
symmetryS S

Article

Self-Adaptive Deep Multiple Kernel Learning
Based on Rademacher Complexity

Shengbing Ren * , Wangbo Shen *, Chaudry Naeem Siddique and You Li

School of Computer Science and Engineerin, Central South University, Changsha 410083, China;
Naeemchaudhary121@outlook.com (C.N.S.); liyou0906@csu.edu.cn (Y.L.)
* Correspondence: rsb@csu.edu.cn (S.R.); 164712111@csu.edu.cn (W.S.)

Received: 8 January 2019; Accepted: 26 February 2019; Published: 5 March 2019
����������
�������

Abstract: The deep multiple kernel learning (DMKL) method has caused widespread concern due to
its better results compared with shallow multiple kernel learning. However, existing DMKL methods,
which have a fixed number of layers and fixed type of kernels, have poor ability to adapt to different
data sets and are difficult to find suitable model parameters to improve the test accuracy. In this
paper, we propose a self-adaptive deep multiple kernel learning (SA-DMKL) method. Our SA-DMKL
method can adapt the model through optimizing the model parameters of each kernel function with
a grid search method and change the numbers and types of kernel function in each layer according to
the generalization bound that is evaluated with Rademacher chaos complexity. Experiments on the
three datasets of University of California—Irvine (UCI) and image dataset Caltech 256 validate the
effectiveness of the proposed method on three aspects.

Keywords: deep multiple kernel learning; self-adaption (DMKL); kernel function; generalization
bound; Rademacher chaos complexity

1. Introduction

The success of the Support Vector Machine (SVM) [1] makes the kernel method attract more
attention [2–4]. The kernel function can be used to lift the dimension of data, and different kernels can
be used to promote different categories of data to high-dimensional space or even infinite dimensions.
Furthermore, the kernel trick makes the linear machine learning problem easy to be generalized to the
nonlinear one, which enables the learning method to operate in a high-dimensional, implicit feature
space without computing the data in that high-dimensional space.

However, these single kernel methods are based on a single feature space. As different kernel
functions have different characteristics, the performance of kernel functions varies greatly in different
applications. There is no perfect theoretical basis for the construction or selection of kernel function.
In order to solve these problems, a lot of multiple kernel learning (MKL) methods using kernel
combinations were proposed [5–7]. Gönen et al. gave a taxonomy of multiple kernel learning
algorithms and reviewed them in detail [8]. In many cases, the multiple kernel model does not
improve the accuracy much more, and these combinations do not change the kernel structure; thus,
how to choose a suitable kernel function is still a problem, just like single kernel learning methods.

Many researchers integrate deep learning concepts with kernel learning in order to improve
learning performance. Deep learning methods transform the input data through multiple nonlinear
processing layers to construct new features [9]. These methods successfully make a dramatic
improvement in pattern recognition. However, these methods have been limited to data sets with a very
large sample size. Deep multiple kernel learning (DMKL) aims to learn “deep” kernel machines by
exploring combinations of multiple kernels in a multi-layer structure [10]. Through multilevel mapping,
the proposed MLMKL (Multi-Layer Multiple Kernel Learning) framework provides more flexibility

Symmetry 2019, 11, 325; doi:10.3390/sym11030325 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-7709-4234
http://www.mdpi.com/2073-8994/11/3/325?type=check_update&version=1
http://dx.doi.org/10.3390/sym11030325
http://www.mdpi.com/journal/symmetry

Symmetry 2019, 11, 325 2 of 17

than conventional MKL to find the optimal kernel for the application. In [11], a back-propagation
MLMKL framework is proposed with the idea of deep learning to learn the optimal combination of
the kernels. Three deep kernel learning models for breast cancer classification problem are presented
in [12] to avoid overfitting risk appeared in deep learning. However, these models do not have a high
generalization ability.

In order to solve the above problems, a self-adaptive deep multiple kernel learning (SA-DMKL)
method is proposed in this paper. Unlike tradition DMKL, the SA-DMKL model includes several
different base kernels in each layer. We propose a model learning algorithm to adapt the model with
changing the model parameters of each kernel function with grid search method and the numbers
and types of kernel function in each layer according to the a generalization bound that is evaluated
with Rademacher chaos complexity. Therefore, our model is not very sensitive to the initial parameter
settings for each candidate kernel function and avoids the handcrafted kernel selection before the
learning process. In addition, the learning method is used to select kernel functions according to the
input sample set in each layer by calculating the generalization bound based on Rademacher chaos
complexity for each kernel function of each layer, and the Rademacher chaos complexity is used to
evaluate the ability of a kernel function to map one sample space to another sample space. In this way,
the selected kernel combination in each layer can improve the generalization ability.

The main contributions of our methods are summarized as follows: (1) A self-adaptive deep
multiple kernel learning architecture is proposed. This SA-DMKL architecture includes several different
basic kernels in each layer and the layer grows along with the learning process. Our architecture
is also not very sensitive to the initial parameter settings of each candidate kernel function. (2) An
SA-DMKL model learning algorithm to adapt the architecture is designed. Our learning algorithm
uses the generalization bound based on Rademacher chaos complexity to select the kernel function,
including the numbers of the kernel function in each layer, and the types of the kernel function. It aims
to improve the generalization ability. Moreover, the parameters of each kernel function in each layer are
optimized by a grid search method independently. (3) Experiments on UCI datasets and Caltech-256
dataset show that our SA-DMKL method has powerful generalization ability. Our SA-DMKL method
has the best accuracy compared with other multiple kernel learning methods and has more effective
accuracy than the multilayer multiple kernel learning method on most UCI data sets. The experimental
results on the Caltech-256 dataset show that our SA-DMKL method is adaptive to the complex data
set, which has large sample sizes and high dimensions.

The remainder of this paper is organized as follows: Section 2 briefly discusses the related
works on deep multiple kernel learning and Rademacher complexity. Then, the SA-DMKL method
including the architecture and the model learning algorithm is presented in Section 3. Section 4
shows the experimental results on UCI datasets and Caltech-256 dataset and analyzes the validation.
Some conclusions and future work are presented in Section 5.

2. Background

2.1. Deep Multiple Kernel Learning

Deep multiple kernel learning [10–14] has been actively studied in recent years inspired by deep
learning. This method explores the combinations of multiple kernels in a multilayer architecture and
has succeeded in a variety of sample sizes. Therefore, DMKL can be used in many real-world situations.

Cho et al. developed a multilayer kernel machine (MKM) that mimicked the computation in
large neural nets with a family of arc-cosine kernel functions [15]. These arc-cosine kernels were
combined with the `-fold composition in multiple layers. This was the first work which integrated
deep learning concepts with kernel learning. However, the arc-cosine kernel does not easily admit the
hyper-parameters beyond the first layer.

Symmetry 2019, 11, 325 3 of 17

In order to minimize the requirements of the domain knowledge, Ref. [10] introduced tunable
hyper-parameters with infinite base kernel learning. The proposed infinite two-layer MKL method
achieved more impressive performance than other MKL methods. However, this method had trouble
to optimize the network beyond two layers to further enhance the performance.

In [13], an adaptive span deep multiple kernel learning method was proposed to improve the
previous methods. This method combined kernels at each layer and then optimized the multiple
complete layers of kernels throughout the leav×10−on×10−out procedure over an estimate of the
support vector machine. The experimental results showed that each layer successfully increased the
performance with only a few base kernels. Unfortunately, the improvements were not obtained using
3-layer rather than 2-layer.

Rebai et al. proposed the back propagation algorithm with the gradient method to learn the
optimal combination of the kernels instead of the leav×10−out-one error [11]. This method was very
simple from a computational perspective and successfully optimized the system over many layers.

In fact, the deep multiple kernel learning method has a good effect on the generalization ability
when the candidate kernel function and parameters are adjusted to a very appropriate level. However,
it is very difficult to achieve such an effect. There are many hyperparameters that need to be set and it
is also very difficult to adjust. Meanwhile, the existing DMKL architectures are relatively simple. Each
layer is composed of a group of the same basic kernel functions, and the output of the kernel function
of the previous layer serves as the input of all the kernel functions of the next layer. Furthermore,
the number of layers is fixed. The lack of the selection of kernel function, and the fixed layers of
the architecture lead to insufficient adaptability to the sample data and affect the performance of
the model.

2.2. Rademacher Complexity

Rademacher complexity obtained significant concern and widespread applications in
generalization ability analysis [16]. Koltchinskii first introduced the Rademacher penalty to the
structural risk minimization problem [17]. Rademacher complexity is data-dependent, which can
attain more compact generalization representation than other data-independent complexities.

Ying and Campbell developed a generalization bound for learning the kernel problem with
Rademacher chaos complexity [18]. The method showed that the suprema of the Rademacher chaos
process of order 2 over a candidate kernel could be used to analyze the generalization of the kernel
learning algorithms.

According to [18], the true error or generalization error εφ is defined as Equation (1):

εφ(f) =
∫ ∫

X×Y
φ(y. f (x))dρ(x, y), (1)

where φ : R→ [0, ∞) is a loss function, ρ is an unknown distribution on Z = X×Y, f (x) is a function
f : X → R, y is the true label, and the target function is defined by f φ

ρ = arg min
θ

εφ(f).

Let the empirical error ε
φ
Z be defined by Equation (2):

ε
φ
Z(f) =

1
n ∑

j∈Nn

φ(yj × f (xj)), (2)

where Nn = {1, 2, 3, ..., n} for any n ∈ N, and Z is a set of training samples {zi = (xi, yi) : xi ∈ X,
yi ∈ Y} that are independently and identically distributed in a classification problem on the input
space X ⊆ Rd and the output space Y = {−1, 1}.

Symmetry 2019, 11, 325 4 of 17

Let φ be a normalized classifying loss. For any δ ∈ (0, 1), with probability at least 1− δ, the
following inequation (3) holds [18]:

εφ(f φ
Z)− ε

φ
Z(f φ

Z) 6 2Cφ
λ(

2R̂n(κ)

λn
) + 2κCφ

λ(
1

nλ
)

1
2 + 3Mφ

λ(
ln(2

δ)

n
)

1
2 , (3)

where λ is the coefficient of the regular term, Cφ
λ , Mφ

λ are a local Lipschitz constant.
κ = supk∈K,x∈X

√
k(x, x), and K is a kernel function set defined in Section 3. R̂n(κ) is the empirical

Rademacher chaos complexity, and it is estimated by entropy integrals.
In order to prohibit the divergence of the entropy integrals, Lei and Ding introduced an adjustable

parameter to attain the balance between the accuracy and the complexity [19]. Strobl and Visweswaran
pointed out that multiple layers increased the richness of the kernel representation according to the
upper bound of the Rademacher chaos complexity [13]. Many research results show that Rademacher
chaos complexity is a powerful tool to measure the complexity of kernel functions. In this paper,
Rademacher chaos complexity is used to calculate the generalization bound to select the kernel
function among the different base kernel functions in deep multiple kernel learning to improve the
generalization.

3. Self-Adaptive Deep Multiple Kernels Learning SA-DMKL

3.1. SA-DMKL Architecture

The choice of kernel functions is very important for the performance of the kernel learning
algorithm. Multiple kernel learning tries to select the appropriate kernel function according to some
criteria. However, the major problem is that there are too many parameters with the increasing of
the kernel functions, and deep multiple kernel learning makes the situation worse. Moreover, the
fixed architecture in DMKL cannot adapt to the complexity of the training data. This paper proposes
a self-adaptive deep multiple kernel learning architecture to tackle this problem.

Our architecture is not very sensitive to the initial parameter settings of each candidate kernel
function. In each layer, the parameters of each base candidate kernel function are optimized with the
grid search method. The number of the layer is not fixed in SA-DMKL architecture. If the parameter
settings are inappropriate, our model learning algorithm can adjust the architecture at the next layer.
This means that SA-DMKL consists of multilayer multiple base kernel, as shown in Figure 1. In the
first layer, the training data is used to separately train each candidate base kernel-based support vector
machine (SVM), and the parameters of each base kernel will be adjusted by the grid search method.
We evaluate each base kernel function using the generalization bound based on Rademacher chaos
complexity and drop out the base kernels with larger generalization bound. The outputs of the rest
kernel functions are used to construct a new feature space, and the dimension of this new feature space
is the number of the rest kernel functions. For each training data, there is a corresponding new data in
the new feature space. Those new data are input to the next layer to train each candidate base kernel
with SVM. In the final layer, a kernel-based SVM is used to classify the training data.

Symmetry 2019, 11, 325 5 of 17

Figure 1. SA-DMKL architecture.

3.2. Model Learning Algorithm

Given a set of training data D = {(xi, yi)|i = 1, 2, ..., n}, where xi ∈ X ⊆ Rd is the feature vector
and yi ∈ {−1,+1} is the class label. Our goal is to learn a deep multiple kernel network and a classifier
f from the labeled training data. Here, f is an SVM based classifier.

Let K = {Kl |κl(xi, xj) =< φl(xi), φl(xj) >; l = 1, 2, ..., m; i, j = 1, 2, ..., n} be a set of base candidate
kernel functions, where φ is a feature map function. The Rademacher chaos complexity R̂n(k) of k ∈ K
is estimated according to the following rules:

1. If k is a Gaussian-type kernel, then

R̂n(k) ≤ (1 + 192e)κ2. (4)

2. Otherwise,

R̂n(k) ≤ 25eκ2 lg(m + 1), (5)

where κ = supk∈K,x∈X
√

k(x, x) , e is the base of the natural logarithm, and m is the number of elements
of the base kernel function set K.

The generalization bound can be summarized from inequations (3) to (5). The local Lipschitz
constant Cφ

λ , Mφ
λ is estimated according to Equations (6) and (7), where φ is the loss function, and

λ is the regularization parameter of a two-layer minimization problem:

Cφ
λ = sup{φ(x)− φ(x

′
)

|x− x′ |
: ∀|x|, |x′ | ≤ κ

√
1/λ}, (6)

Mφ
λ = sup{|φ(t)| : ∀|t| ≤ κ

√
1/λ}. (7)

Symmetry 2019, 11, 325 6 of 17

In our model learning algorithm, the generalization bound is used to select the base kernel
function. If the generalization bound is larger than the threshold, our algorithm will drop the
corresponding base kernel out. This means that the dropout base kernel has poor generalization ability.

The learning performance of the SA-DMKL method is evaluated in terms of test accuracy
according to Equation (8), which is the proportion of the correct classified samples to the total number
of samples:

Accuracy =
TP + TN

N
, (8)

where TP is the number of true positive, TN is the number of true negatives, and N is the total number
of instances in the test set.

In the model learning algorithm, the test accuracy is evaluated in each layer to decide whether
the growth of the model ceases or not. If the test accuracy does not change in the fixed iterations, the
iteration of the learning algorithm should be stopped.

The overall procedure of our model learning algorithm is described in Algorithm 1.

Algorithm 1 SA-DMKL algorithm.

Input: m: Number of candidate kernels;

km: Initial parameters of each kernel function;

D: Dataset;

l: Maximum number of layers in which the best accuracy does not change;

RT : Threshold value of the generalization bound.
Output: Final model M.

1: Initialize best accuracy Am = 0;
2: Initialize maximum number of iteration iter;
3: Initialize current iteration i = 0 and flag j = 0;
4: repeat
5: Randomly select 60 percent of samples from the entire dataset D as training samples DT ;
6: Use grid search method to adjust the initial parameters km;
7: Use DT to train m candidate kernel functions to create m SVMs;
8: Use m SVMs to predict the rest dataset D-DT and compute the test accuracy At, generalization

bound Rt, and Dt; where t = 1, 2...m;
9: Initialize loop parameter ll = 1, and new dataset Dp = ∅;

10: repeat
11: If Rll < RT then concatenate Dp and Dll to generate new Dp;
12: If All ≥ Am then assign All to Am and assign 0 to j;
13: ll ++;
14: until ll > m;
15: If Am does not change then the flag j adds one;
16: Add one to i and assign Dp to D;
17: until (i >= iter or j >= l)

Symmetry 2019, 11, 325 7 of 17

According to Algorithm 1, each iteration from step 4 to step 17 builds one layer of the SA-DMKL
architecture. In Algorithm 1, i stands for layer number, and j records the number of layers while Am

remains the same. Step 5 to step 6 train m SVMs. In step 8, Dt is calculated by tth kernel function with
input data D, which is used in the next layer. In each iteration, the accuracy performance is evaluated
for each support vector machine (SVM). If the best accuracy does not change in fixed iterations,
the iteration should be stopped. Furthermore, the corresponding kernel of the SVM is discarded if its
generalization bound is higher than the threshold value within step 10 to step 14.

4. Experiments and Results

4.1. Experimental Settings

In our experiments, we select five base kernel functions, and Table 1 shows their formulas and
their initial parameter settings. RBF (Radial Basis Function), polynomial and arc-cosine kernels are
commonly used kernel functions in the multilayer multiple kernel learning method. In Table 1, the
parameter values are optimized with the grid search method in each iteration during the model
learning process.

Table 1. The candidate base kernel functions.

Kernel Formula Parameters

Laplacian k(x, y) = exp(−‖x− y‖
δ

) δ = 1.2

Tanh k(x, y) = tanh(α∗ < x, y > +c) α = 1.2
c = 2.1

RBF k(x, y) = exp(−||x− y||2
2δ2) δ = 0.7

Arc-cosine [15]

kn(x, y) = 1
π ‖x‖n ∗ ‖y‖n Jn(θ)

θ = cos−1(
< x, y >

‖x‖ ∗ ‖y‖)

Jn(θ) = (−1)n(sin(θ))2n+1(1
sin(θ)

∂
∂θ)(

π−θ
sin(θ))

‖a‖ and ‖b‖
are L0 norm
n = 0

Polynomial k(x, y) = (α∗ < x, y > +c)d
α = 1.2
c = 2.1
d = 1

In order to simplify the experiments, the maximum number of iterations is initialized as 30,
and the maximum number of layers l that best accuracy does not change is set as 4.

4.2. Datasets

4.2.1. UCI Data Sets

In order to evaluate the performance of our SA-DMKL method for classification tasks which have
small size samples and dimensions, we choose seven data sets from the UCI database [20], which is
described in Table 2.

Symmetry 2019, 11, 325 8 of 17

Table 2. The seven publicly available datasets from UCI.

Dataset #Dimensions #Samples

Iris 4 150
Liver 6 345
Breast 10 683
Sonar 60 208

Australia 14 690
German 24 1000
Monk 6 432

We present an exhaustive comparative study using the following algorithms: SKSVM
(SVM algorithm with a single RBF kernel), L2MKL [21], SM1MKL [22], DMKL [13], and MLMKL [11].
Table 3 shows the accuracy (%) results of the classification with those algorithms. Bold numbers
indicate optimal results on a dataset.

Table 3. Classification results on the UCI datasets. Bold numbers indicate optimal results.

Dataset Algorithms

SKSVM L2MKL SM1MKL DMKL MLMKL SA-DMKL

Liver 6.366 × 101 6.750 × 101 6.883 × 101 6.901 × 101 7.180 × 101 7.565 × 101

Breast 9.425 × 101 9.618 × 101 9.636 × 101 9.659 × 101 9.721 × 101 9.192 × 101

Sonar 5.029 × 101 8.451 × 101 8.500 × 101 8.394 × 101 8.384 × 101 8.942 × 101

Australia 7.154 × 101 8.164 × 101 8.289 × 101 8.440 × 101 8.542 × 101 8.203 × 101

German 7.018 × 101 6.998 × 101 7.014 × 101 7.202 × 101 7.506 × 101 7.850 × 101

Monk 9.032 × 101 9.722 × 101 9.666 × 101 9.662 × 101 9.689 × 101 9.755 × 101

Table 3 shows that our SA-DMKL method has more effective classification accuracy on most
UCI data sets. Meanwhile, Table 3 indicates that multiple kernel learning has better classification
accuracy than the single kernel learning, and deep multiple kernel learning can achieve more effective
classification accuracy than the multiple kernel learning.

4.2.2. Caltech-256 Dataset

Caltech-256 is an image object recognition dataset, which contains 30,608 images and 256 object
categories, with a minimum of 80 images and a maximum of 827 images per category [23]. We choose
the Caltech-256 dataset to evaluate the performance of our SA-DMKL method for classification tasks
that have large sample sizes and high dimensions.

In our experiment, we randomly select four categories of data: AK-47, baseball-bat, American
flag, and a blimp. Some samples are shown in Figure 2.

(a) AK-47 (b) baseball bat (c) American flag (d) blimp

Figure 2. Caltech-256 Dataset.

Symmetry 2019, 11, 325 9 of 17

In order to find out whether image preprocessing could affect the performance of SA-DMKL or
not, we randomly select three image preprocessing methods, such as HoG (Histogram of Gradient),
FFT (Fast Fourier Transformation), and simple image size changing. Figure 3 gives some image
preprocessing examples.

(a) AK-47 (b) HoG processing (c) FFT processing (d) resizing processing

Figure 3. Image preprocessing.

4.3. Results and Analysis

4.3.1. Influence without Kernel Removing

In our model learning algorithm, we need to remove the kernel if its generalization bound value
is larger than the threshold. In order to verify the influence without removing kernel, we set the
threshold RT = +∞, and the experimental results are shown in Tables 4 and 5. Here, A stands for
classification accuracy on test data set, S stands for the number of the support vectors, and R stands for
the corresponding generalization bound.

Symmetry 2019, 11, 325 10 of 17

Table 4. The results of SA-DMKL on the breast dataset from UCI (without kernel removing). Bold numbers indicate optimal results.

Layers Laplacian Tanh RBF Ar_cosine Polynomial

A S R A S R A S R A S R A S R

1 8.60 × 10−1 3.41 × 102 2.00 × 10−2 3.70 × 10−1 2.20 × 101 4.75 × 101 8.60 × 10−1 3.41 × 102 3.00 × 10−2 6.20 × 10−1 1.00 × 100 4.29 × 105 9.10 × 10−1 6.00 × 100 3.20 × 104

2 8.60 × 10−1 3.41 × 102 1.00 × 10−2 6.20 × 10−1 1.00 × 100 4.70 × 1013 8.60 × 10−1 3.41 × 102 4.00 × 10−2 8.70 × 10−1 8.00 × 100 9.01 × 109 8.80 × 10−1 7.00 × 100 1.20 × 1011

3 8.60 × 10−1 3.41 × 102 3.00 × 10−2 3.30 × 10−1 3.00 × 100 4.80 × 1013 8.60 × 10−1 3.41 × 102 6.00 × 10−2 8.80 × 10−1 4.00 × 100 3.90 × 1021 8.80 × 10−1 2.00 × 100 1.20 × 1018

4 8.60 × 10−1 3.41 × 102 4.00 × 10−2 5.30 × 10−1 2.80 × 101 4.46 × 101 8.60 × 10−1 3.41 × 102 4.00 × 10−2 6.20 × 10−1 1.00 × 100 2.33 × 106 6.20 × 10−1 2.90 × 101 2.33 × 106

5 8.60 × 10−1 3.41 × 102 2.00 × 10−2 6.20 × 10−1 1.00 × 100 4.70 × 1013 8.60 × 10−1 3.41 × 102 1.00 × 10−2 6.20 × 10−1 1.00 × 100 2.33 × 106 6.20 × 10−1 1.00 × 100 2.33 × 106

Table 5. The results of SA-DMKL on the iris dataset from UCI (without kernel removing). Bold numbers indicate optimal results.

layers Laplacian Tanh RBF Ar_cosine Polynomial

A S R A S R A S R A S R A S R

1 9.40 × 10−1 1.10 × 101 2.20 × 10−1 3.30 × 10−1 1.00 × 100 9.30 × 1013 8.80 × 10−1 1.80 × 101 3.98 × 101 3.30 × 10−1 1.00 × 100 1.69 × 102 3.30 × 10−1 1.00 × 100 1.62 × 105

2 8.60 × 10−1 9.00 × 101 5.00 × 10−1 3.30 × 10−1 1.00 × 100 9.30 × 1013 8.60 × 10−1 9.00 × 101 2.20 × 10−1 3.30 × 10−1 1.00 × 100 5.64 × 106 3.30 × 10−1 1.00 × 100 5.64 × 106

3 8.60 × 10−1 8.90 × 101 2.60 × 100 3.30 × 10−1 1.00 × 100 9.30 × 1013 8.60 × 10−1 9.00 × 101 1.01 × 100 3.30 × 10−1 1.00 × 100 5.64 × 106 3.30 × 10−1 1.00 × 100 5.64 × 106

4 8.60 × 10−1 9.00 × 101 8.70 × 10−1 3.30 × 10−1 1.00 × 100 9.30 × 1013 8.60 × 10−1 9.00 × 101 8.70 × 10−1 3.30 × 10−1 1.00 × 100 5.64 × 106 3.30 × 10−1 1.00 × 100 5.64 × 106

5 3.50 × 10−1 3.40 × 101 2.99 × 102 3.30 × 10−1 1.00 × 100 9.30 × 1013 0.00 × 100 1.00 × 100 nan 0.00 × 100 1.00 × 100 nan 3.30 × 10−1 1.00 × 100 5.64 × 106

Symmetry 2019, 11, 325 11 of 17

According to the results in Tables 4 and 5, we conclude that, if we fix the type of the kernel in the
multiple kernels learning, the learned model may not have the best test accuracy. It indicates that the
traditional deep multiple kernel learning, which has a fixed number of layers and fixed type of kernels,
may not be effective for finding the optimal learning model.

4.3.2. Influence of Different Types of Kernels

Tables 6 and 7 show the experiment results, which are used to evaluate the influence of different
kernels. We set the threshold RT = 10,000. This means that, if the value of R is greater than 10,000,
which is marked by being underlined in the following tables, then the corresponding kernel should be
removed at the corresponding layer.

Table 6 shows that the best classification accuracy is 0.92. Laplacian kernel and RBF kernel achieve
the best classification accuracy at the 2nd and 3rd layers. Table 7 shows that the best classification
accuracy is 0.97. RBF kernel is the only one kernel function which achieves the best classification
accuracy. According to the experimental results, we find that the polynomial kernel is removed at
each layer. The experiment results show that a different kernel has a different generalization bound at
a different layer.

Tables 6 and 7, compared with Tables 4 and 5, respectively, show that removing the kernels,
in which the generalization bound is larger than the threshold, improves the test accuracy.

Symmetry 2019, 11, 325 12 of 17

Table 6. The results of SA-DMKL on the breast cancer dataset from UCI. Bold numbers indicate optimal results. The value of R, which is greater than the threshold, is
marked by being underlined.

Layers Laplacian Tanh RBF Ar_cosine Polynomial

A S R A S R A S R A S R A S R

1 8.50 × 10−1 3.41 × 102 2.00 × 10−2 7.00 × 10−1 2.30 × 101 2.74 × 101 8.70 × 10−1 3.41 × 102 1.00 × 10−2 6.20 × 10−1 1.00 × 100 3.17 × 105 9.10 × 10−1 4.20 × 101 2.53 × 106

2 9.20 × 10−1 3.20 × 101 1.84 × 100 3.10 × 10−1 1.23 × 102 6.00 × 10−2 9.20 × 10−1 3.10 × 101 8.10 × 10−1 6.50 × 10−1 2.40 × 101 1.39 × 106 7.20 × 10−1 1.00 × 100 2.19 × 106

3 9.20 × 10−1 1.30 × 101 1.20 × 10−1 8.50 × 10−1 6.00 × 100 1.40 × 10−1 9.20 × 10−1 2.00 × 101 1.30 × 10−1 6.20 × 10−1 1.00 × 100 3.33 × 100 6.20 × 10−1 1.00 × 100 4.36 × 1013

4 7.50 × 10−1 1.20 × 101 2.48 × 100 7.70 × 10−1 3.00 × 100 6.11 × 100 7.40 × 10−1 1.80 × 101 4.29 × 100 6.20 × 10−1 1.00 × 100 6.27 × 10−1 6.20 × 10−1 1.00 × 100 1.26 × 1014

5 7.40 × 10−1 1.50 × 101 2.13 × 100 6.20 × 10−1 1.00 × 100 2.90 × 1013 7.40 × 10−1 2.70 × 101 2.00 × 100 6.20 × 10−1 1.00 × 100 1.09 × 103 6.20 × 10−1 1.00 × 100 2.33 × 106

6 7.40 × 10−1 2.30 × 101 1.35 × 100 6.20 × 10−1 1.00 × 100 2.90 × 1013 7.30 × 10−1 3.40 × 101 2.01 × 100 3.70 × 10−1 5.00 × 100 7.39 × 104 6.20 × 10−1 3.00 × 100 2.30 × 106

7 7.30 × 10−1 7.00 × 100 2.90 × 100 8.50 × 10−1 7.00 × 100 4.02 × 100 7.30 × 10−1 6.00 × 100 2.02 × 100 7.30 × 10−1 3.00 × 100 4.54 × 101 6.20 × 10−1 1.00 × 100 2.33 × 106

Table 7. The results of SA-DMKL on the iris dataset from UCI. Bold numbers indicate optimal results. The value of R, which is greater than the threshold, is marked
by being underlined.

Layers Laplacian Tanh RBF Ar_cosine Polynomial

A S R A S R A S R A S R A S R

1 9.40 × 10−1 1.10 × 101 3.05 × 100 3.30 × 10−1 1.00 × 100 9.30 × 1013 8.80 × 10−1 1.80 × 101 1.10 × 10−1 3.30 × 10−1 1.00 × 100 1.69 × 102 3.30 × 10−1 1.00 × 100 1.62 × 105

2 9.60 × 10−1 7.60 × 101 3.09 × 100 3.30 × 10−1 1.00 × 100 9.30 × 1013 9.50 × 10−1 7.80 × 101 6.10 × 10−1 3.30 × 10−1 1.00 × 100 5.40 × 105 3.30 × 10−1 1.00 × 100 5.64 × 106

3 9.50 × 10−1 6.00 × 100 2.99 × 102 8.70 × 10−1 2.00 × 100 9.30 × 10−1 9.70 × 10−1 8.00 × 100 2.99 × 102 9.40 × 10−1 3.00 × 100 3.12 × 101 3.30 × 10−1 1.00 × 100 9.10 × 1014

4 9.30 × 10−1 6.00 × 100 2.99 × 102 8.90 × 10−1 4.00 × 100 1.53 × 100 9.30 × 10−1 6.00 × 100 2.99 × 102 3.30 × 10−1 1.00 × 100 2.43 × 104 3.30 × 10−1 1.00 × 100 5.64 × 106

5 9.20 × 10−1 1.00 × 101 1.12 × 100 3.30 × 10−1 1.00 × 100 9.30 × 1013 0.90 × 100 1.10 × 101 2.63 × 100 3.30 × 10−1 1.00 × 100 4.53 × 103 3.30 × 10−1 1.00 × 100 8.01 × 105

6 8.90 × 10−1 4.10 × 101 3.41 × 100 3.30 × 10−1 1.00 × 100 9.30 × 1013 8.70 × 10−1 3.80 × 101 3.39 × 100 3.30 × 10−1 1.00 × 100 1.42 × 106 3.30 × 10−1 1.00 × 100 5.64 × 106

7 8.70 × 10−1 7.00 × 100 2.41 × 100 8.30 × 10−1 2.00 × 100 4.25 × 100 8.70 × 10−1 7.00 × 100 2.39 × 100 8.70 × 10−1 5.00 × 100 1.75 × 102 3.30 × 10−1 1.00 × 100 5.64 × 106

Symmetry 2019, 11, 325 13 of 17

4.3.3. Influence of Feature Extraction

In order to deal with the data set that has large sample sizes and high dimensions, feature
extraction preprocessing is critical. We randomly choose three feature extraction methods, such as
HoG, FFT, and resize methods, to evaluate the influence of different feature extraction methods.
The experimental results are shown in Tables 8–10. The value of R, which is greater than the threshold,
is marked by being underlined.

Compared with Table 4 to Table 7, we find that our SA-DMKL method needs many more
layers to achieve the best classification accuracy. It means that complex data need a complex model.
Our SA-DMKL method can construct an adequate model in accordance with the complexity of the
training dataset.

According to the experimental results, the best classification accuracy is 0.82 or 0.83. The results
show that our method can be adaptive to the image preprocessing. However, we find that the image
preprocessing can affect the complexity of the model, such as the number of layers. For example,
SA-DMKL obtains the best classification accuracy at the 3rd layer on Caltech 256 dataset with FFT
feature extraction image preprocessing.

Symmetry 2019, 11, 325 14 of 17

Table 8. The results of SA-DMKL on the Caltech 256 dataset with the HoG method. Bold numbers indicate optimal results. The value of R, which is greater than the
threshold, is marked by being underlined.

layers Laplacian Tanh RBF Ar_cosine Polynomial

A S R A S R A S R A S R A S R

1 4.00 × 10−1 1.10 × 101 2.65 × 101 5.70 × 10−1 1.00 × 100 5.58 × 101 4.10 × 10−1 2.30 × 101 1.81 × 100 5.20 × 10−1 2.70 × 101 4.24 × 100 5.70 × 10−1 1.00 × 100 5.53 × 106

2 4.70 × 10−1 5.6 × 101 6.00 × 10−2 5.70 × 10−1 5.00 × 100 6.30 × 10−15 6.10 × 10−1 6.00 × 101 1.00 × 10−2 5.90 × 10−1 1.80 × 101 2.15 × 102 5.90 × 10−1 9.00 × 100 1.47 × 107

3 6.20 × 10−1 3.80 × 101 1.20 × 10−1 6.35 × 10−1 1.00 × 101 2.19 × 100 6.50 × 10−1 4.40 × 101 5.00 × 10−2 6.70 × 10−1 4.10 × 101 1.32 × 107 5.70 × 10−1 1.00 × 100 4.63 × 106

4 6.30 × 10−1 2.60 × 101 6.00 × 10−2 4.10 × 10−1 2.00 × 101 5.21 × 101 7.20 × 10−1 2.20 × 101 1.00 × 10−2 5.90 × 10−1 9.00 × 100 3.40 × 10−1 6.00 × 10−1 1.40 × 101 1.12 × 101

5 6.00 × 10−1 7.90 × 101 6.00 × 10−2 6.20 × 10−1 3.10 × 101 5.67 × 101 5.70 × 10−1 8.00 × 100 4.60 × 10−15 5.90 × 10−1 8.00 × 100 1.05 × 106 5.70 × 10−1 1.00 × 100 1.41 × 1010

6 7.40 × 10−1 2.30 × 101 2.1 × 10−1 5.50 × 10−1 1.70 × 101 2.80 × 100 7.20 × 10−1 1.90 × 101 3.90 × 10−1 5.70 × 10−1 1.00 × 100 2.64 × 100 5.70 × 10−1 1.00 × 100 2.20 × 103

7 7.50 × 10−1 6.00 × 101 1.10 × 10−1 5.70 × 10−1 1.00 × 100 5.58 × 1013 7.40 × 10−1 4.50 × 101 5.00 × 10−2 5.70 × 10−1 1.00 × 100 1.97 × 104 5.70 × 10−1 1.00 × 100 5.83 × 105

8 7.70 × 10−1 3.30 × 101 6.00 × 10−2 7.40 × 10−1 5.00 × 100 2.00 × 10−2 7.80 × 10−1 2.60 × 101 1.00 × 10−2 7.50 × 10−1 3.00 × 101 3.51 × 102 5.70 × 10−1 1.00 × 100 5.60 × 100

9 8.00 × 10−1 7.60 × 101 2.00 × 10−2 5.00 × 10−1 1.00 × 100 5.58 × 1013 8.00 × 10−1 7.60 × 101 1.34 × 10−1 5.70 × 10−1 1.00 × 100 2.86 × 103 5.70 × 10−1 1.00 × 100 2.96 × 105

10 8.20 × 10−1 8.70 × 101 2.00 × 10−2 5.70 × 10−1 1.00 × 100 5.58 × 1013 8.20 × 10−1 8.70 × 101 5.2 × 10−2 5.70 × 10−1 1.00 × 100 4.63 × 106 5.70 × 10−1 1.00 × 100 4.63 × 106

11 8.20 × 10−1 2.00 × 100 3.00 × 10−2 8.20 × 10−1 3.00 × 100 5.58 × 1013 8.20 × 10−1 3.00 × 100 6.00 × 10−2 8.10 × 10−1 3.00 × 100 1.49 × 102 5.70 × 10−1 1.00 × 100 1.63 × 103

12 8.00 × 10−1 2.00 × 100 3.87 × 102 5.70 × 10−1 1.00 × 100 5.58 × 1013 8.00 × 10−1 2.00 × 100 3.37 × 101 5.70 × 10−1 1.00 × 100 1.45 × 103 5.70 × 10−1 1.00 × 100 1.78 × 108

13 8.00 × 10−1 2.00 × 100 3.87 × 101 5.70 × 10−1 1.00 × 100 5.58 × 1013 7.90 × 10−1 2.00 × 100 1.00 × 10−2 5.70 × 10−1 1.00 × 100 9.07 × 106 5.70 × 10−1 1.00 × 100 4.77 × 104

14 8.00 × 10−1 2.00 × 100 3.87 × 101 2.00 × 10−1 1.00 × 100 5.58 × 1013 7.90 × 10−1 2.00 × 100 9.40 × 10−1 5.70 × 10−1 1.00 × 100 4.85 × 103 5.70 × 10−1 1.00 × 100 5.18 × 102

Table 9. The results of SA-DMKL on the Caltech 256 dataset with the FFT method. Bold numbers indicate optimal results. The value of R, which is greater than the
threshold, is marked by being underlined.

Layers Laplacian Tanh RBF Ar_cosine Polynomial

A S R A S R A S R A S R A S R

1 4.60 × 10−1 5.50 × 101 4.10 × 10−1 5.70 × 10−1 1.00 × 100 5.58 × 101 5.80 × 10−1 6.20 × 101 1.08 × 101 5.70 × 10−1 1.00 × 100 4.63 × 106 5.75 × 10−1 1.00 × 100 6.83 × 102

2 8.10 × 10−1 9.30 × 101 7.00 × 10−2 5.70 × 10−1 1.00 × 100 5.58 × 1013 8.10 × 10−1 9.30 × 101 2.00 × 10−2 5.80 × 10−1 3.20 × 101 1.79 × 105 4.80 × 10−1 2.90 × 101 3.91 × 104

3 8.20 × 10−1 3.00 × 100 5.00 × 10−2 8.10 × 10−1 2.00 × 100 5.58 × 101 8.30 × 10−1 2.00 × 100 8.00 × 10−2 7.80 × 10−1 3.00 × 100 1.49 × 102 8.10 × 10−1 1.00 × 100 1.40 × 102

4 7.80 × 10−1 3.00 × 100 3.87 × 1013 8.10 × 10−1 1.00 × 100 3.80 × 100 7.80 × 10−1 2.00 × 100 3.87 × 1013 5.70 × 10−1 1.00 × 100 7.44 × 102 7.90 × 10−1 1.00 × 100 2.548 × 103

5 8.10 × 10−1 7.90 × 101 1.00 × 10−2 5.30 × 10−1 3.00 × 100 5.58 × 1013 8.10 × 10−1 8.30 × 101 5.00 × 10−2 5.70 × 10−1 1.00 × 100 3.80 × 103 4.30 × 10−1 3.00 × 100 1.48 × 105

6 7.90 × 10−1 9.00 × 100 3.87 × 101 8.20 × 10−1 4.00 × 100 9.00 × 10−2 7.90 × 10−1 1.20 × 101 1.50 × 10−1 7.80 × 10−1 5.00 × 100 1.04 × 101 8.10 × 10−1 1.00 × 100 1.12 × 102

7 7.90 × 10−1 1.50 × 101 3.87 × 101 8.10 × 10−1 1.00 × 100 5.15 × 101 7.70 × 10−1 1.10 × 101 6.88 × 100 5.70 × 10−1 1.00 × 100 8.21 × 102 8.10 × 10−1 1.00 × 100 6.92 × 102

8 8.10 × 10−1 4.40 × 101 7.40 × 10−1 8.10 × 10−1 1.00 × 100 5.58 × 1013 8.10 × 10−1 4.80 × 101 1.10 × 10−1 5.70 × 10−1 1.00 × 100 7.76 × 104 8.10 × 10−1 1.00 × 100 1.05 × 105

9 8.10 × 10−1 7.00 × 100 4.00 × 10−2 7.50 × 10−1 4.00 × 100 4.20 × 10−1 8.10 × 10−1 8.00 × 100 2.90 × 10−1 7.90 × 10−1 4.00 × 100 2.60 × 10−1 8.10 × 10−1 1.00 × 100 2.02 × 100

10 7.70 × 10−1 1.80 × 101 6.40 × 10−1 8.10 × 10−1 3.00 × 100 1.86 × 101 7.70 × 10−1 1.60 × 101 4.00 × 10−2 5.70 × 10−1 1.00 × 100 1.06 × 103 8.10 × 10−1 1.00 × 100 7.93 × 102

Symmetry 2019, 11, 325 15 of 17

Table 10. The results of SA-DMKL on the Caltech 256 dataset without feature extraction. Bold numbers indicate optimal results. The value of R, which is greater than
the threshold, is marked by being underlined.

Layers Laplacian Tanh RBF Ar_cosine Polynomial

A S R A S R A S R A S R A S R

1 6.20 × 10−1 5.60 × 101 2.00 × 10−2 5.90 × 10−1 6.00 × 100 1.22 × 101 4.20 × 10−1 4.40 × 101 2.88 × 100 5.7 × 10−1 1.00 × 100 4.63 × 106 5.70 × 10−1 1.00 × 100 3.54 × 106

2 7.80 × 10−1 7.30 × 101 5.00 × 10−2 4.30 × 10−1 8.00 × 100 1.30 × 10−8 5.20 × 10−1 7.20 × 101 5.00 × 10−2 5.70 × 10−1 1.00 × 100 5.79 × 101 5.70 × 10−1 1.00 × 100 2.57 × 104

3 5.80 × 10−1 7.50 × 101 1.00 × 10−2 5.70 × 10−1 1.00 × 100 5.58 × 1013 5.90 × 10−1 7.10 × 101 7.00 × 10−2 5.70 × 10−1 1.00 × 100 8.15 × 105 5.70 × 10−1 1.00 × 100 4.63 × 106

4 6.70 × 10−1 2.10 × 101 1.00 × 10−2 5.90 × 10−1 3.00 × 100 7.08 × 100 6.60 × 10−1 2.10 × 101 7.00 × 10−2 5.70 × 10−1 1.00 × 100 4.22 × 100 5.70 × 10−1 1.00 × 100 3.64 × 100

5 8.20 × 10−1 8.60 × 101 1.9 × 10−1 5.70 × 10−1 1.00 × 100 5.58 × 1013 8.20 × 10−1 8.70 × 101 7.00 × 10−2 5.70 × 10−1 1.00 × 100 4.08 × 105 5.70 × 10−1 1.00 × 100 4.63 × 106

6 8.20 × 10−1 4.00 × 100 1.98 × 101 8.20 × 10−1 4.00 × 100 5.57 × 101 8.20 × 10−1 4.00 × 100 3.83 × 101 7.60 × 10−1 2.00 × 100 1.01 × 102 5.70 × 10−1 1.00 × 100 9.42 × 102

7 8.20 × 10−1 6.00 × 100 1.60 × 10−1 8.20 × 10−1 6.00 × 100 5.58 × 101 8.20 × 10−1 6.00 × 100 2.30 × 10−1 5.70 × 10−1 1.00 × 100 5.75 × 102 5.70 × 10−1 1.00 × 100 2.61 × 103

8 8.20 × 10−1 1.20 × 101 3.70 × 10−1 8.20 × 10−1 8.00 × 100 1.20 × 10−1 8.20 × 10−1 1.20 × 101 3.87 × 101 5.70 × 10−1 1.00 × 100 6.00 × 10−1 5.70 × 10−1 1.00 × 100 1.16 × 103

9 8.20 × 10−1 5.10 × 101 8.00 × 10−2 5.70 × 10−1 1.00 × 100 5.57 × 1013 8.20 × 10−1 6.00 × 101 1.00 × 10−2 5.70 × 10−1 1.00 × 100 1.96 × 103 5.70 × 10−1 1.00 × 100 4.63 × 106

Symmetry 2019, 11, 325 16 of 17

5. Conclusions

In this paper, a new multilayer multiple kernel learning method named SA-DMKL is proposed.
The architecture of SA-DMKL is not fixed. It uses Rademacher chaos complexity to compute the
generalization bound of the kernel function. SA-DMKL uses the generalization bound to select the
kernel function in each layer. The model learning algorithm of SA-DMKL iteratively builds the model
layer by layer. The experimental results show that the fixed architecture is not effective for DMKL,
and our SA-DMKL method can adapt the model by itself through changing the model parameters of
each kernel function, and the numbers and types of kernel function in each layer. In future work, we
plan to integrate more learning techniques into our SA-DMKL method, such as model compression
and model optimization, in order to realize our SA-DMKL method in an embedded system.

Author Contributions: S.R. conceived the idea; W.S. and S.R. designed the experiments; W.S. and Y.L. performed
the experiments; W.S. and S.R. analyzed the data; S.R., W.S. and C.N.S. wrote the paper.

Funding: This research was funded by the Central South University Graduate Research Innovation Project Grant
No. 2018zzts612.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vapnik, V.N. Statistical Learning Theory; Macmillan: New York, NY, USA, 1998.
2. Muller, K.R.; Mika, S.; Ratsch, G.; Tsuda, K.; Scholkopf, B. An introduction to kernel based learning

algorithms. IEEE Trans. Neural Netw. 2001, 12, 181–201. [CrossRef] [PubMed]
3. Shaw-Taylorf, J.; Cristianini, N. Kernel Method for Pattern Analysis; Cambridge University Press: New York,

NY, USA, 2004.
4. Stock, M.; Pahikkala, T.; Airola, A.; De, B.; Waegeman, W. A comparative study of pairwise learning

methods based on kernel ridge regression. Neural Comput. 2018, 30, 2245–2283. [CrossRef] [PubMed]
5. Ghanty, P.; Paul, S.; Pal, N. NEUROSVM: An architecture to reduce the effect of the choice of kernel on the

performance of SVM. J. Mach. Learn. Res. 2009, 10, 591–622.
6. Hao, X.; Hoi, S. MKBoost: A framework of multiple kernel boosting. IEEE Trans. Knowl. Data Eng. 2013,

25, 1574–1586.
7. Wang, Y.; Liu, X.; Dou, Y.; Qi, L.; Yao, L. Multiple kernel learning with hybrid kernel alignment

maximization. Pattern Recognit. 2017, 70, 104–111. [CrossRef]
8. Gönen, M.; Alpaydm, E. Multiple kernel learning algorithms. J. Mach. Learn. Res. 2011, 12, 2211–2268.
9. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
10. Zhuang, J.; Tsang, I.W.; Hoi, S. Two-layer multiple kernel learning. J. Mach. Learn. Res. 2011, 15, 909–917.
11. Rebai, I.; Belayed, Y.; Mahdi, W. Deep multilayer multiple kernel learning. Neural Comput. Appl. 2016,

27, 2305–2314. [CrossRef]
12. Rabha, O.; Hassan, Y.F.; Saleh, M.W. New deep kernel learning based models for image classification.

Int. J. Adv. Comput. Sci. Appl. 2017, 8, 407–411.
13. Strobl, E.; Visweswaran, S. Deep multiple kernel learning. In Proceedings of the 12th International Conference

on Machine Learning and Applications, Miami, FL, USA, 4–7 December 2013; pp. 414–417.
14. Jiu, M.; Sahbi, H. Nonlinear deep kernel learning for image annotation. IEEE Trans. Image Process. 2017,

26, 1820–1832. [CrossRef] [PubMed]
15. Cho, Y.; Saul, L.K. Kernel methods for deep learning. Adv. Neural Inf. Process. Syst. 2009, 28, 342–350.
16. Wu, X.; Zhang, J. Researches on Rademacher complexities in statistical learning theory: A survey.

Acta Autom. Sin. 2017, 43, 20–39.
17. Koltchinskii, V. Rademacher penalties and structural risk minimization. IEEE Trans. Inf. Theory 2011,

47, 1902–1914. [CrossRef]
18. Ying, Y.; Campbell, C. Rademacher chaos complexities for learning the kernel problem. Neural Comput.

2010, 22, 2858–2886. [CrossRef] [PubMed]
19. Lei, Y.; Ding, L. Refined rademacher chaos complexity bounds with applications to the multikernel learning

problem. Neural Comput. 2014, 26, 739–760. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/72.914517
http://www.ncbi.nlm.nih.gov/pubmed/18244377
http://dx.doi.org/10.1162/neco_a_01096
http://www.ncbi.nlm.nih.gov/pubmed/29894652
http://dx.doi.org/10.1016/j.patcog.2017.05.005
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1007/s00521-015-2066-x
http://dx.doi.org/10.1109/TIP.2017.2666038
http://www.ncbi.nlm.nih.gov/pubmed/28186895
http://dx.doi.org/10.1109/18.930926
http://dx.doi.org/10.1162/NECO_a_00028
http://www.ncbi.nlm.nih.gov/pubmed/20804384
http://dx.doi.org/10.1162/NECO_a_00566
http://www.ncbi.nlm.nih.gov/pubmed/24479777

Symmetry 2019, 11, 325 17 of 17

20. Dua, D.; Efi, K.T. UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml
(accessed on 9 January 2019).

21. Kloft, M.; Brefeld, U.; Sonnenburg, S.; Zien, A. lp-norm multiple kernel learning. J. Mach. Learn. Res. 2011,
12, 953–997.

22. Xu, X.; Tsang, I.; Xu, D. Soft margin multiple kernel learning. IEEE Trans. Neural Netw. Learn. Syst. 2013,
24, 749–761. [PubMed]

23. Griffin, G.; Holub, A.; Perona, P. Caltech-256 Object Category Dataset. Available online: https://authors.
library.caltech.edu/7694/1/CNS-TR-2007-001.pdf (accessed on 9 January 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://archive.ics.uci.edu/ml
http://www.ncbi.nlm.nih.gov/pubmed/24808425
https://authors.library.caltech.edu/7694/1/CNS-TR-2007-001.pdf
https://authors.library.caltech.edu/7694/1/CNS-TR-2007-001.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Deep Multiple Kernel Learning
	Rademacher Complexity

	Self-Adaptive Deep Multiple Kernels Learning SA-DMKL
	SA-DMKL Architecture
	Model Learning Algorithm

	Experiments and Results
	Experimental Settings
	Datasets
	UCI Data Sets
	 Caltech-256 Dataset

	Results and Analysis
	Influence without Kernel Removing
	Influence of Different Types of Kernels
	Influence of Feature Extraction

	Conclusions
	References

