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Abstract

:

This paper is mainly concerned with distributional chaos and the principal measure of C0-semigroups on a Frechet space. New definitions of strong irregular (semi-irregular) vectors are given. It is proved that if C0-semigroup T has strong irregular vectors, then T is distributional chaos in a sequence, and the principal measure μp(T) is 1. Moreover, T is distributional chaos equivalent to that operator Tt  is distributional chaos for every ∀t>0.
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1. Introduction


Chaotic properties of dynamical systems have been ardently studied since the term chaos (namely, Li-Yorke chaos) was defined in 1975 by Li and Yorke [1]. To describe unpredictability in the evolution of dynamical systems, many properties related to chaos have been discussed (for example, References [2,3,4,5,6,7,8,9,10,11,12,13], where References [4,5,6,7] are some of our works done in recent years). In 1994, Schweizer and Smital in Reference [8] introduced a popular concept named distributional chaos for interval maps, by considering the dynamics of pairs with some statistical properties. The goal was to extend the definition of Li-Yorke chaos, and it was equivalent to positive topological entropy. Later, Reference [9] summarizes the connections between Li-Yorke, distributional, and ω-chaos. The notions of distributional chaos and principal measures were extended to general dynamical systems [10,11] and especially to the framework of linear dynamics in the last few years. It seems that the first example of a distributional chaotic operator on a Frechet space was given by Oprocha [14], whom investigated the annihilation operator of a quantum harmonic oscillator. Wu and Zhu [15] further proved that the principal measure of the annihilation operator studied in Reference [14] is 1. Since then, distributional chaos for linear operators has been studied by many authors, see for instance References [16,17,18,19,20,21].



The study of hypercyclicity and chaoticity for operators and C0-semigroups has became a hot and active research area in the past two decades (such as References [22,23]). In Reference [24], Devaney chaos for C0-semigroup of unbounded operators was discussed. The extension of distributional chaos to C0-semigroup on weighted spaces of integrable functions was done in Reference [25]. Devaney chaos and distributional chaos are closely tied for the C0-semigroup. Distributionally chaotic C0-semigroups on Banach spaces were found in Reference [16]. A systematic investigation of distributional chaos for linear operators on Frechet space was given by Bernardes [17]. Recently, an extension of distributional chaos for a family of operators (including C0-semigroups) on Frechet spaces were proposed by Conejero [26]. For other studies of C0-semigroups or Frechet spaces see References [27,28,29,30,31,32,33,34] and others.



In the present work, in Section 2 we deal with the notion of strong irregular (semi-irregular) vectors for C0-semigroups of operators on a Frechet spaces. It is proved that if a C0-semigroup T on a Frechet space admits a strong irregular vector, then T is distributionally chaotic in a sequence, and the principal measure μp(T) is 1. In Section 3, using the properties of the upper density and lower density, we point out that the distributional chaoticity of T is equivalent to the distributional chaoticity of Tt (∀t>0).



Throughout this paper, the set of natural numbers is denoted by ℕ={1,2,3,⋯} and the set of positive real numbers is denoted by ℝ+=(0,+∞).




2. Preliminaries


The Frechet space in this paper is a vector space X, endowed with a separating increasing sequence (‖ · ‖k)k∈ℕ of seminorms in the following metric.


ρ(x,y)=∑k=1∞12k·‖x−y‖k1+‖x−y‖k, ∀x,y∈X.











Throughout this paper, the Frechet space is denote by (X, (‖ · ‖k)k∈ℕ, ρ) (or simply X) without otherwise statements and we let ℒ(X) be the space of continuous linear operators on X.



One parameter family T={Tt}t≥0⊆ℒ(X) is called a C0-semigroup of linear operators on X if:

	(i)

	
T0=I (where I is the identity operator on X);




	(ii)

	
TtTs=Tt+s, ∀s,t≥0;




	(iii)

	
lims→tTs(x)=Tt(x), ∀x∈X, ∀s,t≥0.









In References [17,33], Peris et al. introduced the notions of an irregular vector and a distributional irregular vector for operators in order to characterize distributional chaos. Similarly, we give notions of a strong irregular vector and strong semi-irregular vector.



x∈X is called a strong irregular vector for a C0-semigroup T on a Frechet space X if


limsupt→∞‖Ttx‖k=∞ and liminft→∞‖Ttx‖k=0








for every k∈ℕ.



x∈X is called a strong semi-irregular vector, if


limsupt→∞‖Ttx‖k=∞ but liminft→∞‖Ttx‖k≠0 for some k∈ℕ








and there exists a sequence {Tti}i∈ℕ such that


liminfi→∞‖Ttix‖k=0








for every k∈ℕ.




3. Distributional Chaos in a Sequence of C0-Semigroup


For any x,y∈X and a sequence {pi}i∈ℕ⊂ℝ+, we define the distributional function in a sequence of x and y with respect to T={Tt}t≥0 as:


Φxyn:ℝ+→[0,1]Φxyn(ε)=1ncard{1≤i≤n:ρ(Tpi(x),Tpi(y))<ε} (∀ε∈ℝ+)








where card{M} denotes the cardinality of the set M (or denoted by |M|).



The upper and lower distributional functions of x and y are then defined by


Φxy∗(ε,{pi}i∈ℕ)=limsupn→∞Φxyn(ε) and Φxy(ε,{pi}i∈ℕ)=liminfn→∞Φxyn(ε)








respectively for ∀ε>0.

Definition 1.

Let(X,(‖ · ‖k)k∈ℕ,ρ)be a Frechet space. AC0-semigroup of operatorsT={Tt}t≥0onXis said to be distributionally chaotic in a sequence if there exists a sequence{pi}i∈ℕ, an uncountable subset ofS⊂Xandδ>0such that for∀x,y∈S:x≠yand∀ε>0, we have that:


Φxy∗(ε,{pi}i∈ℕ)=1 and Φxy(δ,{pi}i∈ℕ)=0.















In this case, S is called a distributionally δ-scrambled set in a sequence, and (x,y) is called a distributionally chaotic pair in a sequence.



To measure the degree of chaos for a given dynamical system, the concept of principal measure was introduced for general dynamical systems accompanying the appearance of distributional chaos [8,11]. For the study of principal measures of certain linear operators, we refer to References [14,15,35]. Naturally, the concept for the case of C0-semigroup of operators on Frechet spaces can be extended.

Definition 2.

LetT={Tt}t≥0be aC0-semigroup of operators on a Frechet spaceX. The principal measureμp(T)ofTis defined as follows:


μp(T)=supx∈X1diam(X)∫0∞(Φx,0∗(s)−Φx,0(s))ds ,








where Φx,0∗(s) and Φx,0(s) are the upper and lower distributional functions of x and 0, and diam(X) is the diameter of X.







Now we shall establish the relationship between strong irregular vectors and the distributional chaos of the C0-semigroup of operators on Frechet spaces.

Theorem 1.

LetTis aC0-semigroup on a Frechet spaceX. IfTadmits a strong irregular vector, thenTis distributionally chaotic in a sequence.





Proof. 

Let x∈X. Since T admits a strong irregular vector, there exists two increasing sequences {nj}j∈ℕ⊂ℝ+ and {mj}j∈ℕ⊂ℝ+ such that


limj→∞‖Tnj(x)‖k=∞ and limj→∞‖Tmj(x)‖k=0








for every k∈ℕ.



Let



b1=l1=2, b2=2b1, b3=2b1+b2,⋯,bi=2b1+⋯+bi−1=2∑k=1i−1bk for all  i>1;



l2=b1+b2,l3=b1+b2+b3,⋯,li=∑h=1ibh for all  i>1.



{nj′}j∈ℕ and {mj′}j∈ℕ are, respectively, the subsequence of {nj}j∈ℕ and {mj}j∈ℕ such that mj′<nj′ when j≤b1 or l2s<j<l2s+1, and nj′<mj′ when l2s−1<j<l2s for any s∈ℕ.



Let


pj={nj′ j≤b1 or l2s<j<l2s+1,s∈ℕmj′ l2s−1<j<l2s,s∈ℕ








then, {pj}j∈ℕ⊂ℝ+ is an increasing sequence.



Denote Γ={αx:α∈(0,1)}. The following prove that Γ is a distributional δ-scrambled set of T in {pj}j∈ℕ for some δ>0.



In fact, for any pair x,y∈Γ with x≠y, it is clear that there exists α∈(0,1) such that x−y=αx.



Since limj→∞‖Tmj(x)‖k=0  (∀k∈ℕ), then, for ∀ε>0, there exists N∈ℕ such that ‖Tmj′(αx)‖k<ε for each j≥N. Then, ∀k∈ℕ,


‖Tpj(x)−Tpj(y)‖k1+‖Tpj(x)−Tpj(y)‖k=‖Tpj(x−y)‖k1+‖Tpj(x−y)‖k=α‖Tpj‖k1+α‖Tpj‖k<αε1+αε











So,


Φxy∗(ε,{pj}j∈ℕ)=limsupn→∞1ncard{1≤j≤n:ρ(Tpj(x),Tpj(y))<ε}=limsupn→∞1ncard{1≤j≤n:∑k=1∞12k·‖Tpj(x)−Tpj(y)‖k1+‖Tpj(x)−Tpj(y)‖k<ε}≥limsupn→∞1ncard{1≤j≤n:∑k=1∞12k·αx1+αx<ε}=limsups→∞1l2scard{1≤j≤l2s:∑k=1∞12k·αx1+αx<ε}≥limsups→∞b2sl2s=limsups→∞2b1+b2+⋯+b2s−1∑h=12s−1bh+2b1+b2+⋯+b2s−1=1.



(1)







Let δ=1.



Since limj→∞‖Tnj(x)‖k=∞  (∀k∈ℕ), there exists M∈ℕ such that ‖Tnj′(αx)‖k>δ(∀k∈ℕ) for each j≥M.



Thus,


Φxy(δ,{pj}j∈ℕ)=liminfn→∞1ncard{1≤j≤n:ρ(Tpj(x),Tpj(y))<δ}=liminfs→∞1l2s+1card{1≤j≤l2s+1:∑k=1∞12k·αδ1+αδ<δ}≤liminfs→∞l2sl2s+1=liminfs→∞∑h=12sbh∑h=12sbh+2b1+b2+⋯+b2s=0.



(2)







By (1) and (2), Γ={αx:α∈(0,1)} is a distributionally δ-scrambled set of Γ in {pj}j∈ℕ. So, Γ is distributionally chaotic in a sequence as Γ is uncountable.



This completes the proof.  □







As an important class of operators in linear dynamics, the backward shift [35,36] admits principal measure 1 if it is distributionally chaotic. In addition, it is easy to see that every distributionally chaotic operator on a Banach space (as a special Frechet space) has a principal measure of 1. So we wonder whether the C0-semigroup on the Frechet space above with a principal measure of 1 is distributionally chaotic. The answer is positive.

Theorem 2.

LetTbe aC0-semigroup of operators on a Frechet spaceX. Assume thatTadmits a strong irregular vectorX0, then the principal measureμp(T)=1.





Proof. 

From the definition of a strong irregular vector, for every k∈ℕ, one has:


liminft→∞‖Tt(x0)‖k=0 and limsupt→∞‖Tt(x0)‖k=∞.











Given arbitrary ε∈(0,1), one can find a sequence {tiε}i∈ℕ∈ℝ+ and a positive number N1 such that ρ(Ttiε(x0),0)<ε for all {tiε:tiε∈{t1ε,t2ε,⋯},tiε>N1}.


Φx0,0∗(ε,{t1ε}i∈ℕ)=limsupn→∞1ncard{1≤i≤n:ρ(Ttiε(x0),0)<ε}≥limsupn→∞1n(n−N1)=1.











On the other hand, we show that ∀k∈ℕ, Φx0,0(ε)=0 for every ε∈(0,diam(X)).



In fact, given ∀ε∈(0,diam(X)). Since limsupt→∞‖Tt(x0)‖k=∞ for every k∈ℕ, then for any sequence {ti}i∈ℕ∈ℕ+, there exists a positive number N2 such that ρ(Tti(x0),0)>ε for {ti:ti∈{ti}i∈ℕ,ti>N2}. So


Φx0,0(ε,{tiε}i∈ℕ)=liminfn→∞1ncard{1≤i≤n:ρ(Tti(x0),0)<ε}≤liminfn→∞N2n=0.











Hence,


μn(T)=supx∈X1diam(X)∫0∞(Φx,0∗(ε)−Φx,0(ε))dε=supx∈X1diam(X)∫0diam(X)(Φx,0∗(ε)−Φx,0(ε))dε≥1diam(X)∫0diam(X)(Φx0,0∗(ε,{tiε}i∈ℕ)−Φx0,0(ε,{tiε}i∈ℕ))dε=1.











This completes the proof.  □








4. Distributionally Chaotic C0-Semigroup


For any x,y∈X and any t>0, the distributional function of x and y with respect to T={Tt}t≥0 is defined as follows:

	
Φx,yt:ℝ+→[0,1]



	
Φx,yt(ε)=1tμ({0≤i≤t:ρ(Ts(x),Ts(y))<ε}). ∀ε>0





where μ denotes the Lebesgue measure on ℝ.



The upper and lower distributional functions of x and y are then defined by:


Φx,y∗(ε)=limsupt→∞Φx,yt(ε) and Φx,y(ε)=liminft→∞Φx,yt(ε), ∀ε>0








respectively.



Definition 3.

Let(X,(‖ · ‖k)k∈ℕ,ρ)be a Frechet space. AC0-semigroup of operatorsT={Tt}t≥0onXis said to be distributionally chaotic if one can find an uncountable subsetS∈Xandδ>0such that, for∀x,y∈S:x≠yand for∀ε>0, we have:


Φx,y∗(ε)=1 and Φx,y(δ)=0.











In this case,Sis called a distributionallyδ-scrambled set and(x,y)a distributionally chaotic pair.



LetE∈ℝ+be a Lebesgue measurable set; the upper density and lower density ofEare defined as:


Dens¯(E)=limsupt→∞μ(E∩[0,t])t and Dens_(E)=liminft→∞μ(E∩[0,t])t








respectively. Then, the conditionsΦx,y∗(ε)=1,Φx,y(δ)=0in Definition 3 are equivalent to:


Dens¯({t≥0:ρ(Tt(x),Tt(y))<ε})=1 and Dens_({t≥0:ρ(Tt(x),Tt(y))<δ})=0








respectively.



GivenM⊂ℕ+, the upper density and lower density ofMare defined as


dens¯(M)=limsupn→∞card(M∩[0,n−1])t and dens_(M)=liminfn→∞card(M∩[0,n−1])t








respectively. The conditions in the definition of the distributional chaos for operatorTare equivalent to


dens¯({n∈ℕ:‖Tn(x)−Tn(y)‖k<ε})=1, dens_({n∈ℕ:‖Tn(x)−Tn(y)‖k<δ})=0.













Theorem 3.

LetTbe aC0-semigroup of operators on a Frechet spaceX. x∈X,t0>0,∀k∈ℕ, letCt0k=sup0≤t≤t0‖T(x)t‖k. Then for everyε,δ>0and allN>0:

	(i) 

	
μ({t∈[0,N]:‖Tt(x)‖k>δ})≤t0|{s∈ℕ:s≤Nt0+1, ‖Tt0s−1(x)‖k>δCt0k}|;




	(ii) 

	
t0|{s∈ℕ:s≤N, ‖Tt0s(x)‖k>δ}|≤μ({t∈[0,Nt0]:‖Tt(x)‖k>δCt0k});




	(iii) 

	
μ({t∈[0,N]:‖Tt(x)‖k<ε})≤t0|{s∈ℕ:s≤Nt0+1, ‖Tt0s(x)‖k<εCt0k}|;




	(iv) 

	
t0|{s∈ℕ:s≤N, ‖Tt0s(x)‖k<ε}|≤μ({t∈[0,(N+1)t0]:‖Tt(x)‖k<εCt0k}).











Proof. 

(i) Let A={t≤N:‖Tt(x)‖k>δ}, B={s∈ℕ:∃t∗∈A∩[(s−1)t0,st0]}, then,


B⊆{s∈ℕ:1≤s≤Nt0+1,‖Tt0s−1(x)‖k>δCt0k}











Indeed, if there exists t∗∈[(s−1)t0,st0] such that t∗≤N and ‖Tt∗(x)‖k>δ, then


1≤t∗t0≤s≤t∗t0+1≤Nt0+1.








and because t∗−(s−1)t0≤t0, then


δ<‖Tt∗(x)‖k=‖Tt∗−(s−1)t0T(s−1)t0(x)‖k≤(sup0≤t≤t0‖Tt(x)‖k)‖T(s−1)t0(x)‖k=Ct0k‖T(s−1)t0(x)‖k=Ct0k‖Tt0s−1(x)‖k.











That is,


‖Tt0s−1(x)‖k>δCt0k.











Therefore,


μ(A)≤∑s∈Bμ([(s−1)t0,st0]).











(ii) Let M={s∈ℕ:s≤N,‖Tt0s(x)‖k>δ}. Then, for every t∈[(s−1)t0,st0], we have that


δ<‖Tt0s(x)‖k=‖Tst0(x)‖k=‖Tst0−tTt(x)‖k≤Ct0k‖Tt(x)‖k.








(The last inequality is right for the reason that st0−t≤t0).



Hence,


∪s∈M[(s−1)t0,st0]⊆{t∈[0,Nt0]:‖Tt(x)‖k>δCt0k}.











Thus,


t0|M|≤μ({t∈[0,Nt0]:‖Tt(x)‖k>δCt0k}).











(iii) and (iv) can be obtained with analogous considerations.



This completes the proof.  □





Theorem 4.

LetTbe aC0-semigroup of operators on a Frechet spaceX. x∈X,t0>0,∀k∈ℕ, letCt0k=sup0≤t≤t0‖T(x)t‖k. Then for∀ε,δ>0and allN>0:

	(i) 

	
Dens¯({t≥0:‖Tt(x)‖k>δ})≤dens¯({s∈ℕ:‖Tt0s(x)‖k>δCt0k});




	(ii) 

	
dens¯|{s∈ℕ: ‖Tt0s(x)‖k>δ}|≤Dens¯({t≥0:‖Tt(x)‖k>δCt0k});




	(iii) 

	
Dens¯({t≥0:‖Tt(x)‖k<ε})≤dens¯|{s∈ℕ: ‖Tt0s(x)‖k<εCt0k}|;




	(iv) 

	
dens¯({s∈ℕ: ‖Tt0s(x)‖k<ε})≤Dens¯({t≥0:‖Tt(x)‖k<εCt0k}).











Proof. 

(i)’ By (i) of Theorem 3,


Dens¯({t≥0:‖Tt(x)‖k>δ})=limsupt→∞1tμ({[0,t]∩{t≥0:‖Tt(x)‖k>δ}})=limsupN→∞1Nμ({t∈[0,N]:‖Tt(x)‖k>δ})≤limsupN→∞t0Nμ({s∈ℕ:s≤Nt0+1,‖Tt0s−1(x)‖k>δCt0k})=limsupN→∞1N|{s∈ℕ:‖Tt0s(x)‖k>δCt0k}∩[0,N]|=dens¯({s∈ℕ:‖Tt0s(x)‖k>δCt0k}).











(ii)’, (iii)’ and (iv)’ can be obtained with analogous considerations.



This completes the proof.  □





Theorem 5.

LetT={Tt}t≥0be aC0-semigroup of operators on a Frechet spaceX. Then the following properties are equivalent.

	(i) 

	
Tis distributionally chaotic;




	(ii) 

	
∀t>0, Ttis distributionally chaotic;




	(iii) 

	
There existst0>0such thatTt0is distributionally chaotic.











Proof. 

Let S⊂X be a distributionally δ-scrambled set for T. Then, for ∀x,y∈S:x≠y, there exists a 0<δ<1 such that


Dens_({s≥0:ρ(Ts(x),Ts(y))<δ})=0.











It means that


liminft→∞μ({s≥0:ρ(Ts(x),Ts(y))<δ}∩[0,t])t=0.








i.e.,


limsupt→∞μ({s≥0:ρ(Ts(x),Ts(y))>δ}∩[0,t])t=1.











If ‖Ts(x)−Ts(y)‖k>2kδ1−δ(∀k∈ℕ), then


∑k=1∞12k·11+‖Ts(x)−Ts(y)‖k<1−δ.











So,


ρ(Ts(x),Ts(y))=∑k=1∞12k·‖Ts(x)−Ts(y)‖k1+‖Ts(x)−Ts(y)‖k=1−∑k=1∞12k·11+‖Ts(x)−Ts(y)‖k>δ.











Thus,


Dens¯({s≥0:‖Ts(x)−Ts(y)‖k>2kδ1−δ})=1.











By (i)’ of Theorem 4, for every t0>0, one has


dens¯({s∈ℕ:‖Tt0k(Ts(x)−Ts(y))‖k>2kδCt0k(1−δ)})=1.











That is,


dens_({s∈ℕ:‖Tkt0+s(x)−Tkt0+s(y)‖k<2kδCt0k(1−δ)})=0.











On the other hand, for ∀x,y∈S:x≠y and every 0<ε<1, since Dens¯({s≥0:ρ(Ts(x),Ts(y))<ε})=1, i.e.,


limsupt→∞μ({s≥0:ρ(Ts(x),Ts(y))<ε}∩[0,t])t=1,








and


ρ(Ts(x),Ts(y))=∑k=1∞12k·‖Ts(x)−Ts(y)‖k1+‖Ts(x)−Ts(y)‖k<ε,








then


Dens¯({s≥0:‖Ts(x)−Ts(y)‖k<ε2k(1−ε)})=1








when ‖Ts(x)−Ts(y)‖k<ε2k(1−ε)  (∀k∈ℕ).



By (iii)’ of Theorem 4, for every t0>0, one has


dens¯({s∈ℕ:‖Tt0k(Ts(x)−Ts(y))‖k<εCt0k2k(1−ε)})=1.











For the arbitrariness of ε>0, we have


dens¯({s∈ℕ:‖Tkt0+s(x)−Tkt0+s(y)‖k<ε})=1.











Thus, S is a δ′-scrambled set for Tt, where δ′=δCt0k, t=kt0+s (∀t0>0), i.e., for all t>0, Tt is distributionally chaotic.



(ii) implies (iii). It is trivial.



(iii) implies (i). The proof is analogous to the first implication.



This completes the proof.  □






5. Discussion


Inspired by the definition of an irregular vector given by N.C. Bernardes Jr in Reference [17], this paper defines the strong irregular vector. In particular, it is proved that a C0-semigroup on a Frechet space is distributionally chaotic in a sequence if it admits a strong irregular vector. In addition, the principal measure μp(T)=1. These results extend the corresponding results in References [16,17,31,35]. In Section 4, using upper density and lower density, it is showed that the distributional chaoticity of μp(T)={Tt}t≥0 is equivalent to the distributional chaoticity of some Tt0 (t0>0). This result is consistent with the similar conclusion in Banach space or other Frechet spaces (see References [17,27,29,31,33] and others). Then, some further results regarding C0–semigroups or Frechet spaces may be obtained in the future.



Since Li-Yorke chaos is a special case of distributional chaos, therefore, the conclusions of this paper are also correct for Li-Yorke chaos.
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