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Abstract: In this manuscript, we present some results related to fixed-discs of self-mappings in
rectangular metric spaces. To do this, we give new techniques modifying some classical notions such
as Banach contraction principle, α-admissible mappings and Brianciari type contractions. We give
necessary illustrative examples to show the validity of our obtained theoretical theorems. Our results
are generalizations of some fixed-circle results existing in the literature.
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1. Introduction and Preliminaries

It is well known that some applications of the Banach fixed point theorem and its generalizations
have been widely studied in various disciplines of mathematics, engineering, economics and statistics.
An interesting application of the Banach fixed point theorem has been obtained in the study of the
graph neural network model [1]. On the other hand, the number of the fixed points of an activation
function used in a neural network is important (see [2] and the references therein). There are some
applications of the notion of a fixed point (resp. fixed circle) in neural networks. For example, some
activation functions with a fixed circle have been used in complex valued Hopfield neural networks [3].
Discontinuous activation functions are also extensively used in neural networks. Some applications of
fixed points and fixed circles have been obtained in discontinuous activation functions (see [4–7] and
the references therein). In addition, some of popular activation functions existing in the literature have
fixed discs (see [8,9]).

A recent approach is to consider the geometric properties of fixed points when the number of
fixed points is not unique. In this context, the fixed-circle problem has been investigated in metric
spaces via different contractive conditions (see [4,5,10–12] for more details). Since there exist some
examples of an S-metric which is not generated by any metric, the fixed-circle problem has also been
considered in S-metric spaces and some new fixed-circle results have been obtained (see [13–17]).
In some of these studies, fixed-disc results have been appeared consequently.

Motivated by these studies, our aim in this paper is to consider the fixed-disc problem as a
generalization of the fixed-circle (resp. fixed-point) problem.

The notion of a metric space has been extended and generalized in variant directions. One of these
generalizations is made by Branciari [18] where the triangle inequality was replaced by a rectangular
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one. Last years, many (common) fixed point results have been established in these spaces. For more
details, see [19–30]. In the sequel, denote by N the set of all positive integer numbers.

Definition 1. [18] (Rectangular (or Branciari) metric space) Given a nonempty set X. The function dR :
X× X → [0, ∞) satisfying:

(R1) θ = ϑ if and only if dR(θ, ϑ) = 0;
(R2) dR(θ, ϑ) = dR(ϑ, θ);
(R3) dR(θ, ϑ) ≤ dR(θ, ξ) + dR(ξ, η) + dR(η, ϑ)

for any θ, ϑ ∈ X and all distinct elements ξ, η ∈ X \ {θ, ϑ}, is called a rectangular metric. Here, the pair
(X, dR) is said a rectangular metric (RM) space.

An S-metric space generalizes a metric space [31].

Definition 2. [31] Given a nonempty set X and S : X3 → [0, ∞). Let ξ, η, θ, a ∈ X be such that

1. S(ξ, η, θ) = 0 if and only if ξ = η = θ,
2. S(ξ, η, θ) ≤ S(ξ, ξ, a) + S(η, η, a) + S(θ, θ, a).

Such S is said to be an S-metric on X.

The relationships between an S-metric space and a metric space are as follows:

Lemma 1. [32] Let (X, d) be a metric space. Then,

1. the function given as Sd(ξ, η, θ) = d(ξ, θ) + d(η, θ), for all ξ, η, θ ∈ X, is an S-metric on X.
2. ξn → ξ in (X, d) if ξn → ξ in (X,Sd).
3. {ξn} is Cauchy in (X, d) iff {ξn} is Cauchy in (X,Sd).
4. (X, d) is complete iff (X,Sd) is complete.

We write Sd as an S-metric generated by d [33]. In [32,33], there are some examples of S-metrics
which are not generated by any metric. On the other hand, Gupta [34] claimed that each S-metric on X
defines a metric dS on X:

dS(ξ, η) = S(ξ, ξ, η) + S(η, η, ξ), (1)

for all ξ, η ∈ X. However, since the triangle inequality does not hold for all elements of X everywhere,
the function dS defined in Equation (1) is not always a metric (see [33] for more details). If the S-metric
is generated by a metric d on X, then dS is a metric on X. Indeed, dS(ξ, η) = 4d(ξ, η), while, if the
S-metric is not generated by any metric, then dS can or can not be a metric on X. Such dS is called the
metric generated by S if it is a metric.

In [17], the notion of a circle was defined on an S-metric space as follows:

Definition 3. [17] Let (X,S) be an S-metric space and ξ0 ∈ X, r ∈ [0, ∞). The circle centered at ξ0 with
radius r is given as

CS
ξ0,r = {ξ ∈ X : S(ξ, ξ, ξ0) = r}.

In [14], the investigation of circles on metric and S-metric spaces has been considered.

Proposition 1. [14] Let S be an S-metric generated by a metric d on a nonempty set X. Hence, each circle
CS

ξ0,r on (X,S) corresponds to the circle Cξ0, r
2

on (X, d).

Corollary 1. [14] Let S be an S-metric generated by a metric d on a nonempty set X. The circle Cξ0,r on (X, d)
corresponds to the circle CS

ξ0,2r on (X,S).



Symmetry 2019, 11, 294 3 of 13

Proposition 2. [14] Let (X, dS) be a metric space such that dS is generated by an S-metric S . Then, any circle
Cξ0,r on (X, dS) corresponds to the circle CS

ξ0, r
2

on (X,S).

Corollary 2. [14] The circle CS
ξ0,r on an S-metric space (X,S) corresponds to the circle Cξ0,2r on (X, dS) where

dS is the metric generated by S .

Considering the above literature, the study of new fixed-disc results and fixed-circle results on
a rectangular metric space gains an importance because a rectangular metric is a generalization of a
metric and there exist some examples of a rectangular metric that is not a metric (see the following
two examples).

At first, we define the concepts of a circle and a disc on a rectangular metric space (X, dR).
Let r ≥ 0 and ξ0 ∈ X. The circle CR

ξ0,r and the closed disc DR
ξ0,r are

CR
ξ0,r = {ξ ∈ X : dR(ξ, ξ0) = r}

and
DR

ξ0,r = {ξ ∈ X : dR(ξ, ξ0) ≤ r} .

Following [29], we present the following.

Example 1. Let A =
{
(ξ, η) ∈ R2 : ξ2 + η2 ≤ 1

}
, B =

{
(ξ, η) ∈ R2 : (ξ − 2)2 + η2 < 1

}
, X = A ∪ B

and ρ : X× X → [0, ∞) be given as

ρ((ξ, η), (θ, ϑ)) =
√
(ξ − θ)2 + (η − ϑ)2.

Given the rectangular metric dR : X× X → [0, ∞) as

dR((ξ, η), (θ, ϑ)) =


0 , (ξ, η) = (θ, ϑ),

ρ((ξ, η), (θ, ϑ)) , (ξ, η) ∈ A, (θ, ϑ) ∈ B,
4 , otherwise.

Note that dR is not a metric. Indeed, if we take (0, 0), (1, 0), (2, 0) ∈ X, then we get

dR((0, 0), (1, 0)) = 4 ≤ dR((0, 0), (2, 0)) + dR((2, 0), (1, 0)) = 3,

which is a contradiction. In this rectangular metric space, the circle CR
(0,0),2 is shown in Figure 1.

Following [35], we state the following example.

Example 2. Consider V = {0, 2}, W = { 1
n : n ∈ N} and X = V ∪W. Given the rectangular metric

dR : X× X → [0, ∞) as

dR(ξ, η) =


0, ξ = η,

1, ξ 6= η and (ξ, η ∈ V or ξ, η ∈W, )

η, ξ ∈ V, η ∈W,

ξ, ξ ∈W, η ∈ V.

Here, dR is not a metric. Indeed, if we take 0, 2, 1
4 ∈ X, then we get

dR(0, 2) = 1 ≤ dR

(
0,

1
4

)
+ dR

(
1
4

, 2
)
=

1
4
+

1
4
=

1
2

,
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which is a contradiction. Given r ≥ 0 and ξ0 ∈ X, we have

DR
ξ0,r = {ξ ∈ X : dR(ξ, ξ0) ≤ r} .

In the case that r ≥ 1, we have DR
ξ0,r = X, while, in the case that 0 < r < 1 and ξ0 ∈ V, DR

ξ0,r =

{ξ0} ∪ (W − {1}).

Figure 1. The red arc is the circle CR
(0,0),2.

In this paper, we provide some results on fixed-discs for different contraction mappings in the
setting of rectangular metric spaces. The given results are supported by several examples. To derive
new fixed-disc results, we modify some known techniques and introduce new contractive conditions
such as an α-ξ0-contractive condition, an Fd-contractive condition, a Ćirić type Fd-contractive condition,
a Branciari Fd-contraction and a Branciari Fd-rational contraction on a rectangular metric space.
Using these new contractive conditions, we prove some fixed-disc (fixed-circle) theorems and discuss
some related results.

2. Main Results

Throughout the paper, T is a self-mapping on a rectangular metric space (X, dR). Put

r = inf
ξ∈X
{dR(ξ, Tξ) | Tξ 6= ξ}. (2)

We give new contractive conditions to establish some fixed-disc results. The definition of a
fixed-disc is given in the following.

Definition 4. The disc DR
ξ0,r is said the fixed disc of T if Tξ = ξ for all ξ ∈ DR

ξ0,r.

2.1. New Contractions via α-ξ0-Admissible Maps

Definition 5. T is an ξ0-contractive mapping if there are ξ0 ∈ X and 0 < k < 1 such, that for every ξ ∈ X,
we have

dR(ξ, Tξ) ≤ kdR(ξ0, ξ). (3)

Now, we prove that, if T is an ξ0-contractive mapping, then it fixes a disc.

Theorem 1. Each ξ0-contraction T with ξ0 ∈ X fixes the disc DR
ξ0,r.
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Proof. First of all, assume that r = 0. In this case, DR
ξ0,r = {ξ0} and using the ξ0-contractive hypothesis,

we get that Tξ0 = ξ0.
Assume that r > 0. We claim that T fixes the disc DR

ξ0,r. Let ξ ∈ DR
ξ0,r be such that Tξ 6= ξ. By

Equation (2), we have r ≤ dR(ξ, Tξ). On the other hand, using the ξ0-contractive property of T,
we obtain

0 < dR(ξ, Tξ) ≤ kdR(ξ0, ξ) ≤ kr < r,

which is a contradiction. Thus, Tξ = ξ for every ξ ∈ DR
ξ0,r, that is, T fixes the disc DR

ξ0,r.

Now, we introduce the concept of α-ξ0-contractive self-maps.

Definition 6. T is said to be an α-ξ0-contractive self-mapping if there are α : X × X → (0, ∞) and ξ0 ∈ X
such that

α(ξ0, Tξ)dR(ξ, Tξ) ≤ kdR(ξ0, ξ); 0 < k < 1, (4)

for all ξ ∈ X.

Now, we introduce α-ξ0-admissible maps.

Definition 7. α : X× X → (0, ∞) and ξ0 ∈ X. T is called α-ξ0-admissible if for each ξ ∈ X,

α(ξ0, ξ) ≥ 1 ⇒ α(ξ0, Tξ) ≥ 1.

Theorem 2. Let T be an α-ξ0-contractive self mapping. Assume that T is α-ξ0-admissible, and, if ξ ∈ DR
ξ0,r,

we have α(ξ0, ξ) ≥ 1. Then, T fixes the disc DR
ξ0,r.

Proof. In the case r = 0, we have DR
ξ0,r = {ξ0}. The α-ξ0-contractive hypothesis yields that Tξ0 = ξ0.

Assume that r > 0. Let ξ ∈ DR
ξ0,r such that Tξ 6= ξ. We have r ≤ dR(ξ, Tξ). We also have α(ξ0, ξ) ≥ 1

and T is α-ξ0-admissible, so the α-ξ0-contractive property of T implies that

0 < dR(ξ, Tξ) < α(ξ0, Tξ)dR(ξ, Tξ) ≤ kdR(ξ0, ξ) ≤ kr < r,

which is a contradiction. Thus, Tξ = ξ, that is, T fixes the disc DR
ξ0,r.

In [36], Wardowski initiated a new class of functions.

Definition 8. [36] Let F be the set of all functions F : (0, ∞)→ R such that
(F1) F is strictly increasing;
(F2) For every positive sequence {λn}, we have

lim
n→∞

λn = 0 iff lim
n→∞

F(λn) = −∞;

(F3) There is u ∈ (0, 1) in order that lim
λ→0+

αuF(λ) = 0.

The concept of Fd-contractive mappings is as follows:

Definition 9. If there exist F ∈ F, t > 0, a function α : X× X → (0, ∞) and ξ0 ∈ X such that for all ξ ∈ X,
the following holds

dR(ξ, Tξ) > 0⇒ t + α(ξ0, Tξ)F(dR(ξ, Tξ)) ≤ F(dR(ξ0, ξ)). (5)

Then, T is said to be an Fd-contractive self-map on X.
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Theorem 3. Let T be an Fd-contractive self-mapping with ξ0 ∈ X and T be α-ξ0-admissible. Suppose that,
if ξ ∈ DR

ξ0,r, we have α(ξ0, ξ) ≥ 1. Then, T fixes the disc DR
ξ0,r.

Proof. If r = 0, then we have DR
ξ0,r = {ξ0} and using the Fd-contractive property, one can easily deduce

that Tξ0 = ξ0. Thus, T fixes the disc DR
ξ0,r. Now, we assume that r > 0. Let ξ ∈ DR

ξ0,r where Tξ 6= ξ.
Therefore, by (2), we have r ≤ dR(ξ, Tξ). Moreover, we have α(ξ0, ξ) ≥ 1 and T is α-ξ0-admissible.
Thus, using the Fd-contractive property of T, we get

F(dR(ξ, Tξ)) < t + α(ξ0, Tξ)F(dR(ξ, Tξ)) ≤ F(dR(ξ0, ξ)) ≤ F(r) ≤ F(dR(ξ, Tξ)).

It is a contradiction because F is strictly increasing, and t > 0. Hence, we deduce that Tξ = ξ, that
is, the disc DR

ξ0,r is fixed by T.

Definition 10. If there are F ∈ F, t > 0 and ξ0 ∈ X such that, for each ξ ∈ X,

dR(ξ, Tξ) > 0 =⇒ t + α(ξ0, Tξ)F(dR(ξ, Tξ)) ≤ F(M(ξ, ξ0)), (6)

where

M(ξ, η) = max
{

dR(ξ, η), dR(ξ, Tξ), dR(η, Tη),
1
2
[dR(ξ, Tη) + dR(η, Tξ)]

}
. (7)

Then, T is called a Ćirić type Fd-contraction on X.

Proposition 3. If T is a Ćirić type Fd-contraction self-map with ξ0 ∈ X such that α(ξ0, Tξ0) ≥ 1, then we
have Tξ0 = ξ0.

Proof. Assume that Tξ0 6= ξ0. By Equations (6) and (7), we have

dR(ξ0, Tξ0) > 0 =⇒ t + α(ξ0, Tξ0)F(dR(ξ0, Tξ0)) ≤ F(M(ξ0, ξ0))

= F

(
max

{
dR(ξ0, ξ0), dR(ξ0, Tξ0), dR(ξ0, Tξ0),

1
2 [dR(ξ0, Tξ0) + dR(ξ0, Tξ0)]

})
= F(dR(ξ0, Tξ0)),

which is a contradiction because of t > 0. Then, we have Tξ0 = ξ0.

A generalization of Theorem 3 is as follows:

Theorem 4. Let T be a Ćirić type Fd-contraction with ξ0 ∈ X.Assume that T is α-ξ0-admissible and if, for every
ξ ∈ DR

ξ0,r, we have dR(ξ0, Tξ) ≤ r. Then, T fixes the disc DR
ξ0,r.

Proof. If r = 0, clearly DR
ξ0,r = {ξ0} is a fixed-disc (point). Consider r > 0. Let ξ ∈ DR

ξ0,r.
For Equation (2), we have dR(ξ, Tξ) ≥ r. Thus, using Equations (6), (7) and the fact that T is
α-ξ0-admissible and F is increasing, we get

F(dR(ξ, Tξ)) < α(ξ0, Tξ)F(dR(ξ, Tξ)) + t ≤ F(M(ξ, ξ0))

= F
(

max
{

dR(ξ, ξ0), dR(ξ, Tξ), dR(ξ0, Tξ0),
1
2
[dR(ξ, Tξ0) + dR(ξ0, Tξ)]

})
= F (max {r, dR(ξ, Tξ), 0, r}) ≤ r,

which leads to a contradiction. Hence, dR(ξ, Tξ) = 0 and so Tξ = ξ, i.e., T fixes the disc DR
ξ0,r.
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2.2. Branciari Type Fd-Contractions

Definition 11. T is said to be a Branciari Fd-contraction mapping if there are F ∈ F, t > 0 and ξ0 ∈ X so that

dR(ξ, Tξ) > 0⇒ t + F(dR(ξ, Tξ)) ≤ F(dR(ξ0, ξ)) (8)

for all ξ ∈ X.

Theorem 5. Let T be a Branciari Fd-contraction self-mapping with ξ0 ∈ X.Then, T fixes the disc DR
ξ0,r.

Proof. Suppose that r = 0. Therefore, we get DR
ξ0,r = {ξ0} and, using the Branciari Fd-contractive

property, we can easily see Tξ0 = ξ0. Hence, T fixes the center of the disc DR
ξ0,r and the whole disc

DR
ξ0,r. Let r > 0 and ξ ∈ DR

ξ0,r with Tξ 6= ξ. By Equation (2), we have r ≤ dR(Tξ, ξ). Because of the
Branciari Fd-contractive property, there are F ∈ F, t > 0 and ξ0 ∈ X so that

t + F(dR(ξ, Tξ)) ≤ F(dR(ξ0, ξ)) ≤ F(r) ≤ F(dR(ξ, Tξ))

for all ξ ∈ X. It is a contradiction with t > 0. Hence, Tξ = ξ, that is, T fixes the disc DR
ξ0,r.

Now, we introduce a new rational type contractive condition.

Definition 12. T is said to be a Branciari Fd-rational contraction if there exist F ∈ F, t > 0 and ξ0 ∈ X
such that

dR(ξ, Tξ) > 0⇒ t + F(dR(ξ, Tξ)) ≤ F(MR(ξ, ξ0)), (9)

for all ξ ∈ X, where

MR(ξ, η) = max

{
dR(ξ, η), dR(ξ, Tξ), dR(η, Tη),
dR(ξ,Tξ)dR(η,Tη)

1+dR(ξ,η) , dR(ξ,Tξ)dR(η,Tη)
1+dR(Tξ,Tη)

}
.

Theorem 6. Let T be a Branciari Fd-rational contraction self-mapping with ξ0 ∈ X and Tξ0 = ξ0. Then, T
fixes the disc DR

ξ0,r.

Proof. Suppose that r = 0. Thus, we have DR
ξ0,r = {ξ0}. Using the hypothesis Tξ0 = ξ0, T fixes the

disc DR
ξ0,r. Let r > 0 and ξ ∈ DR

ξ0,r with Tξ 6= ξ. By Equation (2), we have r ≤ dR(Tξ, ξ). Because of
the Branciari Fd-rational contractive property, there are F ∈ F, t > 0 and ξ0 ∈ X so that

t + F(dR(ξ, Tξ)) ≤ F(MR(ξ, ξ0))

for all ξ ∈ X. Then,

t + F(dR(ξ, Tξ)) ≤ F(MR(ξ, ξ0))

= F

(
max

{
dR(ξ, ξ0), dR(ξ, Tξ), dR(ξ0, Tξ0),
dR(ξ,Tξ)dR(ξ0,Tξ0)

1+dR(x,ξ0)
, dR(ξ,Tξ)dR(ξ0,Tξ0)

1+dR(Tξ,Tξ0)

})
≤ F(max{r, dR(ξ, Tξ)}) = F(dR(ξ, Tξ)),

a contradiction. Hence, Tξ = ξ. Consequently, T fixes the disc DR
ξ0,r.

2.3. Some Remarks

Let DR
ξ0,r be any disc on a rectangular metric space X. We note that all bijective self-mappings

T : X → X that fix the disc DR
ξ0,r form a group under composition of functions. That is, the set

D(DR
ξ0,r) =

{
T : X → X | T is a bijection and the disc DR

ξ0,r is fixed by T
}
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is a group under the operation of composition of functions. Besides this main fact, we can give the
following remarks considering all of the obtained theorems in the previous sections.

(1) If the given rectangular metric is a metric, then all of the obtained results can be considered in
a metric space.

(2) Although the triangle condition (R3) is not used actively in the proofs of the above results.
Examples 1 and 2 given in Section 1, show the importance of studying new fixed-circle (or fixed-disc)
theorems in rectangular metric spaces.

(3) If we take the function α : X× X → (0, ∞) as α(ξ, η) = 1 for all (ξ, η) ∈ X× X in Definition 9,
then we get Definition 11. In this case, Theorem 3 coincides with Theorem 5.

(4) If the function α : X× X → (0, ∞) is given as α(ξ, η) ∈ (0, 1] for all (ξ, η) ∈ X× X, then every
Branciari Fd-contraction is an Fd-contraction. Indeed, we get

dR(ξ, Tξ) > 0⇒ t + α(ξ0, Tξ)F(dR(ξ, Tξ))

≤ t + F(dR(ξ, Tξ)) ≤ F(dR(ξ0, ξ))

for all ξ ∈ X.
(5) If the function α : X × X → (0, ∞) is given as α(ξ, η) ≥ 1 for all (ξ, η) ∈ X × X, then every

Fd-contraction is a Branciari Fd-contraction. Indeed, we get

dR(ξ, Tξ) > 0⇒ t + F(dR(ξ, Tξ))

≤ t + α(ξ0, Tξ)F(dR(ξ, Tξ)) ≤ F(dR(ξ0, ξ))

for all ξ ∈ X.
(6) Note that the radius r of the fixed-disc is independent from the center ξ0 in Theorem 3 (resp.

Theorem 1, Theorem 2, Theorem 4, Theorem 5 and Theorem 6) (see Example 6 for an example of
Theorem 3).

(7) The contractive conditions given in previous subsections have been modified from some
classical contractions used to find some fixed-point theorems. For example the notion of an
ξ0-contractive mapping, introduced in Definition 5, has been modified using the Banach contraction
principle [37].

(8) All of the obtained fixed-disc results can also be considered as the fixed-circle results.
(9) If the given rectangular metric is a metric, then this metric generate an S-metric as defined in

Lemma 1. Then, all of the obtained results can be considered in an S-metric space. In this case, some
relationships between circles on a rectangular metric and an S-metric space can be obtained using the
similar arguments given in Proposition 1 and Corollary 1.

(10) If an S-metric generates a metric dS, then it generates a rectangular metric space since every
metric is a rectangular metric. Then, the obtained fixed-circle results on S-metric spaces (see [13–17])
can be considered in a rectangular metric space. Some relationships between circles on a rectangular
metric and an S-metric space can be obtained using the similar arguments given in Proposition 2 and
Corollary 2.

2.4. Illustrative Examples

In this section, we give four illustrative examples for obtained theorems throughout the
previous subsections.

Example 3. Consider the rectangular metric space given in Example 2. Given T : A ∪ B→ A ∪ B defined by

Tξ =

{
ξ , ξ ∈ {0} ∪ B,
ξ
4 , ξ = 2,

for all ξ ∈ A ∪ B.
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The ξ0-contractive self-mapping T : The mapping T is an ξ0-contraction with ξ0 = 0 and k = 1
2 .

Indeed, we get the following cases:
Case 1: Let ξ ∈ {0} ∪ B. Then, we have

dR(ξ, Tξ) = 0 ≤ 1
2

dR(0, ξ).

Case 2: Let ξ = 2. Then, we have

dR(ξ, Tξ) = dR

(
2,

1
2

)
=

1
2
≤ 1

2
dR(0, 2) =

1
2

.

Then, T verifies the condition of Theorem 1.
The α-ξ0-contractive and α-ξ0-admissible self-mapping T : If we take ξ0 = 0 and the function

α : X × X → (0, ∞) defined as α(ξ, η) = 1, then T verifies the condition of Theorem 2 similar to the
above cases.

The Fd-contractive and α-ξ0-admissible self-mapping T : If we take F = ln ξ, t = ln 4, ξ0 = 0 and
α : X× X → (0, ∞) such that α(ξ, η) = 2, then T satisfies the condition of Theorem 3. Indeed, we get

dR(ξ, Tξ) = dR

(
2,

1
2

)
=

1
2
> 0,

for ξ = 2. Then, we have

t + α(ξ0, Tξ)F(dR(ξ, Tξ)) = ln 4 + 2 ln
1
2
= 0

≤ ln 1 = F(dR(0, 2)) = F(dR(ξ0, ξ)).

The Ćirić type Fd-contractive and α-ξ0-admissible self-mapping T : If we take F = ln ξ, t = ln 4,
ξ0 = 0 and α : X × X → (0, ∞) given as α(ξ, η) = 2, then T verifies the conditions of Proposition 3 and
Theorem 4. Indeed, we get

dR(ξ, Tξ) = dR

(
2,

1
2

)
=

1
2
> 0,

for ξ = 2. Then, we have

t + α(ξ0, Tξ)F(dR(ξ, Tξ)) = ln 4 + 2 ln
1
2
= 0

≤ ln 1 = F(M(2, 0)) = F(M(ξ, ξ0)).

The Branciari Fd-contractive self-mapping T : If we take F = ln ξ, t = ln 2 and ξ0 = 0, then T
verifies the condition of Theorem 5. Indeed, we get

dR(ξ, Tξ) = dR

(
2,

1
2

)
=

1
2
> 0,

for ξ = 2. Then,

t + F(dR(ξ, Tξ)) = ln 2 + ln
1
2
= 0

≤ ln 1 = F(dR(0, 2)) = F(dR(ξ0, ξ)).

The Branciari Fd-rational contractive self-mapping T : If we take F = ln ξ, t = ln 2 and ξ0 = 0,
then T verifies the condition of Theorem 6. Indeed, we get

dR(ξ, Tξ) = dR

(
2,

1
2

)
=

1
2
> 0,



Symmetry 2019, 11, 294 10 of 13

for ξ = 2. Then, we have

t + F(dR(ξ, Tξ)) = ln 2 + ln
1
2
= 0

≤ ln 1 = F(MR(2, 0)) = F(MR(ξ, ξ0)).

In addition, we obtain

r = inf
ξ∈X
{dR(ξ, Tξ) : ξ 6= Tξ} = 1

2
.

Consequently, T fixes the disc
DR

0, 1
2
= {0} ∪ (B− {1}).

In the following, the converse statement of Theorem 1 does not hold everywhere.

Example 4. Let us consider the rectangular metric space given in Example 1. Take T : A ∪ B→ A ∪ B as

Tξ =


ξ , ξ ∈ DR

(0,0),2,
ξ
2 , ξ ∈ A,

ξ − 2 , ξ ∈ B− DR
(0,0),2,

then we find

r = inf
ξ∈X
{dR(ξ, Tξ) : ξ 6= Tξ}

= inf
ξ∈X

(
{dR(ξ, Tξ) : ξ ∈ A− {0}} ∪

{
dR(ξ, Tξ) : ξ ∈ B− DR

(0,0),2

})
= min {4, 2} = 2.

The mapping T fixes DR
(0,0),2, but T is not an ξ0-contractive mapping with any k (0 < k < 1).

Indeed, if ξ ∈ A then ξ
2 ∈ A and hence

dR(ξ, Tξ) = 4 ≤ k(dR(0, ξ)) = 4k,

a contradiction.

In the following, the converse statements of Theorem 1, Theorem 2, Theorem 3, Theorem 4,
Theorem 5 and Theorem 6 are not always true.

Example 5. Let (X, dR) be a rectangular metric space and ξ0 ∈ X be any point. If we define T : X → X as

Tξ =

{
ξ , ξ ∈ DR

ξ0,r,
ξ0 , ξ /∈ DR

ξ0,r,

for each ξ ∈ X with r > 0; then, T fixes the disc DR
ξ0,r, but T does not satisfy the conditions (3), (4), (5), (6),

(8) and (9).

In the following example, we see that the radius r of the fixed disc is independent from ξ0 in
Theorem 3.
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Example 6. Let X = C be the family of all complex numbers and dR : C × C → [0, ∞) be defined as
dR(ξ, η) = |ξ − η| for all ξ, η ∈ C. Then, (C, dR) is a rectangular metric space. Take

Tξ =

{
ξ + 1

ξ , 2 < |ξ| < 3,
ξ , otherwise,

for all ξ ∈ C. Then,

r = inf
ξ∈X
{dR(ξ, Tξ) : ξ 6= Tξ} = 1

3
.

In addition, if we take F = ln ξ, t = ln 2, ξ0 = 0 and α : X× X → (0, ∞) given as α(ξ, η) = 1, then T
verifies the condition of Theorem 3. Hence T fixes the disc

DR
0, 1

3
=

{
ξ ∈ C : |ξ| ≤ 1

3

}
.

Now, if we take F = ln ξ, t = ln 2, ξ0 = −1 and α : X × X → (0, ∞) as α(ξ, η) = 1, again T satisfies
the condition of Theorem 3. Hence, T fixes the disc

DR
−1, 1

3
=

{
ξ ∈ C : |ξ + 1| ≤ 1

3

}
.

Consequently, the radius r of the fixed disc is independent from the center ξ0.

3. Conclusions and Perspectives

In the present paper, we gave some fixed-disc results using different techniques. As we have
noted, the radius r of a fixed disc in all of our obtained theorems is independent from the center ξ0.
As a future work, it will be an interesting problem to study the geometric properties of all the points
ξ0 satisfying the hypotheses of Theorem 1 (resp. Theorem 2, Theorem 3, Theorem 4, Theorem 5 and
Theorem 6) for a fixed self-mapping T.
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