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Abstract: An exact particle–hole transformation is discovered in a local-moment model for a single
layer of heavily electron-doped FeSe. The model harbors hidden magnetic order between the iron
dxz and dyz orbitals at the wavenumber (π, π). It potentially is tied to the magnetic resonances
about the very same Néel ordering vector that have been recently discovered in intercalated FeSe.
Upon electron doping, the local-moment model successfully accounts for the electron-pocket Fermi
surfaces observed experimentally at the corner of the two-iron Brillouin zone in electron-doped
FeSe, as well as for isotropic Cooper pairs. Application of the particle–hole transformation predicts a
surface-layer iron-based superconductor at strong hole doping that exhibits high Tc, and that shows
hole-type Fermi-surface pockets at the center of the two-iron Brillouin zone.
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1. Introduction

The discovery of iron-based superconductors has identified a new route in the search for high
critical temperatures [1]. Iron atoms in these materials lie in weakly coupled stacks of square
lattices [2]. Electronic conduction resides within such layers, where charge carriers are primarily
electrons/holes from iron 3d levels. The optimum critical temperature in iron-pnictide materials, in
particular, coincides with imperfect nesting between hole Fermi-surface pockets at the center of the
Brillouin zone and electron Fermi-surface pockets at momenta along the principal axes of the square
lattice of iron atoms that coincide with commensurate spin-density wave (cSDW) order. Strong hole
doping can destroy such nesting. In particular, angle-resolved photoemission spectroscopy (ARPES)
finds that the electron bands at cSDW momenta rise completely above the Fermi level in the series of
compounds (Ba1−xKx)Fe2As2 at 0.5 < x < 0.7 [3]. ARPES on the end-member of the series KFe2As2,
with superconducting Tc ∼= 4 K, reveals only hole Fermi surface pockets [4]. Density-functional-theory
calculations recover the Lifshitz transtion at which the electron-type Fermi surface pockets disappear,
but at a larger critical concentration of hole doping [5], xc = 0.9.

Strong electron doping can also destroy nesting in iron-based superconductors. ARPES on a
monolayer of FeSe over a doped SrTiO3 (STO) substrate and ARPES on intercalated FeSe find only
electron Fermi surface pockets at cSDW momenta [6–8]. Hole bands at the center of the Brillouin zone
lie buried below the Fermi level. Unlike heavily hole-doped compounds such as KFe2As2, however, the
FeSe surface layer shows high critical temperatures, Tc ∼ 100 K, for superconductivity [9]. In addition,
ARPES [6–8] and scanning tunneling microscopy (STM) [10,11] on such surface layers of FeSe find
evidence for an isotropic gap over the electron Fermi surface pockets, with no nodes. Finally, a Mott
insulator phase is reported nearby at low electron doping in single-layer FeSe/STO and in voltage-gate
tuned thin films of FeSe [12,13]. In contrast to itinerant magnetism, which is driven by Fermi-surface
nesting, and which has some success in describing superconductivity in iron-pnictide materials [14,15],
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the limit of strong on-site electron repulsion [16,17] may then be a valid starting point to describe
superconductivity in heavily electron-doped FeSe.

Below, we identify a particle–hole transformation for a local-moment description of a single layer
in an iron-based superconductor [16–18] that includes the minimum dxz and dyz iron orbitals [19–21].
At half filling of electrons, a doped Mott insulator results in the limit of strong iron-site Coulomb
repulsion [18]. Above half filling (electron doping), mean field and exact calculations based on a hidden
half metal state predict electronic structure that is very similar to that shown by heavily electron-doped
(high-Tc) surface layers of FeSe [22,23]. The exact calculations also predict isotropic Cooper pairs at
the electron Fermi surface pockets, in addition to remnant isotropic Cooper pairs of opposite sign on
buried hole bands. Application of the particle–hole transformation to a surface layer of FeSe predicts a
surface-layer iron-based superconductor that is heavily hole-doped, and that exhibits high Tc [21].

2. Local-Moment Hamiltonian

Our starting point is a two-orbital t-J model over the square lattice, where intra-orbital on-site
Coulomb repulsion is strong [16,17,19,20,24,25]:

H = ∑
〈i,j〉

[−(tα,β
1 c†

i,α,scj,β,s + h.c.) + Jα,β
1 Si,α · Sj,β]+

∑
〈〈i,j〉〉

[−(tα,β
2 c†

i,α,scj,β,s + h.c.) + Jα,β
2 Si,α · Sj,β]+

∑
i
(J0Si,d− · Si,d+ + U′0n̄i,d+n̄i,d− + limU0→∞U0ni,α,↑ni,α,↓

)
.

(1)

Above, Si,α is the spin operator that acts on spin s0 = 1/2 states of d− = d(x−iy)z and d+ =

d(x+iy)z orbitals α in iron atoms at site i. Repeated orbital and spin indices in Equation (1) are summed
over. Nearest neighbor and next-nearest neighbor Heisenberg exchange across the respective links
〈i, j〉 and 〈〈i, j〉〉 is controlled by the coupling constants Jα,β

1 and Jα,β
2 . They are due primarily to

super exchange [16]. Hopping of an electron in orbital α to an unoccupied neighboring orbital β

is controlled by the matrix elements tα,β
1 and tα,β

2 . Finally, J0 is a ferromagnetic exchange coupling
constant that imposes Hund’s Rule. The last term in Equation (1) suppresses double occupancy at a
site-orbital, where ni,α,s = c†

i,α,sci,α,s is the occupation operator for a spin-s electron in orbital α at site i.
The next-to-last term in Equation (1) measures the energy cost, U′0 > 0, of a pair of holes at an iron
site, whereas n̄i,α = 1−∑s ni,α,s counts holes at site-orbitals below half filling. Observe that n̄i,α can
be replaced by −n̄i,α, which counts singlet pairs at site-orbitals above half filling. Finally, notice that
the operation d± → e±iθd± is equivalent to a rotation of the orbitals by an angle θ about the z axis.
Spin and occupation operators remain invariant under it. Magnetism described by the two-orbital t-J
model in Equation (1) is hence isotropic, which suppresses orbital order and nematicity [26,27].

Because the spin-1/2 moments live on isotropic d± orbitals, two isotropic nearest neighbor and
next-nearest neighbor Heisenberg exchange coupling constants exist:

J‖n = Jd±,d±
n and J⊥n = Jd±,d∓

n (n = 1, 2).

The isotropy of the d± orbitals also implies intra-orbital hopping matrix elements that are
isotropic and real: t‖n = td±,d±

n for n = 1, 2. Finally, the reflection properties of the dxz and dyz

orbitals also imply real inter-orbital hopping matrix elements between nearest neighbors, with d-wave
symmetry [20]: t⊥1 (ŷ) = −t⊥1 (x̂), where t⊥1 = td±,d∓

1 . Inter-orbital next-nearest neighbor hopping
matrix elements td±,d∓

2 also show d-wave symmetry, but they are pure imaginary. They consequently
result in hybridization of the dxz and dyz orbital bands. Table 1 summarizes the expected phase
diagram of the two-orbital t-J model in Equation (1) near a quantum critical point into hidden
magnetic order [18,21,22].
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Table 1. Groundstate of two-orbital t-J model in Equation (1) in the presence of magnetic frustration:

J‖2 + J⊥2 > 1
2 (J‖1 + J⊥1 ). Hund coupling is tuned to the QCP at half filling, ∆cSDW → 0 (Figure 1), which

separates a cSDW when it’s strong from hidden magnetic order when it is weak (Ref. [18]). Captions to
Figures 1 and 2 give example model parameters.

Filling, Bands J‖1 < J⊥1 J‖1 > J⊥1
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hole dope, hole bands @ Γ hidden half metal, FS @ Γ nested cSDW metal?
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Figure 1. Linear spin-wave spectrum (Ref. [18]) for (A,B) hidden ferromagnet at Heisenberg coupling

parameters J‖1 = 0, J⊥1 > 0, and J‖2 = 0.3 J⊥1 = J⊥2 , at Hund coupling −J0 = −J0c − 0.1J⊥1 . Here, −J0c

is the critical Hund coupling at which ∆cSDW → 0. Model parameters become (B,C) J‖1 > 0, J⊥1 = 0,

J‖2 = 0.3 J‖1 = J⊥2 , and −J0 = −J0c − 0.1J‖1 in the hidden Néel state after application of the particle–hole
transformation. Color code represents spectral weight.
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Figure 2. Exact spectra for t-J model (Equation (1)), over a periodic 4 × 4 lattice, with hopping

parameters (A) t‖1 = −3 J⊥1 , t⊥1 (x̂) = −2 J⊥1 , t⊥1 (ŷ) = +2 J⊥1 , t‖2 = − J⊥1 , and td±,d∓
2 = 0 in the

mobile-hole case (31 electrons). Model parameters transform to (B) t‖1 = 2 J‖1 , t⊥1 (x̂) = +3 J‖1 , t⊥1 (ŷ) =

−3 J‖1 , t‖2 = − J‖1 , and td±,d∓
2 = 0 in the mobile-electron case (33 electrons). Heisenberg exchange

coupling constants are given in the caption to Figure 1. Even/odd quantum number refers to parity
under Pd,d̄.

3. Particle–Hole Transformation

As shown below, the bipartite nature of the square lattice of iron atoms that stacks up to
form iron-based superconductors allows us to define the following particle–hole transformation in
momentum space for electrons in either the dxz or dyz orbitals. The corresponding electron destruction
operator reads

cs(k0, k) = N−1/2
1

∑
α=0

∑
i

e−i(k0α+k·ri)ci,α,s, (2)

where N = 2NFe denotes the number of sites-orbitals on the square lattice of iron atoms, and
where the indices 0 and 1 denote the d− and d+ orbitals α. The quantum numbers k0 = 0 and
π therefore represent the dxz and the (−i)dyz orbitals. We then define the particle–hole transformation
by the replacements

cs(k0, k)→ c†
s (k0, k + Qk0) and c†

s (k0, k)→ cs(k0, k + Qk0), (3)

where Q0 = (π/a)ŷ and Qπ = (π/a)x̂. Figure 3 displays the action of the above transformation on
electronic structure: (A)↔ (B). What then is the form of the above particle–hole transformation in
real space for electrons in d± orbitals? Comparison of Equations (2) and (3) yields the equivalent
particle–hole transformation in real space:

ci,α,s → (−1)yi/ac†
i,pi(α),s

and c†
i,α,s → (−1)yi/aci,pi(α),s (4)

where pi(d±) = d± for iron sites i on the A sublattice of the checkerboard, and where pi(d±) = d∓
for iron sites i on the B sublattice of the checkerboard. (see Appendix A for details.)
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It is useful now to note that application of the particle–hole transformation in Equation (4) results
in a new next-nearest neighbor inter-orbital hopping matrix element t̄d±,d∓

2 that is pure imaginary,
but that alternates in sign between the A versus the B sites of the checkerboard. It does not describe
mixing of the dxz and dyz orbitals in iron-based superconductors [20], and thus we turn it off entirely:
td±,d∓
2 = 0. The two-orbital t-J model Hamiltonian in Equation (1) now maintains its form after making

the replacements Equation (4). Nearest neighbor model parameters, however, transform to

J̄ ‖1 = J⊥1 and J̄⊥1 = J‖1 ,

t̄ ‖1 = −t⊥1 (x̂) and t̄⊥1 (x̂) = −t‖1 , (5)

with t̄⊥1 (ŷ) = −t̄⊥1 (x̂). Next-nearest neighbor model parameters t‖2 , J‖2 and J⊥2 remain unchanged.
Finally, on-site parameters J0 for ferromagnetic Hund coupling, U0 for intra-orbital Coulomb repulsion,
and U′0 for inter-orbital Coulomb repulsion also remain unchanged. Here, the occupation operators
ni,α,s in the divergent Hubbard term must be replaced by 1− ni,α,s.
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Figure 3. Electronic structure of half metal states characterized by hidden (inter-orbital) magnetic order
at wavenumber QhAF (see insets to Figure 2). Dispersions in energy are fixed at wavenumber ky = 0.

4. Half Filling

Consider half filling, with a density of electrons equivalent to one electron per site, per d±
orbital. No hopping of electron is then possible in the present limit, U0 → ∞. It results in the
Heisenberg model associated with the coupling constants J0, J‖n and J⊥n in the model Hamiltonian
in Equation (1). The order parameter for hidden magnetic order at wavenumber Q is defined by
OhAF = ∑i〈S+

i,d− − S+
i,d+〉 exp(iQ · ri), which is equal to

OhAF = h̄ ∑
k
〈c†
↑(0, k + Q)c↓(π, k) + c†

↑(π, k + Q)c↓(0, k)〉. (6)

Notice that such hidden magnetic order is equivalent to spin-density-wave order between the dxz

and dyz orbitals [21,23]. Application of the particle–hole transformation in Equation (3) yields minus
the complex conjugate of Equation (6) plus the replacement Q→ Q + (π/a)(x̂ + ŷ). In the presence
of off-diagonal frustration, at weak enough Hund coupling, linear spin–wave theory applied to the
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resulting Heisenberg model in Equation (1) finds such long-range order at Q = 0 [18]. It corresponds
to hidden ferromagnetic order [21]: ↖d−↘d+ (see the inset to Figure 2A). Figure 1A,B shows the
corresponding spin-wave spectra for the hidden ferromagnet at Heisenberg coupling constants J‖1 = 0,

J⊥1 > 0, and J‖2 = 0.3 J⊥1 = J⊥2 , at sub-critical Hund coupling characterized by a spin gap ∆cSDW > 0
at cSDW wavenumbers. The cSDW spin gap closes at a critical Hund’s Rule coupling constant of
−J0c = 2(J⊥1 − J‖1 )− 4J‖2 in such case [18,19]. Following the particle–hole transformation in Equation (5)
of the model parameters, Figure 1B,C shows the spin–wave spectra for Heisenberg coupling constants
J‖1 > 0, J⊥1 = 0, and J‖2 = 0.3 J‖1 = J⊥2 , but with J0 unchanged. (The critical Hund’s Rule coupling

constant is now −J0c = 2(J‖1 − J⊥1 ) − 4J‖2 .) Figure 1C displays a Goldstone mode at wavenumber
Q = (π/a)(x̂ + ŷ), which is evidence for a hidden Néel state. This hidden antiferromagnet shows
opposing Néel order per d± orbital (see the inset to Figure 2B and Ref. [22]), which is consistent with
the particle–hole transformation in Equation (4) of the hidden ferromagnet. Notice that the spectrum
of hidden spin–waves (Figure 1C) is obtained by shifting the spectrum of its particle–hole conjugate
(Figure 1A) by the wavenumber (π/a)(x̂ + ŷ) [18].

True spin–wave and hidden spin–wave excitations, Sd− + Sd+ and Sd− − Sd+, are, respectively,
even and odd under orbital swap, Pd,d̄. Turning on hopping of electrons td±,d∓

2 in Equation (1)
that is pure imaginary, with d-wave symmetry, hybridizes the dxz and dyz orbitals [20], which
breaks this symmetry away from half filling. It will mix true and hidden spin–waves, especially
when they are degenerate. The arrows in Figure 1B,C for spectra in the hidden Néel state
show such degeneracy at four wavenumbers surrounding Q = (π/a)(x̂ + ŷ) along the principal
axes. Spin resonances in superconducting FeSe intercalates have been observed recently at these
wavenumbers by inelastic neutron scattering [28–30]. This suggests that hidden Néel order is present
in heavily electron-doped FeSe.

5. One-Electron/One-Hole Bands

We now compare spectra for one mobile hole and for one mobile electron with respect to half filling,
with t-J model parameters that are related to each other by the previous particle–hole transformation
in Equation (5). In the hole-doped case, the Heisenberg exchange coupling constants coincide with
the previous set for the hidden ferromagnet (Figure 1A), while the hopping matrix elements are set
to t‖1 = −3 J⊥1 , t⊥1 (x̂) = −2 J⊥1 , t⊥1 (ŷ) = +2 J⊥1 , t‖2 = −J⊥1 and td±,d∓

2 = 0. The latter implies that the
dxz (even) versus the dyz (odd) orbital is a good quantum number. In the electron-doped case, nearest
neighbor t-J model parameters are set by Equation (5), while on-site and next-nearest neighbor model
parameters are unchanged. Figure 2 shows exact spectra for one mobile hole and for one mobile
electron roaming over a periodic 4× 4 lattice of iron atoms, in the absence of Hund’s Rule, J0 = 0.
The Schwinger-boson-slave-fermion representation of the correlated electron (hole) in the limit U0 → ∞
was exploited in such case [31,32]. Details of the numerical calculation are given in the Supplementary
Materials and in Ref. [20]. Notice that all of the states obey the particle–hole transformation in
Equation (3). Figure 4 shows the one-electron spectra predicted by Schwinger-boson-slave-fermion
mean field theory, but at t⊥1 = 0 for hole doping, and at t‖1 = 0 for electron doping. Notice that the
states again obey the particle–hole relationship in Equation (3) depicted by Figure 3.
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Figure 4. One-electron spectra of hidden half metal states within the mean field approximation at
site-orbital concentration approaching half filling, x → 0 (see refs. [21,22]). Heisenberg exchange

coupling constants are set in the caption to Figure 1, while J0 = J0c + 0.1 J(⊥)‖1 .

The dispersion of the lowest-energy spin-1/2 mobile-hole states shown by Figure 2A can be
understood at ideal hopping, achieved by suppressing nearest-neighbor inter-orbital hopping as well:
t⊥1 → 0. A half metal characterized by hidden magnetic order depicted by the inset to Figure 2A is
predicted in the absence of Hund’s Rule at large electron spin s0 [19,20]. Electrons are spin polarized per
d± orbital, where they follow a hole-type energy dispersion relation ε

(0)
e (k) = −2t‖1 ∑n=x,y cos kna−

2t‖2 ∑n=+,− cos kna, with k± = kx ± ky (cf. the true half metal in ref. [33]). Two degenerate hole Fermi
surface pockets at zero 2D moment are predicted for small concentrations of mobile holes per orbital,
x, each with a Fermi wavenumber kFa = (4πx)1/2 (see Figure 3A). The top of the hole-type band lies
εF = |t‖1 + 2t‖2 |(kFa)2 above the Fermi level. These coherent hole bands are recovered by a calculation of
the one-electron propagator within a Schwinger-boson-slave-fermion mean-field approximation [31,32]
of the two-orbital t-J model in Equation (1) for the above hidden half metal [19,20]. In the limit near half
filling, at |t| � J, the one-electron propagator also reveals composite electron–spin–wave states at an
energy εF + h̄ωsw(k) above the Fermi level, where ωsw(k) is the spin-wave dispersion at large electron
spin s0 shown by Figure 1A,B [18] (see also Figure 4A). They are incoherent excitations that show
intrinsic broadening [21]. The predicted dispersion relation is traced by the dashed line in Figure 2A in
the absence of Hund’s Rule. It compares well with the exact dispersion of the lowest-energy spin-1/2
excitations at non-ideal hopping matrix elements, in the absence of Hund’s Rule, and it notably
shows electron-type dispersion in the vicinity of cSDW wavenumbers (π/a)x̂ and (π/a)ŷ. The latter
are pulled down to lower energy as Hund coupling is turned on (cf. Figure S2a in Supplementary
Materials). We therefore interpret the dispersion of those spin-1/2 groundstates, which, respectively,
have odd and even parity under orbital swap Pd,d̄, as emergent dyz and dxz electron bands.

Application of the particle–hole transformation in Equation (4) yields a new hidden half metal
state depicted by the inset to Figure 2B, where the missing spin-1/2 moment in the third row
represents a spin singlet (cf. the true half metal in Ref. [33]). By Equation (5), it is governed by
the two-orbital t-J model in Equation (1) at electron doping above half-filling, with Heisenberg
coupling constants that coincide with the previous set for the hidden Néel state (Figure 1C), and with
hopping parameters t‖1 = +2 J‖1 , t⊥1 (x̂) = +3 J‖1 , t⊥1 (ŷ) = −3 J‖1 , t‖2 = −J‖1 , and td±,d∓

2 = 0. As t‖1 → 0,



Symmetry 2019, 11, 396 8 of 12

Schwinger-boson-slave-fermion mean field theory applied to the new model predicts circular electron
Fermi surface pockets at cSDW wavenumbers similar to Figure 3B. It also predicts emergent hole
excitations that disperse according to the dashed lines in Figure 2B [22] (see also Figure 4B). Again,
the exact spectrum compares well to mean field theory. The first and second excited spin-1/2 states
in Figure 2B that lie at momentum zero and (π/a)(x̂ + ŷ) thereby correspond to a hole band plus
its replica at lower energy, both buried below the Fermi level at zero 2D momentum in the two-iron
folded Brillouin zone. Turning on Hund coupling pulls the first excited state at zero 2D momentum
down in energy (cf. Figure S2b in Supplementary Materials). The previous prediction is consistent
with reported evidence for such a replica band at the Γ point from ARPES on FeSe/STO [7].

6. Cooper Pairs with Emergent Sign Changes

Consider now two electrons above half filling that roam over a 4× 4 periodic lattice of iron atoms
governed by the two-orbital t-J model in Equation (1) [22]. Heisenberg exchange parameters are set
to those listed in the caption to Figure 1C, but new hopping matrix elements are chosen that leave
the electron masses mx and my per orbital unchanged at cSDW momenta: t‖1 = 2 J‖1 , t⊥1 (x̂) = +5 J‖1 ,

t⊥1 (ŷ) = −5 J‖1 , and tα,β
2 = 0. Such model parameters result in electron-type Fermi surface pockets

centered at cSDW momenta in the hidden half metal state within the mean field approximation. Details
of the exact calculation are given in the Supplementary Materials and in Ref. [21]. The Hund coupling,
−J0, is tuned to a putative quantum critical point (QCP) defined by degeneracy of the spin resonance
at cSDW momenta with the hidden spin resonance at momentum (π/a)(x̂ + ŷ). This definition
is suggested by the semi-classical analysis of the corresponding Heisenberg model at half filling
(Figure 1C), which finds a QCP when the spin gap at cSDW momenta collapses [18]: ∆cSDW → 0.
A bound electron-pair groundstate exists below a continuum of states at zero net 2D momentum.
It shows S-wave symmetry according to the reflection parities listed in Table 2. An excited pair state
with Dx2−y2 symmetry exists below the continuum as well.

Table 2. Reflection parities, orbital-swap parity, and spin of low-energy pair states with zero net
momentum in order of increasing energy. The operator Rx′z, for example, denotes a reflection about
the x′-z plane, where x′ is a diagonal axis. The hidden spin–wave in the case of electron doping is
exceptional, where it carries net momentum (π/a)(x̂ + ŷ).

No. Pair/Particle–Hole State Rxz , Ryz Rx′z , Ry′z Pd,d̄ Spin

0 S + + + 0
1 Dx2−y2 + − + 0
2 hidden spin–wave − − − 1

The order parameter for superconductivity is the defined as

iF(k0, k) = 〈ΨMott|c̃↑(k0, k)c̃↓(k0,−k)|ΨCooper〉 (7)

times
√

2, where |ΨCooper〉 is the groundstate of the electron pair, and where 〈ΨMott| is the groundstate
of the Mott insulator at half filling. Above, the tilde notation signals the limit U0 → ∞. Figure 5B
depicts Equation (7) using exact groundstates 〈ΨMott| and |ΨCooper〉 on a 4× 4 periodic lattice of iron
atoms at the putative QCP. In particular, the Hund coupling is tuned so that the groundstate spin-1
states at cSDW momenta, which have even parity under orbital swap, Pd,d̄, become degenerate with
the groundstate spin-1 state at wavenumber (π/a)(x̂ + ŷ), which has odd parity under orbital swap.
The coupling constants, respectively, are −J0 = 1.35 J‖1 and −J0 = 2.25 J‖1 at half filling and for two
mobile electrons. Notice that the order parameter displayed by Figure 5B is isotropic, but that it
alternates in sign between the emergent hole bands at zero 2D momentum and the electron bands at
cSDW momenta [22].
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Figure 5A shows the particle–hole conjugate of the order parameter in Equation (7) for
superconductivity in the two-orbital t-J model with two-mobile holes that roam over a 4× 4 periodic
lattice, under the transformation in Equation (5) in parameter space [21]. Notice that it is related to
Figure 5B by the particle–hole transformation in Equation (3). In conclusion, both the electron pair and
the conjugate hole pair display an S+− order parameter for superconductivity, with remnant pairing
on the emergent band of opposite sign. This result is similar to a recent proposal for S+− pairing
in heavily hole-doped iron superconductors that is based on a phenomenological attractive pairing
interaction [34].

 0
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Figure 5. Complex order parameter for superconductivity (Equation (7)), with Heisenberg exchange

coupling constants set in the caption to Figure 1, and with hopping matrix elements (A) t‖1 = −5 J⊥1 ,

t⊥1 (x̂) = −2 J⊥1 , t⊥1 (ŷ) = +2 J⊥1 , and tα,β
2 = 0 for two mobile holes (30 electrons). Nearest neighbor

hopping matrix elements transform to (B) t‖1 = 2 J‖1 , t⊥1 (x̂) = +5 J‖1 and t⊥1 (ŷ) = −5 J‖1 and tα,β
2 = 0

for two mobile electrons (34 electrons). In addition, inter-orbital on-site repulsion is set to U′0 =
1
4 J0 + 1000 J(⊥)‖1 , while the Hund coupling constant is set to −J0 = 2.25 J(⊥)‖1 . Heisenberg-exchange
interactions in the Hamiltonian in Equation (1) are replaced with 1/2 the corresponding spin-exchange
operators to reduce finite-size effects.

7. Discussion and Conclusions

Heavily electron-doped surface layers of FeSe show record superconducting critical temperatures
as high as Tc ∼= 100 K [9]. ARPES reveals two electron Fermi-surface pockets at the corner of the
two-iron Brillouin zone that cross, and that do not show level repulsion [6]. The electronic structure
at the surface layer of heavily electron-doped FeSe can be described by the two-orbital t-J model in
Equation (1) at sub-critical Hund coupling, with hopping matrix elements and Heisenberg exchange
coupling constants that favor the half metal state shown in the inset to Figure 2B. In particular, exact
results and Schwinger-boson-slave-fermion mean field theory predict electron Fermi surface pockets
centered at the two distinct cSDW momenta following Figure 3B (see Figure S2b in Supplementary
Materials and Figure 4B). The Cooper pairs in heavily electron-doped FeSe surface layers are isotropic
at the electron pockets [6–8], but we propose that they change sign at the buried hole bands according
to Figure 5B [22].

Application of the particle–hole transformation in Equation (4) to the two-orbital t-J model for
a surface layer of FeSe implies a high-Tc surface layer at heavy hole doping that shows hole-type
Fermi surface pockets at the center of the Brillouin zone (Figure 3A). It suggests searching for high-Tc

superconductivity in surface layers of hole-doped iron-based compounds.
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Finally, from a purely technical perspective, the particle–hole transformation in Equation (4) of
the two-orbital Hubbard model in Equation (1) for iron-based superconductors is a valuable tool that
helps map out the parameter space. Figures 2 and 4 explicitly confirm the validity of the particle–hole
transformation in the case of exact diagonalization on finite clusters and in the case of the mean-field
approximation of the Schwinger-boson-slave-fermion formulation. The particle–hole transformation in
Equation (4) will play a useful role in future analyses of the two-orbital Hubbard model in Equation (1)
for iron-based superconductors by other techniques, such as by quantum Monte Carlo [35], and by
experimental simulations using trapped atoms [36] and superconducting qubits [37].
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Appendix A. Two-Orbital Particle–Hole Transformation

Below, we derive the particle–hole transformation for iron superconductors formulated in
momentum space (Figure 3) and Equation (3)), starting from the transformation in real space in
Equation (4):

ci,α,s → (−1)yi/ac†
i,pi(α),s

and c†
i,α,s → (−1)yi/aci,pi(α),s, (A1)

where pi(d±) = d± for iron sites i on the A sublattice of the checkerboard, and where pi(d±) = d∓
for iron sites i on the B sublattice of the checkerboard. The creation operator for a spin s electron that
carries 3-momentum (k0, k) is

c†
s (k0, k) = N−1/2

1

∑
α=0

∑
i

ei(k0α+k·ri)c†
i,α,s, (A2)

where N = 2NFe denotes the number of sites-orbitals on the square lattice of iron atoms, and where
the indices 0 and 1 denote the d− and d+ orbitals α, respectively. The quantum numbers k0 = 0 and π

therefore represent the dxz and the (−i)dyz orbitals.
Following Equation (A2), taking the Fourier transform of the first particle–hole transformation in

Equation (A1) therefore yields that the destruction operator cs(k0, k) transforms to

N−1/2
1

∑
α=0

∑
i

ei(k0α+k·ri)(−1)yi/ac†
i,pi(α),s

= N−1/2
1

∑
α=0

∑
i

ei[k0α+(k+ π
a ŷ)·ri ]c†

i,pi(α),s
, (A3)

which is explicitly

N−1/2
1

∑
α=0

{
∑
i∈A

ei(k0α+(k+ π
a ŷ)·ri)c†

i,α,s + ∑
i∈B

ei[k0(α+1)+(k+ π
a ŷ)·ri ]c†

i,α,s

}
. (A4)

Comparison with Equation (A2) yields that the above coincides with c†
s (k0, k + Qk0) at k0 = 0,

where Q0 = (π/a)ŷ. At k0 = π, on the other hand, the extra factor of eik0 = −1 in the second term
of Equation (A4) can be replaced by an overall factor of ei π

a (x̂+ŷ)·ri . Comparison with Equation (A2)
in turn yields that Equation (A4) coincides with c†

s (k0, k + Qk0) at k0 = π, where Qπ = (π/a)x̂.
We thereby obtain the particle–hole transformation in momentum space: cs(k0, k)→ c†

s (k0, k + Qk0).
Using the identity Qk0 + Qk0 = 0 that is true for crystal momentum yields the conjugate particle–hole
transformation in momentum space: c†

s (k0, k)→ cs(k0, k + Qk0).

http://www.mdpi.com/2073-8994/11/3/396/s1
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