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Abstract

:

In this paper, we consider a common fixed-point theorem with a contractive iterative at a point in the setting of complete dislocated b-metric space that was initiated by Seghal. We shall consider an example and application in fractional differential equations to support the given results.
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1. Introduction and Preliminaries


It is quite natural to consider the distance of a thing to itself to be 0, which seems also very reasonable. For instance, let us consider the set of all infinite sequences endowed with a metric d such that d(x,y)=12s for x=(xi)i∈N, and y=(yi)i∈N where s:=|i∈N:xi=yi|. It is evident that s is infinity in the case of x=y and hence d(x,x)=0. On the other hand, in computer science, infinite sequences are not useful because of time restriction. On the contrary, finite sequences are more useful and reasonable in programming. Using the finite sequences to infinite sequence by keeping the definition of the metric stable, we shall get a very interesting scenario. More precisely, for a finite sequence, for example for x=(x1,⋯,x7), the self-distance of x to itself is not 0. Indeed, here s=7 and self-distance is 127.



On account of such motivation, the notion of dislocated metric was proposed by Hitzler [1] by claiming that self-distance may not be 0.



Definition 1.

Suppose that X is not empty. A dislocated metric is a function δ:X×X→[0,∞) such that for all ς,κ,ϵ∈X:

	(δ1)

	
δ(ς,κ)=0⇒ς=κ,




	(δ2)

	
δ(ς,κ)=δ(κ,ς),




	(δ3)

	
δ(ς,κ)≤δ(ς,ϵ)+δ(ϵ,κ).











The pair of the letters (X,δ) represent a dislocated metric space, in short DMS.



Another extension of metric is a b-metric which has been introduced by Czerwik [2], see also e.g., [3,4].



Definition 2.

Suppose that X is not empty and s≥1 is given. A b-metric is a function d:X×X→[0,∞) such that for all ς,κ,ϵ∈X:

	(b1)

	
ς=κ⇒d(ς,κ)=0,




	(b2)

	
d(ς,κ)=0⇒ς=κ,




	(b3)

	
d(ς,κ)=d(κ,ς),




	(b4)

	
d(ς,κ)≤s[d(ς,ϵ)+d(ϵ,κ)].











The pair of letters (X,d) is called a b-metric space, in short b-MS. Notice that in some paper, this spaces was called quasi-metric space, see e.g., [5,6].



In what follows, we shall consider the unification of the above-mentioned notions:



Definition 3.

Suppose that X is not empty and s≥1 is given. A dislocated b-metric is a function δd:X×X→[0,∞) such that for all ς,κ,ϵ∈X:

	(δb1)

	
δd(ς,κ)=0⇒ς=κ,




	(δb2)

	
δd(ς,κ)=δd(κ,ς),




	(δb3)

	
δd(ς,κ)≤s[δd(ς,ϵ)+δd(ϵ,κ)].











The pair (X,δd,s) is said to be a dislocated b-metric space, in short b-DMS.



Example 1.

Let X=R0+ and δd:X×X→[0,∞) defined by δd(ς,κ)=ς−κ2+maxς,κ. Then, X with δd is a dislocated b-metric space with s=2.





It is obvious that b-metric spaces are b-DMS, but conversely this is not true.



Example 2.

Let X=R0+ and δd:X×X→[0,∞) defined by δd(ς,κ)=(ς+κ)2. The pair (X,δd,s) is a dislocated b-metric space with s=2 but is not a b-metric space.





For more examples see e.g., [7,8,9,10,11,12].



The topology of dislocated b-metric space (X,δd,s) was generated by the family of open balls


B(ς,r)={y∈X:δd(ς,κ)−δd(ς,ς)<r},forallς∈Xandr>0.











On a b-DMS (X,δd,s), a sequence ςn in X is called convergent to a point ς∈X if the limit


limn→∞δd(ςn,ς)=δd(ς,ς)



(1)




exists and is finite. In addition, if the following limit


limn→∞δd(ςn,ςm)








exists and is finite we say that the sequence ςn is Cauchy. Moreover, if limn→∞δd(ςn,ςm)=0, then we say that ςn is a 0-Cauchy sequence.



Definition 4.

The b-DMS (X,δd,s) is complete if for each Cauchy sequence ςn in X, there is some ς∈X such that


L=limn→∞δd(ςn,ς)=δd(ς,ς)=limn,m→∞δd(ςn,ςm).



(2)









Moreover, a b-DMS (X,δd,s) is said to be 0-complete if for each 0-Cauchy sequence ςn converges to a point ς∈X so that L=0 in (2).



Let (X,δd,s) be a b-DMS. A mapping f:X→X is continuous if fςn converges to fς for any sequence ςn in X converges to ς∈X.



Proposition 1.

[7] Let (X,δd,s) be a b-DMS and ςn be a sequence in X such that limn→∞δd(ςn,ς)=0. Then,

	(i) 

	
ς is unique;




	(ii) 

	
1sδd(ς,κ)≤limn→∞δd(ςn,κ)≤sδd(ς,κ), for all κ∈X.











Proposition 2.

[7] Let (X,δd,s) be a b-DMS. For any ς,κ∈X,

	(i) 

	
if δd(ς,κ)=0 then δd(ς,ς)=δd(κ,κ)=0;




	(ii) 

	
if ς≠κ then δd(ς,κ)>0;




	(iii) 

	
if ςn is a sequence in X such that limn→∞δd(ςn,ςn+1)=0, then


limn→∞δd(ςn,ςn)=limn→∞δd(ςn+1,ςn+1)=0.



















We need the following definitions from [6,13] in our main results.



Definition 5.

A comparison function is a function φ:0,∞→0,∞ for which the following statements are true:

	(1*)

	
φ is increasing;




	(2*)

	
limn→∞φn(υ)=0, for υ∈0,∞.









We denote by Φ the class of the comparison functions φ:0,∞→0,∞.





Proposition 3.

If φ is a comparison function then:

	(i)

	
each φk is a comparison function, for all k∈N;




	(ii)

	
φ is continuous at 0;




	(iii)

	
φ(υ)<u for all υ>0.











Definition 6.

A function φ:0,∞→0,∞ is called a c-comparison function if:

	(c1)

	
φ is monotone increasing;




	(c2)

	
∑n=0∞φn(υ)<∞, for all υ∈0,∞.









We denote by Φc the family of c-comparison functions.





Remark 1.

If φ is a c-comparison function, then φ(υ)<υ for all υ>0.





Remark 2.

Any c-comparison function is a comparison function.





Definition 7.

[6] A function φ:0,∞→0,∞ is called a b-comparison function if:

	(b1)

	
φ is monotone increasing;




	(b2)

	
∑n=0∞snφn(υ)<∞, for all u∈0,∞ and s≥1 a real number.









We denote by Φb the family of b-comparison functions.





Remark 3.

Any b-comparison function is a comparison function.





Let Ψ be the family of functions ψ:[0,∞)→[0,∞) such that

	(ψ1)

	
ψ is lower semicontinuous,




	(ψ2)

	
ψ(υ)=0 if and only if υ=0.









In what follows, we shall mention one of the interesting extensions of the Banach contraction principle [14] that was given by Seghal [15]:



Theorem 1.

([15]) Let (M,d) be a complete metric space, T a continuous self-mapping of M that satisfies the condition that there exists a real number q, 0<q<1 such that for each v∈M there exists a positive integer m(v) such that for each w∈M,


d(Tm(v)v,Tm(v)w)≤qd(v,w).



(3)




Then T has a unique fixed point in M.





In this paper, we shall investigate the fixed point of a certain mapping with a contractive iterate at a point in the setting of dislocated b-metric space. Such fixed-point results were introduced by Seghal [15] and continued by many others; see e.g., [16,17]. Furthermore, we shall consider an application to support the obtained result.




2. Main Results


In this section, we prove some new fixed-point results in the setting of b



Theorem 2.

Let U,V be two self-mappings on a complete b-MS (X,δ,s). Suppose that for any ς,κ∈X there exist positive integers p(ς),q(κ), and that there exist ψ∈Ψ and an upper semicontinuous φ∈Φb such that


δ(Up(ς)ς,Vq(κ))≤φmaxδ(ς,κ),δ(ς,Up(ς)ς),δ(κ,Vq(κ)κ),δ(κ,Up(ς)ς)+δ(ς,Vq(κ)κ)2s+ψminδ(ς,Up(ς)ς),δ(κ,Vq(κ)κ),δ(κ,Up(ς)ς),δ(ς,Vq(κ)κ)



(4)




Then the pair of the functions U,V has exactly one fixed point ς*.





Proof. 

Consider the initial value ς0∈X and define a sequence ςn as follows:


ς1=Vq(ς0)ς0,ς2=Up(ς1)ς1,…ς2i+1=Vq(ς2i)ς2i,ς2i+2=Up(ς2i+1)ς2i+1,…



(5)




or, if we denote pi−1=p(ς2i−1) and qi=q(ς2i), for any i∈N, we can write ς2i=Upi−1ς2i−1 and ς2i+1=Vqiς2i. In the initial inequality (3), we let ς=ς2i−1, κ=ς2i we have


δ(ς2i,ς2i+1)=δ(Upi−1ς2i−1,Vqiς2i)≤φmaxδ(ς2i−1,ς2i),δ(ς2i−1,Upi−1ς2i−1),δ(ς2i,Vqiς2i),δ(ς2i,Upi−1ς2i−1)+δ(ς2i−1,Vqiς2i)2s+ψminδ(ς2i−1,Upi−1ς2i−1),δ(ς2i,Vqiς2i),δ(ς2i,Upi−1ς2i−1),δ(ς2i−1,Vqiς2i)=φmaxδ(ς2i−1,ς2i),δ(ς2i−1,ς2i),δ(ς2i,ς2i+1),δ(ς2i,ς2i)+δ(ς2i−1,ς2i+1)2s+ψminδ(ς2i−1,ς2i),δ(ς2i,ς2i+1),δ(ς2i,ς2i),δ(ς2i−1,ς2i+1).



(6)




By using (b3),


δ(ς2i−1,ς2i+1)2s≤s·[δ(ς2i−1,ς2i)+δ(ς2i,ς2i+1)]2s=δ(ς2i−1,ς2i)+δ(ς2i,ς2i+1)2≤maxδ(ς2i−1,ς2i),δ(ς2i,ς2i+1)








and (6) becomes


δ(ς2i,ς2i+1)≤φmaxδ(ς2i−1,ς2i),δ(ς2i,ς2i+1)+ψ(0)<maxδ(ς2i−1,ς2i),δ(ς2i,ς2i+1).



(7)







If for some i∈N, maxδ(ς2i−1,ς2i),δ(ς2i,ς2i+1)=δ(ς2i,ς2i+1), then (7) turns into δ(ς2i,ς2i+1)<δ(ς2i,ς2i+1) which is a contradiction. Hence


maxδ(ς2i−1,ς2i),δ(ς2i,ς2i+1)=δ(ς2i−1,ς2i)








and so


δ(ς2i,ς2i+1)≤φ(δ(ς2i−1,ς2i))



(8)







By continuing this process, since φ is monotone increasing, we find that


δ(ς2i,ς2i+1)≤φ2i(δ(ς0,ς1)).



(9)







Similarly, if ς=ς2i+1 and κ=ς2i, then, by the inequality (4) we get


δ(ς2i+2,ς2i+1)=δ(Upi+1ς2i+1,Vqiς2i)≤φmaxδ(ς2i+1,ς2i),δ(ς2i+1,Upi+1ς2i+1),δ(ς2i,Vqiς2i),δ(ς2i,Upi+1ς2i+1)+δ(ς2i+1,Vqiς2i)2s+ψminδ(ς2i+1,Upi+1ς2i+1),δ(ς2i,Vqiς2i),δ(ς2i,Upi+1ς2i+1),δ(ς2i+1,Vqiς2i)=φmaxδ(ς2i+1,ς2i),δ(ς2i+1,ς2i+2),δ(ς2i,ς2i+1),δ(ς2i,ς2i+2)+δ(ς2i+1,ς2i+1)2s+ψminδ(ς2i+1,ς2i+2),δ(ς2i,ς2i+1),δ(ς2i,ς2i+2),δ(ς2i+1,ς2i+1)≤φmaxδ(ς2i+1,ς2i),δ(ς2i+1,ς2i+2)+ψ(0)<maxδ(ς2i+1,ς2i),δ(ς2i+1,ς2i+2).



(10)







As above, if there is i∈N such that maxδ(ς2i+1,ς2i),δ(ς2i+1,ς2i+2)=δ(ς2i+1,ς2i+2) then from (10) we get δ(ς2i+1,ς2i+2)<δ(ς2i+1,ς2i+2) which is a contradiction.



Therefore, maxδ(ς2i+1,ς2i),δ(ς2i+1,ς2i+2)=δ(ς2i+1,ς2i) and


δ(ς2i+1,ς2i+2)≤φ(δ(ς2i,ς2i+1))≤…≤φ2i(δ(ς1,ς2))



(11)







Let D(x0)=maxδ(ς0,ς1),δ(ς1,ς2). Combining (9), (11) and taking into account the property of function φ we conclude that for all m∈N


δ(ςm,ςm+1)≤φm(D(ς0))



(12)




and we have


limm→∞δ(ςm,ςm+1)=0.



(13)







Using triangle inequality, for j∈N, we have


δ(ςm,ςm+j)≤s·δ(ςm,ςm+1)+δ(ςm+1,ςm+j)≤s·δ(ςm,ςm+1)+s2δ(ςm+1,ςm+2)+…+sj·δ(ςm+j−1,ςm+j)≤s·φmD(ς0)+s2·φm+1D(ς0)+…+sj·φm+j−1D(ς0)=∑l=mm+j−1sl−m+1·φl(D(ς0))≤∑l=m∞sl·φl(D(ς0))→0



(14)




as n→∞, and therefore ςn is a Cauchy sequence. By completeness of (X,δ,s), there is some point ς*∈X such that


limn→∞δ(ςn,ς*)=0.



(15)







We claim that ς* is a common fixed point of Up(ς*), respectively Vq(ς*). Indeed, taking ς=ς2i−1 and κ=ς* in (4), we have


δ(Upi−1ς2i−1,Vq(ς*)ς*)≤≤φmaxδ(ς2i−1,ς*),δ(ς2i−1,Upi−1ς2i−1),δ(ς*,Vq(ς*)ς*),δ(ς2i−1,Vq(ς*)ς*)+δ(ς*,Upi−1ς2i−1)2s+ψminδ(ς2i−1,Upi−1ς2i−1),δ(ς*,Vq(ς*)ς*),δ(ς2i−1,Vq(ς*)ς*),δ(ς*,Upi−1ς2i−1)=φmaxδ(ς2i−1,ς*),δ(ς2i−1,ς2i),δ(ς*,Vq(ς*)ς*),δ(ς2i−1,Vq(ς*)ς*)+δ(ς*,ς2i)2s+ψminδ(ς2i−1,ς2i),δ(ς*,Vq(ς*)ς*),δ(ς2i−1,Vq(ς*)ς*),δ(ς*,ς2i).



(16)







Let i→∞ in the above inequality, and taking (15) into account, we find that


δ(ς*,Vq(ς*)ς*)≤limn→∞δ(ς2i,Vq(ς*)ς*)≤φδ(ς*,Vq(ς*)ς*)<δ(ς*,Vq(ς*)ς*),



(17)




which implies that δ(ς*,Vq(ς*)ς*)=0. Hence, Vq(ς*)ς*=ς*. Supposing that Up(ς*)ς*≠ς*, from (4) and (17), we have


0<δ(Up(ς*)ς*,ς*)=δ(Up(ς*)ς*,Vq(ς*)ς*)≤φ(maxδ(ς*,Up(ς*)ς*),δ(ς*,Up(ς*)ς*)/2s)<δ(ς*,Up(ς*)ς*)



(18)




which is a contradiction, and hence, Up(ς*)ς*=ς*.



Be κ*∈X another point such that Up(κ*)κ*=κ*=Vq(κ*)κ* and ς*≠κ*. Since U,V satisfy (4), we have


0<δ(ς*,κ*)=δ(Up(ς*)ς*,Vq(κ*)κ*))≤φmaxδ(ς*,κ*),δ(ς*,Up(ς*)ς*),δ(κ*,Vq(κ*)κ*),δ(κ*,Up(ς*)ς*)+δ(ς*,Vq(κ*)κ*)/2s+ψminδ(ς*,Up(ς*)ς*),δ(κ*,Vq(κ*)κ*),δ(κ*,Up(ς*))ς*),δ(ς*,Vq(κ*)κ*)=φ(δ(ς*,κ*))<δ(ς*,κ*),



(19)




but, the above inequality is possible only if δ(ς*,κ*)=0 that is ς*=κ*. Very easy, due to the uniqueness of the fixed point we can conclude that ς* is a common fixed point for U and V. Indeed,


Uς*=U(Up(ς*)ς*)=Up(ς*)(Uς*)



(20)




shows that Uς* is also fixed point of Up(ς*). However, Up(ς*) has exactly one fixed point ς*, so Uς*=ς*. Similarly, Vς*=ς*. □





If we take c∈[0,1s), k≥1, φ(x)=cx and ψ(x)=kx for all x>0 then, we get the following result.



Corollary 1.

Let U,V be two self-mappings on a complete b-MS (X,δ,s). Suppose that there exist 0≤c<1s and k≥1 such that for all ς,κ∈X there exist positive integers p(ς),q(κ) such that


δ(Up(ς)ς,Vq(κ)κ)≤c·maxδ(ς,κ),δ(ς,Up(ς)ς),δ(κ,Vq(κ)κ),δ(κ,Up(ς)ς)+δ(ς,Vq(κ)κ)2s+k·minδ(ς,Up(ς)ς),δ(y,Vq(κ)κ),δ(κ,Up(ς)ς),d(ς,Vq(κ)κ),



(21)




then the pair of the mappings U,V possesses a common fixed point ς*.





Corollary 2.

Let U be a self-mapping on a complete b-MS (X,δ,s). Suppose that for any ς,κ∈X there exist positive integer p(ς) and there exist ψ∈Ψ and upper semicontinuous φ∈Φb such that


δ(Up(ς)ς,Up(ς)κ)≤φmaxδ(ς,κ),δ(ς,Up(ς)ς),δ(κ,Up(ς)κ),δ(κ,Up(ς)ς)+δ(ς,Up(ς)κ)2s+ψminδ(ς,Up(ς)ς),δ(κ,Up(ς)κ),δ(ς,Up(ς)ς),δ(ς,Up(ς)κ),



(22)




then the map U has a unique fixed point ς*.





Now we take the same idea in the context of b-DMS.



Theorem 3.

Let (X,δd,s) be a 0-complete b-DMS and U,V:(X,δd,s)→(X,δd,s) be two functions. Let the function φ∈Φb. Suppose that for all ς,κ∈X we can find the positive integers p(ς),q(κ) such that


δd(Up(ς)ς,Vq(κ)κ)≤φmaxδd(ς,κ),δd(ς,Up(ς)ς),δd(κ,Vq(κ)κ),δd(κ,Up(ς)ς)+δd(ς,Vq(κ)κ)4s



(23)




Then the pair of the functions U,V has exactly one fixed point ς*.





Proof. 

Consider a point ς0∈X and as in above theorem we shall define the sequence ςn in X as follows:


ς1=Vq(ς0)ς0,x2=Up(ς1)ς1,…ς2i+1=Vq(ς2i)ς2i,ς2i+2=Up(ς2i+1)ς2i+1,…



(24)







Denoting pi−1=p(ς2i−1) and qi=q(ς2i), for any i∈N, we can write ς2i=Upi−1ς2i−1 and ς2i+1=Vqiς2i. As we have seen in Theorem 2, the first purpose is to show that the sequence ςn is Cauchy. For this, let us get in (23) ς=ς2i−1 and κ=ς2i. We have,


δd(ς2i,ς2i+1)=δd(Upi−1ς2i−1,Vqiς2i)≤φmaxδd(ς2i−1,ς2i),δd(ς2i−1,Upi−1ς2i−1),δd(ς2i,Vqiς2i),δd(ς2i,Upi−1ς2i−1)+δd(ς2i−1,Vqiς2i)4s=φmaxδd(ς2i−1,ς2i),δd(ς2i−1,ς2i),δd(ς2i,ς2i+1),δd(ς2i,ς2i)+δd(ς2i−1,ς2i+1)4s<maxδd(ς2i−1,ς2i),δd(ς2i,ς2i+1),s[δd(ς2i,ς2i−1)+δd(ς2i−1,ς2i)]+s[δd(ς2i−1,ς2i)+δd(ς2i,ς2i+1)]4s=maxδd(ς2i−1,ς2i),δd(ς2i,ς2i+1),3sδd(ς2i,ς2i−1)+sδd(ς2i,ς2i+1)]4s



(25)




and then two situations can be considerate. If δd(ς2i−1,ς2i)≤δd(ς2i,ς2i+1), then the inequality (25) becomes


δd(ς2i,ς2i+1)<δd(ς2i,ς2i+1)








which is a contradiction. However, this tells us that δd(ς2i−1,ς2i)>δd(ς2i,ς2i+1) for all i∈N. Thus, regarding at (25)


δd(ς2i,ς2i+1)≤φ(δd(ς2i−1,ς2i))











Since φ∈Φb, we know that φ is monotone increasing so, we obtain


δd(ς2i,ς2i+1)≤φ(δd(ς2i−1,ς2i))≤φ2(δd(ς2i−2,ς2i−1))≤…≤φ2i(δd(ς0,ς1)).



(26)







Similarly, we can observe that if we replace ς and κ in (23) by ς2i+1 respectively ς2i we have


δd(ς2i+2,ς2i+1)=δd(Upi+1ς2i+1,Vqiς2i)≤φmaxδd(ς2i+1,ς2i),δd(ς2i+1,Upi+1ς2i+1),δd(ς2i,Vqiς2i),δd(ς2i,Upi+1ς2i+1)+δd(ς2i+1,Vqiς2i)4s=φmaxδd(ς2i+1,ς2i),δd(ς2i+1,ς2i+2),δd(ς2i,ς2i+1),δd(ς2i,ς2i+2)+δd(ς2i+1,ς2i+1)4s<maxδd(ς2i+1,ς2i),δd(ς2i+1,ς2i+2),δd(ς2i,ς2i+1),s[δd(ς2i,ς2i+1)+δd(ς2i+1,ς2i+2)]+s[δd(ς2i+1,ς2i)+δd(ς2i,ς2i+1)]4s=maxδd(ς2i+1,ς2i),δd(ς2i+1,ς2i+2),3sδd(ς2i,ς2i+1)+sδd(ς2i+1,ς2i+2)4s.



(27)







Again, if there is N∈N such that δd(ς2i+1,ς2i)≤δd(ς2i+1,ς2i+2) for any i>N, then


δd(ς2i+2,ς2i+1)≤φ(δd(ς2i+1,ς2i+2))<δd(ς2i+1,ς2i+2).











From this contradiction we get that δd(ς2i+1,ς2i)>δd(ς2i+1,ς2i+2) and with the same reasoning as above, we can conclude that


δd(ς2i+1,ς2i+2)≤φ(δd(ς2i,ς2i+1))≤φ2(δd(ς2i−1,ς2i))≤…≤φ2i(δd(ς1,ς2)).



(28)







Certainly, combining (26) and (28) we find that


δd(ςn,ςn+1)≤φn(D(ς0)),



(29)




for any n∈N, where D(ς0)=maxδd(ς0,ς1),δd(ς1,ς2). On one hand the inequality (29) shows us, taking into account (2*) from Definition 5 that


limn→∞δd(ςn,ςn+1)=0.



(30)







On the other hand, as in (14), we have


δd(ςn,ςn+r)≤s·δd(ςn,ςn+1)+δd(ςn+1,ςn+r)≤s·δd(ςn,ςn+1)+s2·δd(ςn+1,ςn+2)+…+sr·δd(ςn+r−1,ςn+r)≤s·φn(D(ς0))+s2·φn+1(D(ς0))+…+sr·φn+r−1(D(ς0))=∑j=nn+r−1bj−n+1·φj(D(ς0))≤∑j=n∞bj·φj(D(ς0))→0



(31)




as n→∞. Hence the sequence ςn is 0-Cauchy. Since (X,δd,s) is a 0-complete space, every 0-Cauchy sequence is convergent. Then there is some point ς*∈X such that


limn→∞δd(ςn,ςn+r)=limn→∞δd(ςn,ς*)=d(ς*,ς*)=0.



(32)







We prove that the limit of sequence ςn is a fixed point for U and V. For this, we are considering in inequality (23), ς=ς* and κ=ς2n


δd(Up(ς*)ς*,ς2n+1)=δd(Up(ς*)ς*,Vqnς2n)≤φmaxδd(ς*,ς2n),δd(ς*,Up(ς*)ς*),δd(ς2n,Vqnς2n)),δd(ς2n,Up(ς*)ς*)+δd(ς*,Vqnς2n)4s=φmaxδd(ς*,ς2n),δd(ς*,Up(ς*)ς*),δd(ς2n,ς2n+1)δd(ς2n,Up(ς*)ς*)+δd(ς*,ς2n+1)4s<φmaxδd(ς*,ς2n),δd(ς*,Up(ς*)ς*),δd(ς2n,ς2n+1),sδd(ς2n,ς*)+δd(ς*,Up(ς*)ς*)+δd(ς*,ς2n+1)4s.



(33)







Letting n→∞ in the both sides of the above inequality and considering (30), (32) we get that


limsupn→∞δd(Up(ς*)ς*,ς2n+1)≤φ(δd(ς*,Up(ς*)ς*))<δd(ς*,Up(ς*)ς*),








a contradiction. Thus, δd(Up(ς*)ς*,ς*)=0 and from (δb1) in Definition 3 we get Up(ς)ς=ς*. Analogously, if we substitute ς by ς2n−1 and κ by ς* we will find that Vq(ς*)ς*=ς*. In concluding this proof we wish to show that the common fixed point is unique. Supposing by contradiction that there is κ*∈X a point such that Up(κ*)κ*=κ*=Vq(κ*)κ* and κ*≠ς*. Replacing in (23) we have:


δd(ς*,κ*)=δd(Up(ς*)ς*,Vq(κ*)κ*)≤φ(max{δd(ς*,κ*),δd(ς*,Up(ς*)ς*),δd(κ*,Vq(κ*)κ*),δd(κ*,Up(ς*)ς*)+δd(ς*,Vq(κ*)κ*)4s})








thus


δd(ς*,κ*)<δd(ς*,κ*),








which is a contradiction. Therefore δd(ς*,κ*)=0, which implies ς*=κ*. □





Example 3.

Let X=X=4ςςκ−2κ:ς,κ∈R and consider the 2-dislocated metric δd:X×X→[0,∞) defined by δd(X,Y)=(trX+trY)2. Define two maps U,V:X→X by


U(X)=AX respectively V(X)=XB,








where


A=0201 and B=1−121.











Let X,Y∈X, X=4ς1ς1κ1−2κ1 and Y=4ς2ς2κ2−2κ2 where ς1,ς2,κ1,κ2∈X.



By elementary calculation, we get U(X)=2κ1−4κ1κ1−2κ1 and V2(Y)=YB2=0−9κ2−9κ20. Since δd(U(X),V2(Y)))=(tr(U(X))+tr(V2(Y)))2=0 we conclude that for p=1 and q=2 all the presumptions of Theorem 3 are satisfied. Accordingly, the maps U and V have a unique fixed point. In other words, there is a unique matrix X∈X such that AX=X=XB, namely X=0000.






3. Application


Let 0<γ be a real number and ς:[1,∞)→R be a function. Throughout this part, we consider that γ represents the integer part of real number γ and by log(·) we denote loge(·).



The Hadamard derivative of fractional order γ for ς is defined by


Dγς(θ)=1Γ(n−γ)θddθn∫1θlogθsn−γ−1ς(s)sds,n−1<γ<n.



(34)




The Hadamard fractional integral of order γ for ς is given by


Iγς(θ)=1Γ(γ)∫1θlogθsγ−1ς(s)sds,γ>0,



(35)




provided the integral exists.



Starting from [18], where the problems involving Hadamard-type fractional derivatives are studied, we discuss here the existence of a solution for the following system of fractional functional differential equations with initial values:


Dγς(θ)=ξ(θ,ςθ),for each θ∈[0,t],0<γ<1Dγκ(θ)=η(θ,κθ),ς(θ)=κ(θ)=f(θ),θ∈[1−y,1]



(36)




where the functions ξ,η:[1,t]×C[−y,0],R→R are given, f∈C[1−y,1],R is such that f(1)=0 and for any ς,κ defined on [1−y,t] the functions ςθ,κθ are elements of C[−y,0],R such that


ςθ(τ)=ς(θ+τ),κθ(τ)=κ(θ+τ)








for any θ∈[0,t]. Let X=C[1−y,t],R be the set of real continuous functions and consider the distance d:X×X→[0,∞) defined as


d(ς,κ)=supθ∈[1−y,t]ς(θ)−κ(θ),∀ς,κ∈X.








For r≥1 we take the b-distance δ:X×X→[0,∞] given by


δ(ς,κ)=(d(ς,κ))r=supθ∈[1−y,t]ς(θ)−κ(θ)r,∀ς,κ∈X.











Certainly, (X,δ,s) is a complete b-metric space, where s=2r−1.



Theorem 4.

Let λ>0 such that λ(logt)γΓ(γ+1)<21r−1. Assume that


ξ(θ,ς)−η(θ,κ)≤csupθ∈[1,t]ς−κξ(θ,ς)+η(θ,κ)≤csupθ∈[1,t]ς+κ








for θ∈[1,t] and every ς,κ∈X. Then the system (36) possesses a unique solution on the interval [1−y,t].





Proof. 

Define U,V:X→X by


Uς(θ)=f(θ),if θ∈[1−y,1]1Γ(γ)∫1θlogθsγ−1ξ(s,ςs)sds,if θ∈[1,t]Vκ(θ)=f(θ),if θ∈[1−y,1]1Γ(γ)∫1θlogθsγ−1η(s,κs)sds,if θ∈[1,t]



(37)




(We should mention that the system (36) has a unique solution if and only if the operators U and V have exactly one common fixed point.)



Now we have for θ∈[1,t]:


Uς(θ)−Vκ(θ)≤1Γ(γ)∫1θlogθsγ−1ξ(s,ςs)−η(s,κs)sds≤λ·1Γ(γ)∫1θlogθsγ−1supθ∈[1,t]ςs−|κs|dss≤λ·1Γ(γ)supθ∈[1−y,t]ςs−|κs|∫1θlogθsγ−1dss=λ(logθ)γΓ(γ+1)supθ∈[1−y,t]ςs−|κs|.











At the same time,


Uς(θ)+Vκ(θ)≤1Γ(γ)∫1θlogθsγ−1ξ(s,ςs)+η(s,κs)sds≤λ·1Γ(γ)∫1θlogθsγ−1supθ∈[1,t]ςs+|κs|dss≤λ·1Γ(γ)supθ∈[1−y,t]ςs+|κs|∫1θlogθsγ−1dss=λ(logθ)γΓ(γ+1)supθ∈[1−y,t]ςs+|κs|.











Now, we have


δ(U2ς,V2κ)=(supθ∈[1−y,t]U2ς(θ)−V2κ(θ))r=(supθ∈[1−y,t]Uς(θ)−Vκ(θ)×supθ∈[1−y,t]Uς(θ)+Vκ(θ))r≤(supθ∈[1−y,t]Uς(θ)−Vκ(θ)×supθ∈[1−y,t]Uς(θ)+Vκ(θ))r≤(λ(logθ)γΓ(γ+1)supθ∈[1−y,t]ςs−|κs|×supθ∈[1−y,t]ςs+|κs|)r=(λ(logθ)γΓ(γ+1)supθ∈[1−y,t]|ςs|−|κs|)r≤(λ(logθ)γΓ(γ+1)supθ∈[1−y,t]ςs−κs)r=(λ(logθ)γΓ(γ+1))rδ(ς,κ),








for all ς,κ∈X. We conclude that for any ς,κ∈X taking p(ς)=q(κ)=2 and c=λ(logt)γΓ(γ+1)r all presumptions of Corollary 1 are verified and the maps U and V have exactly one common fixed point on X, so the system (36) has a unique common solution in [1,t]. □






4. Conclusions


In this paper, we have two main goals. The first one is to get the most general form of Seghal [15]-type fixed-point results, that is, investigating a fixed point of certain operators with a contractive iterate at a point in the setting of b-dislocated metric space. The second main goal of the paper is to underline the importance of the obtained fixed-point results by providing an application. As its origin, one of the pioneers of the fixed-point theorem, the Banach contraction principle, was derived from a proposed solution of a differential equation. Under this motivation, we investigate the solution of Hadamard-type fractional functional differential equations.
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