Alternative Uses for Quantum Systems and Devices
Abstract
:1. Introduction
2. New-Particle Detection
2.1. Weak Gravitational Fields
2.2. Fractional Charge
2.3. Further Particles
Interacting Further Particles
2.4. Verifying New Particles by Alternative Experiments
2.5. Semiclassical Descriptions
Semiclassical Experiments
3. Sky Investigations
3.1. ’Post-Keplerian’ Objects
3.2. Verifying New Celestial Bodies by Alternative Experiments
3.2.1. Optical Interferometers
3.2.2. Transition Lines
3.2.3. Laser Interferometers
3.2.4. Baseline Interferometers
3.2.5. Redshift Role
4. Outlook
Funding
Conflicts of Interest
References
- Ricarte, A.; Natarajan, P. The observational signatures of supermassive black hole seeds. arXiv, 2018; arXiv:1809.01177. [Google Scholar] [CrossRef]
- Tamburello, V.; Capelo, P.R.; Mayer, L.; Bellovary, J.M.; Wadsley, J. Supermassive black hole pairs in clumpy galaxies at high redshift: delayed binary formation and concurrent mass growth. Mon. Not. Roy. Astron. Soc. 2017, 464, 2952–2962. [Google Scholar] [CrossRef]
- Bender, P.L. Gravitational wave astronomy, relativity tests, and massive black holes. IAU Symp. 2010, 261, 240. [Google Scholar] [CrossRef]
- Finn, L.S.; Chernoff, D.F. Observing binary inspiral in gravitational radiation: One interferometer. Phys. Rev. D 1993, 47, 2198. [Google Scholar] [CrossRef]
- Faizal, M.; Momeni, D. Universality of short distance corrections to quantum optics. arXiv, 2018; arXiv:1811.01934. [Google Scholar]
- Frisch, O.R. Take a photon. Contemp. Phys. 1965, 7, 45. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Is a tabletop search for Planck scale signals feasible. Phys. Rev. D 2012, 86, 124040. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Can quantum gravity be exposed in the laboratory? Found. Phys. 2014, 44, 452. [Google Scholar] [CrossRef]
- Anandan, J.; Aharonov, Y. Geometry of quantum evolution. Phys. Rev. Lett. 1990, 65, 1697–1700. [Google Scholar] [CrossRef] [PubMed]
- Van Boekel, R.; Kervella, P.; Scholler, M.; Herbst, T.; Brander, W.; de Koter, A.; Waters, L.B.F.M.; Hillier, D.J.; Paresce, F.; Lenzen, R.; et al. Direct measurement of the size and shape of the present-day stellar wind of eta carinae. Astron. Astrophys. 2003, 410, L37. [Google Scholar] [CrossRef]
- Hajian, A.R.; Behr, B.B.; Cenko, A.T.; Olling, R.P.; Mozurkewich, D.; Armstrong, J.T.; Pohl, B.; Petrossian, S.; Knuth, K.H.; Hindsley, R.B. Initial results from the USNO dispersed Fourier transform spectrograph. Astrophys. J. 2007, 661, 616. [Google Scholar] [CrossRef]
- Voit, G.M. On nulling interferometers and the line-emitting regions of agns. Astrophys. J. 1997, 487, L109. [Google Scholar] [CrossRef]
- Danchi, W.C.; Rajagopal, J.; Kuchner, M.; Richardson, J.; Deming, D. The importance of phase in nulling interferometry and a three telescope closure-phase nulling interferometer concept. Astrophys. J. 2006, 645, 1554. [Google Scholar] [CrossRef]
- Garrett, M.A. When you wish upon a star: Future developments in astronomical VLBI. ASP Conf. Ser. 2003, 306, 3. [Google Scholar]
- Chen, Y.B. Sagnac interferometer as a speed meter type, quantum nondemolition gravitational wave detector. Phys. Rev. D 2003, 67, 122004. [Google Scholar] [CrossRef]
- Thompson, R.; Papini, G. Berry’s phase and gravitational wave. In Proceedings of the 5th Canadian Conference on General Relativity and Relativistic Astrophysics, University of Waterloo, Waterloo, ON, Canada, 13–15 May 1993; World Scientific Pub Co Inc.: Hackensack, NJ, USA, 1993. [Google Scholar]
- Bruno, A.; Capolupo, A.; Kak, S.; Raimondo, G.; Vitiello, G. Berry-like phase and gauge field in quantum computing. In Methods, Models, Simulations and Approaches Towards a General Theory of Change; World Scientific: Singapore, 2012; pp. 83–94. [Google Scholar]
- Pachos, J.; Zanardi, P.; Rasseti, M. NonAbelian Berry connections for quantum computation. Phys. Rev. A 2000, 61, 010305. [Google Scholar] [CrossRef]
- Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. 1984, A392, 45–57. [Google Scholar] [CrossRef]
- Hinterbichler, K. Theoretical aspects of massive gravity. Rev. Mod. Phys. 2012, 84, 671–710. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Mass for the graviton. Gen. Rel. Grav. 1998, 30, 1717. [Google Scholar] [CrossRef]
- Billard, J.; Mayet, F.; Grignon, C.; Santos, D. Directional detection of dark matter with MIMAC: WIM identification and track reconstruction. J. Phys. Conf. Ser. 2001, 309, 012015. [Google Scholar] [CrossRef]
- Lee, H.S.; Bhang, H.C.; Choi, J.H.; Dao, H.; Hahn, I.S.; Hwang, M.J.; Jung, S.W.; Kang, W.G.; Kim, D.W.; Kim, H.J.; et al. Limits on WIMP-nucleon cross section with CsI(Tl) crystal detectors. arXiv, 2007; arXiv:0704.0423. [Google Scholar]
- Archambault, S.; Aubin, F.; Auger, M.; Behke, E.; Beltran, B.; Clark, K.; Dai, X.; Davour, A.; Farine, J.; Faust, R.; et al. Dark matter spin-dependent limits for WIMP interactions on F-19 by PICASSO. Phys. Lett. B 2009, 682, 185. [Google Scholar] [CrossRef]
- Goodman, J.A.; Ellsworth, A.S.; Ito, J.R.; MacFall, J.R.; Siohan, F.; Streitmatter, R.E.; Tonwar, S.C.; Vishwanath, R.; Yodh, G.B. Composition of primary cosmic rays above 1013ev from the study of time distributions of energetic hadrons near air shower cores. AIP Conf. Proc. 1979, 49, 1. [Google Scholar]
- Ficthel, C.E.; Linsley, J. High-energy and ultrahigh-energy cosmic rays. Astrophys. J. 1986, 300, 474. [Google Scholar] [CrossRef]
- Alexandrov, A.; Asada, T.; Puonaura, A.; Consiglio, L.; D’Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Di Vacri, M.L.; Furuya, S.; et al. Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches. Astropart. Phys. 2016, 80, 16. [Google Scholar] [CrossRef]
- SuperCDMS Collaboration. The SuperCDMS Experiment. arXiv, 2005; arXiv:astro-ph/0502435. [Google Scholar]
- Carroll, S.M.; Mantry, S.; Ramsey-Musolf, M.J.; Stubbs, C.W. Dark-matter-induced weak equivalence principle violation. Phys. Rev. Lett. 2009, 103, 011301. [Google Scholar] [CrossRef]
- Price, J.C.; Innes, W.R.; Klein, S.; Perl, M.L. The rotor electrometer: A new instrument for bulk matter quark search experiments. Rev. Sci. Instrum. 1986, 57, 2691. [Google Scholar] [CrossRef]
- Innes, W.R.; Perl, M.L.; Price, J.C. A rotor electrometer for fractional charge searches. In Proceedings of the 4th International Conference on Muon Spin Rotation, Relaxation and Resonance, Uppsala, Sweden, 23–27 June 1986; pp. 1–2. [Google Scholar]
- Mathai, V.; Wilkin, G. Fractional quantum numbers via complex orbifolds. arXiv, 2018; arXiv:1811.11748. [Google Scholar]
- Sparnaay, M.J. Measurements of attractive forces between flat plates. Physica 1958, 24, 751. [Google Scholar] [CrossRef]
- Dimopoulos, S.; Hall, L.J. Electric dipole moments as a test of supersymmetric unification. Phys. Lett. B 1995, 344, 185. [Google Scholar] [CrossRef]
- Evans, L.; Bryant, P. LHC Machine. Available online: https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08001/pdf (accessed on 27 March 2019).
- Aad, G.; Brad Abbott, B.; Abdallah, J.; Khalek, S.A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.; Abramowicz, H.; et al. Measurement of the production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector. JHEP 2015, 1501, 020. [Google Scholar] [CrossRef]
- Antoniadis, I.; Dimopoulos, S.; Dvali, G.R. Millimeter range forces in superstring theories with weak scale compactification. Nucl. Phys. B 1998, 516, 70. [Google Scholar] [CrossRef]
- Price, J.C. International Symposium on Experimental Gravitational Physics; Michelson, P.F., Ed.; World Scientific: Singapore, 1988; pp. 436–439. [Google Scholar]
- Kapitulnik, A.; Kenny, T. NSF Proposal 1997; National Science Foundation: Alexandria, VA, USA, 1997.
- Weld, D.M.; Xia, J.; Cabrera, B.; Kapitulnik, A. A new apparatus for detecting micron-scale deviations from newtonian gravity. Phys. Rev. D 2008, 77, 062006. [Google Scholar] [CrossRef]
- Gould, A. Cosmological density of WIMPs from solar and terrestrial annihilations. Astrophys. J. 1992, 388, 338–344. [Google Scholar] [CrossRef]
- Mantry, S.; Pitschmann, M.; Ramsey-Musolf, M.J. Differences between axions and generic light scalars in laboratory experiments. arXiv, 2014; arXiv:1411.2162. [Google Scholar]
- Gibbs, H.M.; Hull, R.J. Spin-exchange cross sections for Rb-87- Rb-87 and Rb-87- Cs-133 collisions. Phys. Rev. 1967, 153, 132. [Google Scholar] [CrossRef]
- Habfast, C.; Poth, H.; Seligmann, B.; Wolf, A.; Berger, J.; Blatt, P.; Hauck, P.; Meyer, W.; Neumann, R. Measurementof laser light thomson scattered from a cooling electron beam. Appl. Phys. B 1987, 44, 87. [Google Scholar] [CrossRef]
- Biscardi, R.; Ramirez, G.; Williams, G.P.; Zimba, C. Effects of rf sidebands on spectral reproducibility for infrared synchrotron radiation. Rev. Sci. Instrum. 1995, 66, 1856. [Google Scholar] [CrossRef]
- D’Ariano, G.M.; Kumar, P. A quantum mechanical study of optical regenerators based on nonlinear loop mirrors. IEEE Photonics Tech. Lett. 1998, 10, 699. [Google Scholar] [CrossRef]
- Mashhoon, B.; Neutze, R.; Hannam, M.; Stedman, G.E. Observable frequency shifts via spin rotation coupling. Phys. Lett. A 1998, 249, 161. [Google Scholar] [CrossRef]
- Di Casola, E.; Liberati, S.; Sonego, S. Between quantum and classical gravity: Is there a mesoscopic spacetime? Found. Phys. 2015, 45, 171. [Google Scholar] [CrossRef]
- Di Casola, E.; Liberati, S.; Sonego, S. Nonequivalence of equivalence principles. Am. J. Phys. 2015, 83, 39. [Google Scholar] [CrossRef]
- Freedman, S.J.; Clauser, J.F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 1972, 28, 938. [Google Scholar] [CrossRef]
- Ruo Berchera, I.; Degiovanni, I.P.; Olivares, S.; Genovese, M. Quantum light in coupled interferometers for quantum gravity tests. Phys. Rev. Lett. 2013, 110, 213601. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, P.; Mureika, J.; Spallucci, E.; Winstanley, E.; Bleicher, M. Production and evaporation of Planck scale black holes at the LHC. In Proceedings of the MG13 Meeting on General Relativity Stockholm University, Stockholm, Sweden, 1–7 July 2012. [Google Scholar]
- Castellanos, E. Planck scale physics and Bogoliubov spaces in a Bose-Einstein condensate. EPL 2013, 103, 40004. [Google Scholar] [CrossRef] [Green Version]
- Bassi, A.; Grossardt, A.; Ulbricht, H. Gravitational decoherence. Class. Quant. Grav. 2017, 34, 193002. [Google Scholar] [CrossRef] [Green Version]
- Cirac, J.I.; Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 1995, 74, 4091. [Google Scholar] [CrossRef]
- Bermudez, A.; Aarts, G.; Mueller, M. Quantum sensors for the generating functional of interacting quantum field theories. Phys. Rev. X 2017, 7, 041012. [Google Scholar] [CrossRef]
- De Ramo’n, J.; Garay, L.J.; Marti’n-Marti’nez, E. Direct measurement of the two-point function in quantum fields. Phys. Rev. D 2018, 98, 105011. [Google Scholar] [CrossRef]
- Ruo-Berchera, I.; Degiovanni, I.P.; Olivares, S.; Samantaray, N.; Traina, P.; Genovese, M. One- and two-mode squeezed light in correlated interferometry. Phys. Rev. A 2015, 92, 053821. [Google Scholar] [CrossRef] [Green Version]
- Jowett, J.M. Dynamics of electrons in storage rings including nonlinear damping and quantum excitation effects. Conf. Proc. C 1984, 830811, 283. [Google Scholar]
- Froewis, F.; Sekatski, P.; Duer, W.; Gisin, N.; Sangouard, N. Macroscopic quantum states: Measures, fragility and implementations. Rev. Mod. Phys. 2018, 90, 025004. [Google Scholar] [CrossRef]
- Singh, S.; De Lorenzo, L.A.; Pikovski, I.; Schwab, K.C. Detecting continuous gravitational waves with superfluid 4He. New J. Phys. 2017, 19, 073023. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Acoustic phase lenses in superfluid He as models of composite space-times in general relativity: Classical and quantum properties with provision for spatial topology. Acta Phys. Polon. B 1999, 30, 897–905. [Google Scholar]
- Yang, Y.; Zabludoff, A.I.; Dave, R.; Eisenstein, D.J.; Pinto, P.A.; Katz, N.; Weinberg, D.H.; Barton, E.J. Probing galaxy formation with he II cooling lines. Astrophys. J. 2006, 640, 539. [Google Scholar] [CrossRef]
- Tajmar, M.; Plesescu, F.; Seifert, B. Anomalousfiber optic gyroscope signals observed above spinning rings at low temperature. J. Phys. Conf. Ser. 2009, 150, 032101. [Google Scholar] [CrossRef]
- Tajmar, M.; Plesescu, F. Fiber-optic-gyroscope measurements close to rotating liquid helium. AIP Conf. Proc. 2010, 1208, 220. [Google Scholar] [CrossRef]
- Zhang, F.; Saha, P. Probing the spinning of the massive black hole in the Galactic Center via pulsar timing: A full relativistic treatment. Astrophys. J. 2017, 849, 33. [Google Scholar] [CrossRef]
- Barausse, E.; Cardoso, V.; Pani, P. Can environmental effects spoil precision gravitational-wave astrophysics? Phys. Rev. D 2014, 89, 104059. [Google Scholar] [CrossRef]
- Angelil, R.; Saha, P.; Merritt, D. Towards relativistic orbit fitting of Galactic center stars and pulsars. Astrophys. J. 2010, 720, 1303. [Google Scholar] [CrossRef]
- Waisberg, I.; Dexter, J.; Gillessen, S.; Pfuhl, O.; Eisenhauer, F.; Plewa, P.M.; Baubock, M.; Jimenez-Rosales, A.; Habibi, M.; Ott, T.; et al. What stellar orbit is needed to measure the spin of the Galactic centre black hole from astrometric data? Mon. Not. R. Astron. Soc. 2018, 476, 3600. [Google Scholar] [CrossRef]
- Stairs, I.H. Testing general relativity with pulsar timing. arXiv, 2003; arXiv:astro-ph/0307536. [Google Scholar] [CrossRef]
- Jodrell Bank Observatory Pulsar Group. COBRA: Pulsar Documentation; Jodrell Bank Observatory Pulsar Group: Lower Withington, UK, 2001. [Google Scholar]
- Swinburne Pulsar Group, The Caltech, Parkes, Swinburne Recorder Mk II. 2002. Available online: http://astronomy.swin.edu.au/pulsar/ (accessed on 27 November 2002).
- Taylor, J.H. Pulsar timing and relativistic gravity. Philos. Trans. R. Soc. Lond. Ser. A 1992, 341, 117–134. [Google Scholar] [CrossRef]
- Yagi, K.; Stein, L.C. Black hole based tests of general relativity. Class. Quant. Grav. 2016, 33, 054001. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.; Malbet, F.; Alexander, R.; Berger, J.-P.; Creech-Eakman, M.; Duchene, G.; Dutrey, A.; Mordasini, C.; Pantin, E.; Pont, F.; et al. Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers. Astron. Astrophys. Rev. 2012, 20, 52. [Google Scholar] [CrossRef]
- Safronov, V.S. Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets; Serie: NASA technical translation, F-677; Program for Scientific Translations: Jerusalem, Israel, 1972. [Google Scholar]
- Armitage, P.A. Astrophysics of Planet Formation; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2010. [Google Scholar]
- Malhotra, R. The origin of pluto’s orbit: Implications for the solar system beyond neptune. Astron. J. 1995, 110, 420. [Google Scholar] [CrossRef]
- Henning, T.; Meeus, G. Dust processing and mineralogy in protoplanetary accretion disks. arXiv, 2009; arXiv:0911.1010. [Google Scholar]
- Brauer, F.; Dullemond, C.P.; Henning, T. Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks. Astron. Astrophys. 2008, 480, 859. [Google Scholar] [CrossRef]
- Coppin, K.; Swinbank, A.M.; Neri, R.; Cox, P.; Alexander, D.M.; Smail, I.; Page, M.J.; Stevens, J.A.; Knudsen, K.K.; Ivson, R.J.; et al. Testing the evolutionary link between submillimetre galaxies and quasars: CO observations of QSOs at z 2. Mon. Not. R. Astron. Soc. 2008, 389, 45. [Google Scholar] [CrossRef]
- Hippelein, H.; Maier, C.; Meisenheimer, K.; Wolf, C.; Fried, J.W.; von Kuhlmann, B.; Kummel, M.; Phelps, S.; Roser, H.-J. Star forming rates between z = 0.25 and z = 1.2 from the CADIS emission line survey. Astron. Astrophys. 2003, 402, 65. [Google Scholar] [CrossRef]
- Hughes, A.M.; Andrews, S.A.; Espaillat, C.; Wilner, D.J.; Calvet, N.; D’Alessio, P.; Qi, C.; Williams, J.P.; Hogerheijde, M.R. A spatially resolved inner hole in the disk around GM aurigae. Astrophys. J. 2008, 698, 131. [Google Scholar] [CrossRef]
- Lisenfeld, U.; Braine, J.; Duc, P.A.; Brinks, E.; Charmandaris, V.; Leon, S. Molecular and ionized gas in the tidal tail in Stephan’s Quintet. Astron. Astrophys. 2004, 426, 471. [Google Scholar] [CrossRef]
- Downes, D.; Solomon, P.M. Molecular gas and dust at Z = 2.6 in smm j14011+0252: a strongly lensed, ultraluminous galaxy, not a huge, massive disk. Astrophys. J. 2003, 582, 37. [Google Scholar] [CrossRef]
- Braccini, S.; Casciano, C.; Coredo, F.; Frasconi, F.; Gregori, G.P.; Majorana, E.; Paparo, G.; Passaquieti, R.; Puppo, P.; Rapagnani, P.; et al. Monitoring the acoustic emission of the blades of the mirror suspension for a gravitational wave interferometer. Phys. Lett. A 2002, 301, 389. [Google Scholar] [CrossRef]
- Barish, B.C.; Camp, J.; Kells, W.P.; Sanders, G.H.; Whitcomb, S.E.; Zhang, L.; Zhu, R.-Y.; Deng, P.; Xu, J.; Zhou, G.; et al. Development of large size sapphire crystals for laserinterferometer gravitational-wave observatory. IEEE Trans. Nucl. Sci. 2002, 49, 1233. [Google Scholar] [CrossRef]
- D’Ambrosio, E.; O’Shaughnessy, R.W.; Strigin, S.; Thorne, K.S.; Vyatchanin, S. Reducing thermoelastic noise in gravitational-wave interferometers by flattening the light beams. arXiv, 2004; arXiv:gr-qc/0409075. [Google Scholar]
- D’Ambrosio, E.; O’Shaughnessy, R.; Thorne, K. LIGO Report Number G000223-00-D. Available online: http://admdbsrv.ligo.caltech.edu/dcc/ (accessed on 16 August 2000).
- Braginsky, V.; D’Ambrosio, E.; O’Shaughnessy, R.; Strigin, S.; Thorne, K.; Vyatchanin, S. LIGO Report Number T030009-00-R. Available online: https://dcc.ligo.org/public/0027/T030009/000/T030009-00.pdf (accessed on 23 January 2003).
- Duchene, G.; Menard, F.; Stapelfeldt, K.; Duvert, G. A layered edge-on circumstellar disk around HK Tau B. Astron. Astrophys. 2003, 400, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Bertoldi, F.; Cox, P.; Neri, R.; Carilli, C.L.; Walter, F.; Omont, A.; Beelen, A.; Henkel, C.; Fan, X.; Strauss, M.A.; et al. High-excitation CO in a quasar host galaxy at z = 6.42. Astron. Astrophys. 2003, 409, L47. [Google Scholar] [CrossRef]
- Mao, R.Q.; Henkel, C.; Schulz, A.; Zielinsky, M.; Mauersberger, R.; Stoerzer, H.; Wilson, T.L.; Gensheimer, P. Dense gas in nearby galaxies. XIII. CO submillimeter line emission from the starburst galaxy M 82. Astron. Astrophys. 2000, 358, 433. [Google Scholar]
- Beuther, H.; Schilke, P.; Wyrowski, F. High-spatial-resolution CN and CS observation of two regions of massive star formation. Astrophys. J. 2004, 615, 832. [Google Scholar] [CrossRef]
- Yorke, H.W.; Sonnhalter, C. On the Formation of Massive Stars. ApJ 2002, 569, 846. [Google Scholar] [CrossRef]
- Kumar, M.S.N.; Fernandes, A.J.L.; Hunter, T.R.; Davis, C.J.; Kurtz, S. A massive disk/envelope in shocked H2 emission around an UCHII region. Astron. Astrophys. 2003, 412, 175. [Google Scholar] [CrossRef]
- Gueth, F.; Bachiller, R.; Tafalla, M. Dust emission from young outflows: The case of L 1157. Astron. Astrophys. 2003, 401, L5. [Google Scholar] [CrossRef]
- Hogerheijde, M.R.; Sandell, G. Testing Envelope Models of Young Stellar Objects with Submillimeter Continuum and Molecular-Line Observations. ApJ 2000, 534, 880. [Google Scholar] [CrossRef]
- Porcas, R.W.; Alef, W.; Ghosh, T.; Salter, C.J.; Garrington, S.T. Compact structure in first survey sources. In Proceedings of the 7th European VLBI Network Symposium on New Developments in VLBI Science and Technology and EVN Users Meeting, Toledo, Spain, 12–15 October 2004. [Google Scholar]
- Gras, S.; Fritschel, P.; Barsotti, L.; Evans, M. Resonant dampers for parametric instabilities in gravitational wave detectors. Phys. Rev. D 2015, 92, 082001. [Google Scholar] [CrossRef]
- Hagood, N.; von Flotow, A. Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 1991, 146, 243. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, C.; Ju, L.; Blair, D. Study of parametric instability in gravitational wave detectors with silicon test masses. Class. Quant. Grav. 2017, 34, 055006. [Google Scholar] [CrossRef] [Green Version]
- Tannirkulam, A.K.; Harries, T.J.; Monnier, J.D. The inner rim of YSO disks: Effects of dust grain evolution. Astrophys. J. 2007, 661, 374. [Google Scholar] [CrossRef]
- Turyshev, S.G. Relativistic stellar aberration for the space interferometry mission (2). arXiv, 2002; arXiv:gr-qc/0205062. [Google Scholar]
- Akeson, R.L.; Boden, A.F.; Monnier, J.D.; Millan-Gabet, R.; Beichman, C.; Beletic, J.; Hartmann, L.; Hillenbrand, L.; Koresko, C.; Sargent, A.; et al. Keck interferometer observations of classical and weak line T tauri stars. Astrophys. J. 2005, 635, 1173. [Google Scholar] [CrossRef]
- Parsons, A.R.; Backer, D.C. Calibration of low-frequency, wide-field radio interferometers using delay/delay-rate filtering. Astron. J. 2009, 138, 219. [Google Scholar] [CrossRef]
- Bradley, R.; Backer, D.; Parsons, A.; Parashare, C.; Gugliucci, N.E. A Precision Array to Probe the Epoch of Reionization; Bulletin of the American Astronomical Society: New York, NY, USA, 2005; p. 1216. [Google Scholar]
- Nozawa, I.; Gohdo, M.; Kan, K.; Kondoh, T.; Ogata, A.; Yang, J.; Yoshida, Y. Bunch Length Measurement of Femtosecond Electron Beam by Monitoring Coherent Transition Radiation; JACoW: Geneva, Switzerland, 2015. [Google Scholar] [CrossRef]
- Frank, I.M.; Ginzburg, V.L. Radiation of a Uniformly Moving Electron Due to Its Transition from One Medium to Another. J. Phys. 1945, 9, 353. [Google Scholar]
- Orellana, M.; Cieza, L.A.; Schreiber, M.R.; Merin, B.; Brown, J.M.; Pellizza, L.J.; Romero, G.A. Transition disks: 4 candidates for ongoing giant planet formation in Ophiuchus (Research Note). Astron. Astrophys. 2012, 539, A41. [Google Scholar] [CrossRef]
- Loinard, L.; Allen, R.J. Cold massive molecular clouds in the inner disk of m31. arXiv, 1998; arXiv:astro-ph/9801164. [Google Scholar]
- Unwin, S.C.; Shao, M.; Tanner, A.M.; Allen, R.J.; Beichman, C.A.; Boboltz, D.; Catanzarite, J.H.; Chaboyer, B.C.; Ciardi, D.R.; Edberg, S.J.; et al. Taking the measure of the universe: Precision astrometry with SIM PlanetQuest. Publ. Astron. Soc. Pac. 2008, 120, 38. [Google Scholar] [CrossRef]
- Lloyd, J.P. Habitable Planet Detection and Characterization with Far Infrared Coherent Interferometry. arXiv, 2011; arXiv:1104.4112. [Google Scholar]
- Sheth, K.; Regan, M.W.; Vogel, S.N.; Teuben, P.J. Molecular gas, dust and star formation in the barred spiral ngc 5383. Astrophys. J. 2000, 532, 221. [Google Scholar] [CrossRef]
- Jennings, J.; Halverson, S.; Terrien, R.; Mahadevan, S.; Ycas, G.; Diddams, S.A. Frequency stability characterization of a broadband fiber Fabry-Pérot interferometer. Opt. Express 2017, 25, 15599. [Google Scholar] [CrossRef]
- Stadnik, Y. Manifestations of Dark Matter and Variations of the Fundamental Constants of Nature in Atoms and Astrophysical Phenomena; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Dhurandhar, S.V.; Vecchio, A. Searching for continuous gravitational wave sources in binary systems. Phys. Rev. D 2001, 63, 122001. [Google Scholar] [CrossRef]
- Wang, G.; Ni, W.T. Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris. Chin. Phys. B 2013, 22, 049501. [Google Scholar] [CrossRef] [Green Version]
- Seto, N. Detecting planets around compact binaries with gravitational wave detectors in space. Astrophys. J. 2008, 677, L55. [Google Scholar] [CrossRef]
- Cunha, J.V.; Silva, F.E.; Lima, J.A.S. Gravitational waves from ultra short period exoplanets. Mon. Not. R. Astron. Soc. 2018, 480, L28. [Google Scholar] [CrossRef]
- Joergens, V.; Quirrenbach, A. Modeling of closure phase measurements with amber/vlti—towards characterization of exoplanetary atmospheres. Proc. SPIE Int. Soc. Opt. Eng. 2004, 5491, 551. [Google Scholar] [CrossRef]
- Betremieux, Y.; Kaltenegger, L. Transmission spectrum of earth as a transiting exoplanet from the ultraviolet to the near-infrared. Astrophys. J. 2013, 772, L31. [Google Scholar] [CrossRef]
- Ding, F.; Croft, R.A.C. Future dark energy constraints from measurements of quasar parallax: Gaia, SIM and beyond. Mon. Not. R. Astron. Soc. 2009, 397, 1739. [Google Scholar] [CrossRef]
- Papini, G. Zitterbewegung and gravitational Berry phase. Phys. Lett. A 2012, 376, 1287. [Google Scholar] [CrossRef]
- Winterflood, J.; Blair, D.G.; Notcutt, M.; Schilling, R. Position control system for suspended masses in laser interferometer gravitational wave detectors. Rev. Sci. Instrum. 1995, 66, 2763. [Google Scholar] [CrossRef]
- Fujimoto, R. X-Ray Spectroscopic Observations of Intermediate Polars and Mass Determination of White Dwarfs. Ph.D. Thesis, Tokyo University, Tokyo, Japan, 1998. [Google Scholar]
- Hees, A.; Do, T.; Ghez, A.M.; Martinez, G.D.; Naoz, S.; Becklin, E.E.; Boehle, A.; Chappel, S.; Chu, D.; Dehghanfar, A.; et al. Testing General Relativity with stellar orbits around the supermassive black hole in our Galactic center. Phys. Rev. Lett. 2017, 118, 211101. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, N.N.; Milosavljevic, M.; Ghez, A.M. Stellar dynamics at the galactic center with a thirty meter telescope. Astrophys. J. 2005, 622, 878. [Google Scholar] [CrossRef]
- Psaltis, D. Testing general relativity with the event horizon telescope. arXiv, 2018; arXiv:1806.09740. [Google Scholar]
- Zucker, S.; Alexander, T.; Gillessen, S.; Eisenhauer, F.; Genzel, R. Probing post-newtonian gravity near the galactic black hole with stellar doppler measurements. Astrophys. J. 2006, 639, L21. [Google Scholar] [CrossRef]
- Barnes, P.D., Jr.; Caldwell, D.; DaSilva, A. Low background underground facilities for the direct detection of dark matter. In Proceedings of the 1990 Summer Study on High Energy Physics, Snowmass, CO, USA, 25 June–13 July 1990. [Google Scholar]
- Giacomelli, G. High-energy astrophysics: Status of observations at large underground detectors. In Proceedings of the 2nd International Workshop on Theoretical and Phenomenological Aspects of Underground Physics, Toledo, Spain, 9–13 September 1991. [Google Scholar]
- Giacomelli, G. High-energy underground physics and astrophysics. Nucl. Phys. (Proc. Suppl.) 1993, 33, 57–76. [Google Scholar] [CrossRef]
- Beier, E.W.; Frank, E.D.; Frati, W.; Kim, S.B.; Mann, A.K.; Newcomer, F.M.; Van Berg, R.; Zhang, W.; Hirata, K.S.; Inoue, K.; et al. Survey of atmospheric neutrino data and implications for neutrino mass and mixing. Phys. Lett. B 1992, 283, 446. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecian, O.M. Alternative Uses for Quantum Systems and Devices. Symmetry 2019, 11, 462. https://doi.org/10.3390/sym11040462
Lecian OM. Alternative Uses for Quantum Systems and Devices. Symmetry. 2019; 11(4):462. https://doi.org/10.3390/sym11040462
Chicago/Turabian StyleLecian, Orchidea Maria. 2019. "Alternative Uses for Quantum Systems and Devices" Symmetry 11, no. 4: 462. https://doi.org/10.3390/sym11040462
APA StyleLecian, O. M. (2019). Alternative Uses for Quantum Systems and Devices. Symmetry, 11(4), 462. https://doi.org/10.3390/sym11040462