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Abstract

:

We give a topological condition for a generic sliced space to be globally hyperbolic without any hypothesis on lapse function, shift function, and spatial metric.
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1. Preliminaries


The definition of a sliced space, which one can read in Reference [1], is a continuation of a study in References [2] and [3] on systems of Einstein equations.



Let V=M×I, where M is an n-dimensional smooth manifold, and I is an interval of the real line, R. We equip V with a n+1-dimensional Lorentz metric g, which splits in the following way:


g=−N2(θ0)2+gijθiθj,








where θ0=dt, θi=dxi+βidt, N=N(t,xi) is the lapse function, βi(t,xj) is the shift function and Mt=M×{t}, spatial slices of V, are spacelike submanifolds equipped with the time-dependent spatial metric gt=gijdxidxj. Such product space V is called a sliced space.



Throughout the paper, we consider I=R.



The author in Reference [1] considered sliced spaces with uniformly bounded lapse, shift, and spatial metric; by this hypothesis, it is ensured that parameter t measures up to a positive factor bounded (below and above) the time along the normals to spacelike slices Mt, the gt norm of the shift vector β is uniformly bounded by a number, and the time-dependent metric gijdxidxj is uniformly bounded (below and above) for all t∈I(=R), respectively.



Given the above hypothesis, in the same article, the following theorem was proved.



Theorem 1 (Cotsakis).

Let (V,g) be a sliced space with uniformly bounded lapse N, shift β and spatial metric gt. Then, the following are equivalent:

	1. 

	
(M0,γ) a complete Riemannian manifold.




	2. 

	
Spacetime (V,g) is globally hyperbolic.











In this article, we review global hyperbolicity of sliced spaces in terms of the product topology defined on space M×R for some finite dimensional smooth manifold M.




2. Strong Causality of Sliced Spaces


Let (V=M×R,g) be a sliced space. Consider product topology TP on V. Since M is finite-dimensional, a base for TP consists of all sets of form A×B, where A∈TM and B∈TR. Here, TM denotes the natural topology of manifold M where, for an appropriate Riemann metric h, it has a base consisting of open balls Bϵh(x), and TR is the usual topology on the real line, with a base consisting of open intervals (a,b). For trivial topological reasons, we can restrict our discussion on TP to basic-open sets Bϵh(x)×(a,b), which can intuitively be called “open cylinders” in V.



We remind that the Alexandrov topology TA (see Reference [4]) has a base consisting of open sets of the form <x,y>=I+(x)∩I−(y), where I+(x)={z∈V:x≪z} and I−(y)={z∈V:z≪y}, where ≪ is the chronological order defined as x≪y iff there exists a future-oriented timelike curve joining x with y. By J+(x), one denotes the topological closure of I+(x), and by J−(y) that one of I−(y).



We use the definition of global hyperbolicity from Reference [4], where one can read about global causality conditions in more detail, as well as characterizations for strong causality. In particular, a spacetime is strongly causal iff it possesses no closed timelike curves, and global hyperbolicity is an important causal condition in a spacetime related to major problems such as spacetime singularities and cosmic cencorship.



Definition 1.

A spacetime is globally hyperbolic iff it is strongly causal and the “causal diamonds” J+(x)∩J−(y) are compact.





We prove the following theorem:



Theorem 2.

Let (V,g) be a Hausdorff sliced space. Then, the following are equivalent.

	1. 

	
V is strongly causal.




	2. 

	
TA≡TP.




	3. 

	
TA is Hausdorff.











Proof. 

Here, 2. implies 3. is obvious and that 3. implies 1. can be found in Reference [4].



For 1. implies 2., we consider two events X,Y∈V, such that X≠Y; we note that each X∈V has two coordinates, say (x1,x2), where x1∈M and x2∈R. Obviously, X∈Mx=M×{x} and Y∈My=M×{y}. Then, <X,Y>=I+(X)∩I−(Y)∈TA. Let also A∈Ma=M×{a}, where a<x (< is the natural order on R) and B∈Mb=M×{b}, where y<b. Consider some ϵ>0, such that Bϵh(A)∈M. Obviously, Bϵh(A)×(a,b)∈TP and, for ϵ>0 sufficiently large enough, <X,Y>⊂Bϵh(A)×(a,b). Thus, <X,Y>∈TP.



For 2. implies 1., we consider ϵ>0, such that Bϵh(A)∈TM, so that Bϵh(A)×(a,b)=B∈TP. We let strong causality hold at an event P and consider P∈B∈TP. We show that there exists <X,Y>∈TA, such that P∈<X,Y>⊂B. Now, consider a simple region R in <X,Y> which contains P and P∈Q, where Q is a causally convex-open subset of R. Thus, we have U,V∈Q, such that P∈<U,V>⊂Q. Finally, P∈<U,V>⊂Q⊂B, and this completes the proof. ☐






3. Global Hyperbolicity of Sliced Spaces, Revisited


For the following theorem, we use Nash’s result that refers to finite-dimensional manifolds (see Reference [5]).



Theorem 3.

Let (V,g) be a Hausdorff sliced space, where V=M×R, M is an n-dimensional manifold and g the n+1 Lorentz metric in V. Then, (V,g) is globally hyperbolic iff TP=TA, in V.





Proof. 

Given the proof of Theorem 2, strong causality in V holds iff TP=TA and, given Nash’s theorem, the closure of Bϵh(x)×(a,b) is compact. ☐





We note that neither in Theorem 2 nor in Theorem 3 did we make any hypothesis on the lapse function, shift function, or spatial metric.
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