = D(G) + A(G), respectively. The ordinary permanental polynomial of a graph G is defined as
the permanental polynomial of the adjacency matrix A(G) of G (i.e., π(A(G), x)). We call π(L(G), x)
(respectively, π(Q(G), x)) the Laplacian (respectively, the signless Laplacian) permanental polynomial
of G.

The permanental polynomial π(A(G), x) of a graph G was first studied in mathematics by
Merris et al. [11], and it was first studied in the chemical literature by Kasum et al. [12]. It was found
that the coefficients and roots of π(A(G), x) encode the structural information of a (chemical) graph G
(see, e.g., [13,14]). Characterization of graphs by the permanental polynomial has been investigated,
see [15–19]. The Laplacian permanental polynomial of a graph was first considered by Merris et al. [11],
and the signless Laplacian permanental polynomial was first studied by Faria [20]. For more on
permanental polynomials of graphs, we refer the reader to the survey [21].

We consider a bivariate graph polynomial of a graph G on n vertices, defined by

PG(x, µ) = per(xIn − (A(G)− µD(G))).

It is easy to see that PG(x, µ) generalizes some well-known permanental polynomials of a graph
G. For example, the ordinary permanental polynomial of G is PG(x, 0), the Laplacian permanental
polynomial of G is (−1)|V(G)|PG(−x, 1), and the signless Laplacian permanental polynomial of G is
PG(x,−1). We call PG(x, µ) the generalized permanental polynomial of G.

We can write the generalized permanental polynomial PG(x, µ) in the coefficient form

PG(x, µ) =
n

∑
i=0

cµi(G)xn−i.

The general problem is to achieve a better understanding of the coefficients of PG(x, µ). For any
graph polynomial, it is interesting to determine its ability to characterize or distinguish graphs.
A natural question is how well the generalized permanental polynomial distinguishes graphs.

The rest of the paper is organized as follows. In Section 2, we obtain the combinatorial expressions
for the first five coefficients cµ0, cµ1, cµ2, cµ3, and cµ4 of PG(x, µ), and we compute the first five
coefficients of PG(x, µ) for some specific graphs. In Section 3, we compute the generalized permanental
polynomials for all graphs on at most 10 vertices, and we count the numbers of such graphs for which
there is another graph with the same generalized permanental polynomial. The presented data shows
that the generalized permanental polynomial is quite efficient in distinguishing graphs. It may serve
as a powerful tool for dealing with graph isomorphisms.

2. Coefficients

In Section 2.1, we obtain a general relation between the generalized and the ordinary permanental
polynomials of graphs. Explicit expressions for the first five coefficients of the generalized permanental
polynomial are given in Section 2.2. As an application, we obtain the explicit expressions for the first
five coefficients of the generalized permanental polynomials of some specific graphs in Section 2.3.
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2.1. Relation between the Generalized and the Ordinary Permanental Polynomials

First, we present two properties of the permanent.

Lemma 1. Let A, B, and C be three n× n matrices. If A, B, and C differ only in the rth row (or column), and the
rth row (or column) of C is the sum of the rth rows (or columns) of A and B, then per(C) = per(A) + per(B).

Lemma 2. Let M = (mij) be an n× n matrix. Then, for any i ∈ {1, 2, . . . , n},

per(M) =
n

∑
j=1

mij per(M(i, j)),

where M(i, j) denotes the matrix obtained by deleting the ith row and jth column from M.

Since Lemmas 1 and 2 can be easily verified using the definition of the permanent, the proofs
are omitted.

We need the following notations. Let G = (V(G), E(G)) be a graph with vertex set
V(G) = {v1, v2, . . . , vn} and edge set E(G). Let di = dG(vi) be the degree of vi in G. The degree
matrix D(G) of G is the diagonal matrix whose (i, i)th entry is dG(vi). Let vr1 , vr2 , . . . , vrk be k distinct
vertices of G. Then Gr1,r2,...,rk denotes the subgraph obtained by deleting vertices vr1 , vr2 , . . . , vrk from
G. We use G[hr] to denote the graph obtained from G by attaching to the vertex vr a loop of weight
hr. Similarly, G[hr, hs] stands for the graph obtained by attaching to both vr and vs loops of weight hr

and hs, respectively. Finally, G[h1, h2, . . . , hn] is the graph obtained by attaching a loop of weight hr

to vertex vr for each r = 1, 2, . . . , n. The adjacency matrix A(G[hr1 , hr2 , . . . , hrs ]) of G[hr1 , hr2 , . . . , hrs ] is
defined as the n× n matrix (aij) with

aij =


hr, if i = j = r and r ∈ {r1, r2, . . . , rs},
1, if i 6= j and vivj ∈ E(G),
0, otherwise.

By Lemmas 1 and 2, expanding along the rth column, we can obtain the recursion relation

π(A(G[hr]), x) = π(A(G), x)− hrπ(A(Gr), x). (1)

For example, expanding along the first column of π(A(G[h1]), x), we have

π(A(G[h1]), x) = per(xIn − A(G[h1]))

= per

[
x− h1 u

v xIn−1 − A(G1)

]

= per

[
x u
v xIn−1 − A(G1)

]
+ per

[
−h1 u

0 xIn−1 − A(G1)

]
= π(A(G), x)− h1per(xIn−1 − A(G1))

= π(A(G), x)− h1π(A(G1), x).

By repeated application of (1) for G[hr, hs], we have

π(A(G[hr, hs]), x)

= π(A(G[hr]), x)− hsπ(A(Gs[hr]), x)

= π(A(G), x)− hrπ(A(Gr), x)− hs(π(A(Gs), x)− hrπ(A(Gr,s), x))

= π(A(G), x)− hrπ(A(Gr), x)− hsπ(A(Gs), x) + hrhsπ(A(Gr,s), x).
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Additional iterations can be made to take into account loops on additional vertices. For loops on
all n vertices, the expression becomes

π(A(G[h1, h2, . . . , hn]), x) = π(A(G), x) +
n

∑
k=1

(−1)k ∑
1≤r1<···<rk≤n

hr1 · · · hrk π(A(Gr1,...,rk ), x). (2)

Let Aµ(G) := A(G) − µD(G). We see that the generalized permanental polynomial PG(x, µ)

of G is the permanental polynomial of Aµ(G); that is, π(Aµ(G), x). If the degree sequence of G is
(d1, d2, . . . , dn), then Aµ(G) is precisely the adjacency matrix of G[−µd1,−µd2, . . . ,−µdn]. Hence,
we obtain a relation between the generalized and ordinary permanental polynomials as an immediate
consequence of (2).

Theorem 1. Let G be a graph on n vertices. Then,

PG(x, µ) = π(Aµ(G), x) = π(A(G), x) +
n

∑
k=1

µk ∑
1≤r1<···<rk≤n

dr1 · · · drk π(A(Gr1,...,rk ), x).

Theorem 1 was inspired by Gutman’s method [22] for obtaining a general relation between the
Laplacian and the ordinary characteristic polynomials of graphs. From Theorem 1, one can easily give
a coefficient formula between the generalized and the ordinary permanental polynomials.

Theorem 2. Suppose that π(A(G), x) =
n
∑

i=0
ai(G)xn−i and PG(x, µ) =

n
∑

i=0
cµi(G)xn−i. Then,

cµi(G) = ai(G) +
n

∑
k=1

µk ∑
1≤r1<···<rk≤n

dr1 · · · drk ai−k(Gr1,...,rk ), 1 ≤ i ≤ n.

2.2. The First Five Coefficients of PG(x, µ)

In what follows, we use tG and qG to denote respectively the number of triangles (i.e., cycles of
length 3) and quadrangles (i.e., cycles of length 4) of G, and tG(v) denotes the number of triangles
containing the vertex v of G.

Liu and Zhang [15] obtained combinatorial expressions for the first five coefficients of the
permanental polynomial of a graph.

Lemma 3 ([15]). Let G be a graph with n vertices and m edges, and let (d1, d2, . . . , dn) be the degree sequence
of G. Suppose that π(A(G), x) = ∑n

i=0 ai(G)xn−i. Then,

a0(G) = 1, a1(G) = 0, a2(G) = m, a3(G) = −2tG, a4(G) =

(
m
2

)
−

n

∑
i=1

(
di
2

)
+ 2qG.

Theorem 3. Let G be a graph with n vertices and m edges, and let (d1, d2, . . . , dn) be the degree sequence of G.
Suppose that PG(x, µ) = ∑n

i=0 cµi(G)xn−i. Then

cµ0(G) = 1, cµ1(G) = 2µm, cµ2(G) = 2µ2m2 + m− 1
2

µ2
n

∑
i=1

d2
i ,

cµ3(G) =
1
3

µ3
n

∑
i=1

d3
i − (µ3m + µ)

n

∑
i=1

d2
i +

4
3

µ3m3 + 2µm2 − 2tG,
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cµ4(G) = −1
4

µ4
n

∑
i=1

d4
i +

(
2
3

µ4m + µ2
) n

∑
i=1

d3
i −

1
2
(2µ4m2 + 5µ2m + 1)

n

∑
i=1

d2
i

+
1
8

µ4

(
n

∑
i=1

d2
i

)2

+ µ2 ∑
vivj∈E(G)

didj + 2µ
n

∑
i=1

ditG(vi) + 2qG − 4µm tG

+
2
3

µ4m4 + 2µ2m3 +
1
2

m2 +
1
2

m.

Proof. It is obvious that cµ0(G) = 1. By Theorem 2 and Lemma 3, we have

cµ1(G) = a1(G) + µ ∑i dia0(Gi) = 0 + µ ∑i di = 2µm,

cµ2(G) = a2(G) + µ ∑i dia1(Gi) + µ2 ∑i<j didja0(Gi,j) = m + 0 + µ2 ∑i<j didj

= m + 1
2 µ2

(
(∑i di)

2 −∑i d2
i

)
= 2µ2m2 + m− 1

2 µ2 ∑i d2
i ,

cµ3(G) = a3(G) + µ ∑i dia2(Gi) + µ2 ∑i<j didja1(Gi,j) + µ3 ∑i<j<k didjdka0(Gi,j,k)

= −2tG + µ ∑i di(m− di) + 0 + µ3 ∑i<j<k didjdk

= −2tG + µm ∑i di − µ ∑i d2
i +

1
6 µ3

(
(∑i di)

3 − 3 ∑i ∑ j
j 6=i

d2
i dj −∑i d3

i

)
= −2tG + 2µm2 − µ ∑i d2

i +
4
3 µ3m3 − 1

2 µ3
((

∑i d2
i
) (

∑j dj

)
−∑i d3

i

)
− 1

6 µ3 ∑i d3
i

= 1
3 µ3 ∑i d3

i − (µ3m + µ)∑i d2
i +

4
3 µ3m3 + 2µm2 − 2tG,

cµ4(G) = a4(G) + µ ∑i dia3(Gi) + µ2 ∑i<j didja2(Gi,j) + µ3 ∑i<j<k didjdka1(Gi,j,k)

+µ4 ∑i<j<k<l didjdkdla0(Gi,j,k,l)

= (m
2 )−∑i (

di
2 ) + 2qG − 2µ ∑i di(tG − tG(vi)) + µ2 ∑i<j didj|E(Gi,j)|+ 0

+µ4 ∑i<j<k<l didjdkdl .

(3)

By a straightforward calculation, we have

∑i<j didj|E(Gi,j)| = ∑ i<j
vivj∈E(G)

didj|E(Gi,j)|+ ∑ i<j
vivj 6∈E(G)

didj|E(Gi,j)|

= ∑ i<j
vivj∈E(G)

didj(m− di − dj + 1) + ∑ i<j
vivj 6∈E(G)

didj(m− di − dj)

= ∑i<j didj(m− di − dj) + ∑vivj∈E(G) didj

= m ∑i<j didj −∑i ∑ j
j 6=i

d2
i dj + ∑vivj∈E(G) didj

= m
2
(
4m2 −∑i d2

i
)
−
(
2m ∑i d2

i −∑i d3
i
)
+ ∑vivj∈E(G) didj

= ∑i d3
i −

5
2 m ∑i d2

i + ∑vivj∈E(G) didj + 2m3,

(4)

and
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∑i<j<k<l didjdkdl

= 1
24

(
(∑i di)

4 − 12 ∑i ∑ j
j 6=i

∑ k
k 6=i,k 6=j

d2
i djdk − 4 ∑i ∑ j

j 6=i
d3

i dj − 6 ∑i<j d2
i d2

j −∑i d4
i

)

= 2
3 m4 − 1

2 ×
1
2

((
∑i d2

i
)
(∑i di)

2 −∑i d4
i − 2 ∑i<j d2

i d2
j − 2 ∑i ∑ j

j 6=i
d3

i dj

)
− 1

6 ∑i ∑ j
j 6=i

d3
i dj − 1

4 ∑i<j d2
i d2

j −
1

24 ∑i d4
i

= 2
3 m4 −m2 ∑i d2

i +
5

24 ∑i d4
i +

1
4 ∑i<j d2

i d2
j +

1
3 ∑i ∑ j

j 6=i
d3

i dj

= 2
3 m4 −m2 ∑i d2

i +
5

24 ∑i d4
i +

1
4 ×

1
2

((
∑i d2

i
)2 −∑i d4

i

)
+ 1

3
((

∑i d3
i
)
(∑i di)−∑i d4

i
)

= − 1
4 ∑i d4

i +
2
3 m ∑i d3

i −m2 ∑i d2
i +

1
8
(
∑i d2

i
)2

+ 2
3 m4.

(5)

Substituting (4) and (5) into (3), we obtain

cµ4(G) = −1
4

µ4
n

∑
i=1

d4
i +

(
2
3

µ4m + µ2
) n

∑
i=1

d3
i −

1
2
(2µ4m2 + 5µ2m + 1)

n

∑
i=1

d2
i

+
1
8

µ4

(
n

∑
i=1

d2
i

)2

+ µ2 ∑
vivj∈E(G)

didj + 2µ
n

∑
i=1

ditG(vi) + 2qG − 4µm tG

+
2
3

µ4m4 + 2µ2m3 +
1
2

m2 +
1
2

m.

This completes the proof.

Since π(L(G), x) = (−1)|V(G)|PG(−x, 1) and π(Q(G), x) = PG(x,−1), we immediately obtain the
combinatorial expressions for the first five coefficients of π(L(G), x) and π(Q(G), x) by Theorem 3.

Corollary 1. Let G be a graph with n vertices and m edges, and let (d1, d2, . . . , dn) be the degree sequence of G.
Suppose that π(L(G), x) = ∑n

i=0 pi(G)xn−i, then

p0(G) = 1, p1(G) = −2m, p2(G) = 2m2 + m− 1
2

n

∑
i=1

d2
i ,

p3(G) = −1
3

n

∑
i=1

d3
i + (m + 1)

n

∑
i=1

d2
i −

4
3

m3 − 2m2 + 2tG,

p4(G) = −1
4

n

∑
i=1

d4
i +

(
2
3

m + 1
) n

∑
i=1

d3
i −

1
2
(2m2 + 5m + 1)

n

∑
i=1

d2
i +

1
8

(
n

∑
i=1

d2
i

)2

+ ∑
vivj∈E(G)

didj + 2
n

∑
i=1

ditG(vi) + 2qG − 4m tG +
2
3

m4 + 2m3 +
1
2

m2 +
1
2

m.

Corollary 2. Let G be a graph with n vertices and m edges, and let (d1, d2, . . . , dn) be the degree sequence of G.
Suppose that π(Q(G), x) = ∑n

i=0 qi(G)xn−i. Then,
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q0(G) = 1, q1(G) = −2m, q2(G) = 2m2 + m− 1
2

n

∑
i=1

d2
i ,

q3(G) = −1
3

n

∑
i=1

d3
i + (m + 1)

n

∑
i=1

d2
i −

4
3

m3 − 2m2 − 2tG,

q4(G) = −1
4

n

∑
i=1

d4
i +

(
2
3

m + 1
) n

∑
i=1

d3
i −

1
2
(2m2 + 5m + 1)

n

∑
i=1

d2
i +

1
8

(
n

∑
i=1

d2
i

)2

+ ∑
vivj∈E(G)

didj − 2
n

∑
i=1

ditG(vi) + 2qG + 4m tG +
2
3

m4 + 2m3 +
1
2

m2 +
1
2

m.

2.3. Examples

In this subsection, by applying Theorem 3, we obtain the first five coefficients of the generalized
permanental polynomials of some specific graphs: Paths, cycles, complete graphs, complete bipartite
graphs, star graphs, and wheel graphs.

Example 1. Let Pn (n ≥ 3) be the path on n vertices. We see at once that tPn = qPn = 0, and tPn(v) = 0 for
each vertex v of Pn. By Theorem 3, we have

cµ0(Pn) = 1, cµ1(Pn) = 2(n− 1)µ, cµ2(Pn) = (2n2 − 6n + 5)µ2 + n− 1,

cµ3(Pn) =
2
3
(2n2 − 8n + 9)(n− 2)µ3 + 2(n− 2)2µ,

cµ4(Pn) =
2
3
(n2 − 5n + 7)(n− 3)(n− 2)µ4 + (2n2 − 10n + 13)(n− 3)µ2 +

1
2
(n− 3)(n− 2).

Example 2. Let Cn (n ≥ 5) be the cycle on n vertices. We see at once that tCn = qCn = 0, and tCn(v) = 0 for
each vertex v of Cn. By Theorem 3, we have

cµ0(Cn) = 1, cµ1(Cn) = 2nµ, cµ2(Cn) = 2n(n− 1)µ2 + n,

cµ3(Cn) =
4
3

n(n− 1)(n− 2)µ3 + 2n(n− 2)µ,

cµ4(Cn) =
2
3

n(n− 1)(n− 2)(n− 3)µ4 + 2n(n− 2)(n− 3)µ2 +
1
2

n(n− 3).

Example 3. Let Kn (n ≥ 4) be the complete graph on n vertices. It is easy to check that tKn = (n
3) =

n(n− 1)(n− 2)/6, qKn = 3(n
4) = n(n− 1)(n− 2)(n− 3)/8, and tKn(v) = (n−1

2 ) = (n− 1)(n− 2)/2 for
each vertex v of Kn. By Theorem 3, we have

cµ0(Kn) = 1, cµ1(Kn) = n(n− 1)µ, cµ2(Kn) =
1
2

n(n− 1)3µ2 +
1
2

n(n− 1),

cµ3(Kn) =
1
6

n(n− 2)(n− 1)4µ3 +
1
2

n(n− 2)(n− 1)2µ− 1
3

n(n− 1)(n− 2),

cµ4(Kn) =
1
24

n(n− 2)(n− 3)(n− 1)5µ4 +
1
4

n(n− 2)(n− 3)(n− 1)3µ2−

1
3

n(n− 2)(n− 3)(n− 1)2µ +
3
8

n(n− 1)(n− 2)(n− 3).

Example 4. Let Ka,b (a ≥ b ≥ 2) be the complete bipartite graph with partition sets of sizes a and b. We see
at once that tKa,b = 0, qKa,b = (a

2)(
b
2) = ab(a − 1)(b − 1)/4, and tKa,b(v) = 0 for each vertex v of Ka,b.

By Theorem 3, we have
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cµ0(Ka,b) = 1, cµ1(Ka,b) = 2abµ, cµ2(Ka,b) =
1
2

ab(4ab− a− b)µ2 + ab,

cµ3(Ka,b) =
1
3

ab(4a2b2 − 3a2b− 3ab2 + a2 + b2)µ3 + ab(2ab− a− b)µ,

cµ4(Ka,b) =
1

24
ab(16a3b3 − 24a3b2 − 24a2b3 + 19a3b + 6a2b2 + 19ab3 − 6a3 − 6b3)µ4+

1
2

ab(4a2b2 − 5a2b− 5ab2 + 2a2 + 2ab + 2b2)µ2 + ab(a− 1)(b− 1).

Example 5. Let Sn (n ≥ 3) be the star graph with n+ 1 vertices and n edges. We see at once that tSn = qSn = 0,
and tSn(v) = 0 for each vertex v of Sn. By Theorem 3, we have

cµ0(Sn) = 1, cµ1(Sn) = 2nµ, cµ2(Sn) =
1
2

n(3n− 1)µ2 + n,

cµ3(Sn) =
1
3

n(2n− 1)(n− 1)µ3 + n(n− 1)µ,

cµ4(Sn) =
1

24
n(n− 1)(n− 2)(5n− 3)µ4 +

1
2

n(n− 1)(n− 2)µ2.

Example 6. Let Wn (n ≥ 5) be the wheel graph with n + 1 vertices and 2n edges. It is obvious that
tWn = qWn = n. Let v0 be the hub (i.e., the vertex of degree n) of Wn. We see that tWn(v0) = n and tWn(v) = 2
for other vertices v of Wn. By Theorem 3, we have

cµ0(Wn) = 1, cµ1(Wn) = 4nµ, cµ2(Wn) =
3
2

n(5n− 3)µ2 + 2n,

cµ3(Wn) = 9n(n− 1)2µ3 + n(7n− 9)µ− 2n,

cµ4(Wn) =
9
8

n(n− 1)(n− 2)(7n− 9)µ4 + 6n(2n− 3)(n− 2)µ2 − 6n(n− 2)µ +
3
2

n(n− 1).

3. Numerical Results

In this section, by computer we enumerate the generalized permanental polynomials for all
graphs on at most 10 vertices, and we count the numbers of such graphs for which there is another
graph with the same generalized permanental polynomial.

Two graphs G and H are said to be generalized co-permanental if they have the same generalized
permanental polynomial. If a graph H is generalized co-permanental but non-isomorphic to G, then H
is called a generalized co-permanental mate of G.

In order to compute the generalized permanental polynomials of graphs, we, first of all, have to
generate the graphs by computer. We use nauty and Traces [23] to generate all graphs on at most
10 vertices. Next, the generalized permanental polynomials of these graphs are calculated by a Maple
procedure. Finally, we count the numbers of generalized co-permanental graphs.

The results are summarized in Table 1. Table 1 lists, for n ≤ 10, the total number of graphs on n
vertices, the total number of distinct generalized permanental polynomials of such graphs, the number
of such graphs with a generalized co-permanental mate, the fraction of such graphs with a generalized
co-permanental mate, and the size of the largest family of generalized co-permanental graphs.

In Table 1, we see that the smallest generalized co-permanental graphs, with respect to the order,
contain 10 vertices. Even more striking is that out of 12,005,168 graphs with 10 vertices, only 106 graphs
could not be discriminated by the generalized permanental polynomial.

From Table 1 in [9], we see that the smallest graphs that cannot be distinguished by the
bivariate permanent polynomial, introduced by Balasubramanian and Parthasarathy, contain 8 vertices.
By comparing the present data of Table 1 with that of Table 1 in [9], we find that the generalized
permanental polynomial is more efficient than the bivariate permanent polynomial when we use
them to distinguish graphs. From Tables 2 and 3 in [5], it is seen that the generalized permanental
polynomial is more efficient than the graph invariants based on the zeros of permanental polynomials
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of graphs. Comparing the present data of Table 1 with that of Table 1 in [24], we see that the
generalized permanental polynomial is also superior to the the generalized characteristic polynomial
when distinguishing graphs. So, the generalized permanental polynomial is quite efficient in
distinguishing graphs.

Table 1. Graphs on at most 10 vertices.

n # Graphs # Generalized Perm. Pols # with Mate Frac. with Mate Max. Family

1 1 1 0 0 1
2 2 2 0 0 1
3 4 4 0 0 1
4 11 11 0 0 1
5 34 34 0 0 1
6 156 156 0 0 1
7 1044 1044 0 0 1
8 12,346 12,346 0 0 1
9 274,668 274,668 0 0 1

10 12,005,168 12,005,115 106 8.83× 10−6 2

We enumerate all graphs on 10 vertices with a generalized co-permanental mate for each possible
number of edges in Appendix A. We see that the generalized co-permanental graphs G1 and H1 with
10 edges are disconnected (see Figure 1), the generalized co-permanental graphs G2 and H2 with
11 edges, and G3 and H3 with 12 edges are all bipartite (see Figures 2 and 3), and two pairs (G4, H4)

and (G5, H5) of generalized co-permanental graphs with 14 edges are all non-bipartite (see Figure 4).
The common generalized permanental polynomial of the smallest generalized co-permanental graphs
G1 and H1 is

PG1(x, µ) = PH1(x, µ)

= x10 + 20µx9 + (178µ2 + 10)x8 + (928µ3 + 156µ)x7 + (3137µ4 + 1050µ2 + 37)x6

+ (7180µ5 + 3980µ3 + 416µ)x5 + (11260µ6 + 9284µ4 + 1912µ2 + 60)x4

+ (11936µ7 + 13632µ5 + 4592µ3 + 416µ)x3 + (8176µ8 + 12288µ6 + 6068µ4 + 1048µ2 + 36)x2

+ (3264µ9 + 6208µ7 + 4176µ5 + 1136µ3 + 96µ)x + 576µ10 + 1344µ8 + 1168µ6 + 448µ4 + 64µ2.

1
G 1

H

Figure 1. Two generalized co-permanental graphs with 10 vertices and 10 edges.

2
G 2

H

Figure 2. Two generalized co-permanental graphs with 10 vertices and 11 edges.
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3
G 3

H

Figure 3. Two generalized co-permanental graphs with 10 vertices and 12 edges.

4
G 4

H
5

G
5

H

Figure 4. Two pairs of generalized co-permanental graphs with 10 vertices and 14 edges.

4. Conclusions

This paper is a continuance of the research relating to the search of almost-complete graph
invariants. In order to find an almost-complete graph invariant, we introduce the generalized
permanental polynomials of graphs. As can be seen, the generalized permanental polynomial is
quite efficient in distinguishing graphs (networks). It may serve as a powerful tool for dealing with
graph isomorphisms. We also obtain the combinatorial expressions for the first five coefficients of the
generalized permanental polynomials of graphs.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 11501050)
and the Fundamental Research Funds for the Central Universities (Grant Nos. 300102128201, 300102128104).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

In the Appendix, we enumerate all graphs on 10 vertices with a generalized co-permanental mate
for each possible number m of edges. Since the coefficient of xn−1 in PG(x, µ) is 2µm, two graphs with a
distinct number of edges must have distinct generalized permanental polynomials. So, the enumeration
can be implemented for each possible number of edges. We list the numbers of graphs with 10 vertices
for all numbers m of edges, the numbers of distinct generalized permanental polynomials of such
graphs, the numbers of such graphs with a generalized co-permanental mate, and the maximum size
of a family of generalized co-permanental graphs (see Table A1).

Table A1. Graphs on 10 vertices.

m # Graphs # Generalized Perm. Pols # with Mate Max. Family

0 1 1 0 1
1 1 1 0 1
2 2 2 0 1
3 5 5 0 1
4 11 11 0 1
5 26 26 0 1
6 66 66 0 1
7 165 165 0 1
8 428 428 0 1



Symmetry 2019, 11, 242 11 of 12

Table A1. Cont.

m # Graphs # Generalized Perm. Pols # with Mate Max. Family

9 1103 1103 0 1
10 2769 2768 2 2
11 6759 6758 2 2
12 15,772 15,771 2 2
13 34,663 34,663 0 1
14 71,318 71,316 4 2
15 136,433 136,429 8 2
16 241,577 241,575 4 2
17 395,166 395,162 8 2
18 596,191 596,183 16 2
19 828,728 828,723 10 2
20 1,061,159 1,061,154 10 2
21 1,251,389 1,251,381 16 2
22 1,358,852 1,358,848 8 2
23 1,358,852 1,358,850 4 2
24 1,251,389 1,251,385 8 2
25 1,061,159 1,061,157 4 2
26 828,728 828,728 0 1
27 596,191 596,191 0 1
28 395,166 395,166 0 1
29 241,577 241,577 0 1
30 136,433 136,433 0 1
31 71,318 71,318 0 1
32 34,663 34,663 0 1
33 15,772 15,772 0 1
34 6759 6759 0 1
35 2769 2769 0 1
36 1103 1103 0 1
37 428 428 0 1
38 165 165 0 1
39 66 66 0 1
40 26 26 0 1
41 11 11 0 1
42 5 5 0 1
43 2 2 0 1
44 1 1 0 1
45 1 1 0 1
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