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Abstract

:

We consider the exterior as well as the interior free-boundary Bernoulli problem associated with the infinity-Laplacian under a non-autonomous boundary condition. Recall that the Bernoulli problem involves two domains: one is given, the other is unknown. Concerning the exterior problem we assume that the given domain has a positive reach, and prove an existence and uniqueness result together with an explicit representation of the solution. Concerning the interior problem, we obtain a similar result under the assumption that the complement of the given domain has a positive reach. In particular, for the interior problem we show that uniqueness holds in contrast to the usual problem associated to the Laplace operator.
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1. Introduction


Bernoulli’s exterior problem consists in finding a couple (u,Ω) where Ω is a bounded domain (= an open, connected set) in RN containing a given compact set K, and u is a solution of


Δu=0inΩ\K;u=1on∂K;u=0,|∇u|=aon∂Ω,



(1)




where a is a constant. Similarly, Bernoulli’s interior problem consists in finding (v,Ω) such that the closure Ω¯ is included in a given, bounded domain Ω0, and v satisfies




Δv=0inΩ0\Ω¯;v=0on∂Ω0;v=1,|∇v|=aon∂Ω.



(2)





Both problems have been widely investigated, and several generalizations have been taken into consideration: see, for instance, [1,2,3,4,5,6,7,8,9] and the references therein. In particular, in [10,11,12] the Laplace operator is replaced by the infinity-Laplacian. Roughly speaking, the infinity-Laplacian is the operator Δ∞u=uijuiuj, where the subscripts i,j denote differentiation with respect to xi,xj, and the sum over repeated indices is understood. If ∇u≠0 we may also write Δ∞u=uννuν2 where the subscript ν denotes differentiation in the direction of ν=∇u/|∇u|. However, the (viscosity) solution of the associated boundary-value problem


Δ∞u=0inΩ⊂RN;u=φon∂Ω,



(3)




where φ denotes the prescribed boundary values, fails to have second derivatives in general. Furthermore, quoting ([13], p. 238): “since the equation is not in divergence form, we cannot expect a notion of weak solution”. In fact, solutions are usually intended in the viscosity sense: a thorough presentation of the concept is found in [14]. For the present purposes it suffices to recall the following.



Definition 1.

Let Ω be a bounded domain in RN. A viscosity solution of problem (3) is a function u∈C0(Ω¯) agreeing with φ on ∂Ω and satisfying both of the following conditions at each interior point x0∈Ω: (a) for every function φ of class C2 in a neighborhood of x0 such that the difference φ(x)−u(x) has a local minimum at x0, the inequality φij(x0)φi(x0)φj(x0)≥0 is satisfied; (b) for every function ψ of class C2 in a neighborhood of x0 such that the difference ψ(x)−u(x) has a local maximum at x0, the inequality ψij(x0)ψi(x0)ψj(x0)≤0 holds. It is worth noticing that if u does not allow the difference φ(x)−u(x) to have a local minimum at x0 for any C2-function φ (think about u(x)=|x−x0|), then condition (a) is trivially satisfied, and a similar remark holds for (b).





Example 1.

Let Ω=BR(0) and K={0}. The function u(x)=1−1R|x| is the unique solution of Δ∞u=0 in Ω\K satisfying u(0)=1 and u=0 on ∂Ω (the assertion follows by letting t0=R in Lemma 3). In particular, the origin is not a removable singularity as in the case of the Laplacian.





The equation Δ∞u=0, whose (viscosity) solutions are called infinity-harmonic, appears as the Euler-Lagrange equation of the minimal Lipschitz extension problem (see [15,16]). The name of infinity-harmonic is due to the fact that the solution of the boundary-value problem (3) can be seen as the limit, as p→+∞, of the p-harmonic functions coinciding with u along the boundary. As usual, by a p-harmonic function we mean a weak solution of Δpu=0, where Δpu=div(|∇u|p−2∇u) is the p-Laplace operator. Such an asymptotic representation also holds for the Bernoulli problem (see [12]). Nevertheless, when the domain is let to vary, the behavior of the infinity-harmonic functions may differ substantially from the one of the p-harmonic with finite p:



Example 2.

Choose p∈(1,+∞) and denote by vR,p the weak solution of Δpv=0 in the annulus B1(0)\B¯R(0)⊂RN, N≥2, R∈(0,1), satisfying vR,p(x)=0 when |x|=1, and vR,p(x)=1 when |x|=R. Let us focus on the boundary gradient |∇vR,p| along the inner boundary ∂BR(0). A straightforward computation shows that


|∇vR,p(x)|=1RN−1p−1∫R1r−N−1p−1drforx∈∂BR(0),








where the integral is elementary but takes two different expressions according to p=N or p≠N. If the inner radius R tends to zero, the right-hand side tends to +∞ (more on this subject is found in ([4], Section 3) for the special case p=2). By contrast, the infinity-harmonic function vR,∞(x)=(1−R)−1(1−|x|) attaining the same boundary values as vR,p satisfies


|∇vR,∞(x)|=(1−R)−1forx∈∂BR(0).











Now, the right-hand side decreases and tends to 1 as R→0. This difference reflects on the results obtained in the present paper for the interior Bernoulli problem: see Theorem 3 and the comments thereafter.





Concerning Bernoulli’s exterior problem, in the paper [12], Manfredi, Petrosyan and Shahgholian proved the result quoted below. Denote by


dX(x)=miny∈X|x−y|








the (Lipschitz continuous) distance function from a closed, nonempty subset X⊂RN, and let X+Br(0) stand for the Minkowski sum


X+Br(0)={x∈RN∣dX(x)<r},








also called the tubular neighborhood of X of radius r.



Theorem 1

(cf. ([12], Theorem 3.3)). If the compact, nonempty subset K⊂RN is convex then for every a>0 there exists a unique solution of Bernoulli’s problem


Δ∞u=0inΩ\K;u=1on∂K;u=0,|∇u|=aon∂Ω.



(4)







The solution is given by u(x)=1−adK(x) and Ω=K+B1/a(0).





In the present paper the result is extended in several directions. First, the convexity assumption on K is relaxed and replaced with the weaker assumption that K is a set with positive reach according to the following definition:



Definition 2.

Let X≠∅ be a closed subset of RN. Following [17] we will use the notation


U(r)={x∈RN∣0<dX(x)<r},r∈(0,+∞];



(5)






Y(r)={x∈RN∣dX(x)≥r},r∈(0,+∞).



(6)







If for some x∈RN there exists a unique y∈X such that |x−y|=dX(x), then we say that y is the projection of x onto X, and we write y=πX(x). A closed, nonempty set X⊂RN is a set with positive reach if there exists r0∈(0,+∞] such that for all x∈U(r0) there exists a unique y∈X such that |x−y|=dX(x). The largest possible value of r0≤+∞ is called the reach of X and is denoted by reach(X) (see Figure 1).





A further extension lies in the fact that the Neumann condition in (4) is replaced here with the non-autonomous condition


|∇u(x)|=q(dK(x))on∂Ω,



(7)




where q(t) is a prescribed function that is required not to decrease too fast. In particular, q(t) is allowed to be a constant, hence condition (7) includes the Neumann condition in (4) as a special case. To be more precise, in Theorem 2 we consider Bernoulli’s exterior problem


Δ∞u=0inΩ\K;u=1on∂K;u=0,|∇u(x)|=q(dK(x))on∂Ω,



(8)




where the domain Ω is required to have a differentiable boundary and to satisfy




dK(x)≤reach(K)forallx∈Ω¯.



(9)





The boundary gradient of u occurring in (8) is well defined: indeed, since Ω has a differentiable boundary, the infinity-harmonic function attaining constant values at the boundary is differentiable up to ∂Ω (see [18]). Contrary to what one may expect, if we allow q to be any function of the distance dK(x) then problem (8) may well admit a solution (u,Ω) although Ω is not given by Ω=K+Br(0), as the following example shows.



Example 3.

Let K=B¯1(0)⊂R2, and let Ω be an ellipse in canonical position. Denote by a,b the semi-axes of Ω, with 1<a<b. Clearly, Ω does not have the form Ω=K+Br(0): nevertheless, let us construct a function q(t) such that Bernoulli’s problem (8) is solvable. Recall that the boundary-value problem


Δ∞u=0inΩ\K;u=1on∂K;u=0on∂Ω,



(10)




admits a unique solution u (see, for instance, ([15], Section 5)). Since problem (10) is invariant under reflections with respect to the coordinate axes, and by uniqueness, the equality u(x1,x2)=u(±x1,±x2) holds for every (x1,x2)∈Ω¯\B1(0) and for every choice of the sign in front of the variables x1 and x2 in the right-hand side. Consequently, we also have |∇u(x1,x2)|=|∇u(±x1,±x2)| for every (x1,x2)∈∂Ω, and we are allowed to define q(t) as follows: for each t∈[a,b] we first pick (x1,x2)∈∂Ω such that dK(x1,x2)=t, then we let


q(t)=|∇u(x1,x2)|.











Since the boundary gradient possesses the symmetry property mentioned before, the definition of q(t) does not depend on the particular choice of (x1,x2)∈∂Ω as long as dK(x1,x2)=t, and therefore the definition is well posed. However, then Bernoulli’s problem (8) with this choice of q is solvable, although for every r>0 we have Ω≠K+Br(0).





We prove that if q(t) does not decrease too fast, for instance if the product tq(t) is strictly increasing, then problem (8) is solvable if and only if Ω=K+Bt0(0) for a convenient t0≤reach(K), and the solution u=uK,t0 has the form (12):



Theorem 2 (On Bernoulli’s exterior problem).

Let K≠∅ be a compact, connected subset of RN, N≥2, with positive reach r0=reach(K)∈(0,+∞], and let q(t) be any real-valued function of one real variable.

	(i)

	
For every t0∈(0,r0) the domain Ω=K+Bt0(0) has a differentiable boundary. If


t0q(t0)=1



(11)




then Bernoulli’s exterior problem (8) admits the solution (u,Ω) where u=uK,t0 is given by


uK,t0(x)=1−1t0dK(x).



(12)




In the special case when r0<+∞, if the value t0=r0 satisfies (11) and the domain Ω=K+Bt0(0) has a differentiable boundary, then problem (8) admits the same solution as before.




	(ii)

	
Suppose that Equation (11) possesses a unique (finite) solution t0∈(0,r0]. In case t0=r0, suppose that the domain Ω=K+Bt0(0) has a differentiable boundary. If the inequality (tq(t)−1)(t−t0)≥0 holds for every finite t∈(0,r0], then the solution (u,Ω) given in (i) is unique in the class of all domains Ω⊃K satisfying (9) and with a differentiable boundary.




	(iii)

	
If q is continuous, and if Equation (11) does not possess any solution in (0,r0], then problem (8) is unsolvable in the class mentioned above.











Observe that if Equation (11) has a solution t0∈(0,r0), and the product tq(t) is strictly increasing, then assertions (i) and (ii) apply. To see that Theorem 2 implies Theorem 1, recall that any compact, convex set K≠∅ is connected and satisfies reach(K)=+∞ (see ([17], Corollary 4.6) or ([19], p. 433)), hence (9) always holds. Furthermore the constant function q(t)=a>0 clearly makes the product tq(t) strictly increasing. Hence Claim (i) (existence) and Claim (ii) (uniqueness) of Theorem 2 imply the statement in Theorem 1. Theorem 2 also extends ([11], Theorem 1.4), where problem (8) is considered in the special case when K=B¯R0(0).



Next we consider the Bernoulli interior problem


Δ∞v=0inΩ0\Ω¯;v=0on∂Ω0;v=1,|∇v(x)|=q(d∂Ω0(x))on∂Ω,



(13)




where the complement X=Ω0c of the given bounded domain Ω0 is assumed to be a set with positive reach r0=reach(X). For instance, Ω0 cannot be a square in R2. The unknown domain Ω⊂⊂Ω0, instead, is searched for in the class of all domains having a differentiable boundary and containing all points out of reach, i.e., Ω must satisfy the inclusion


Y(r0)⊂Ω



(14)




where Y(r0) is defined according to (6). For instance, if Ω0=BR(0) then r0=R and every domain Ω⊂⊂Ω0 containing the origin satisfies (14).



Theorem 3 (On Bernoulli’s interior problem).

Let Ω0≠∅ be a bounded domain of RN, N≥2, whose complement X=Ω0c is a set with positive reach. Define r0=reach(X)∈(0,+∞), and let q(t) be any real-valued function of one real variable.

	(i)

	
For every t0∈(0,r0) satisfying (11), Bernoulli’s interior problem (13) admits the solution (v,Ω) where Ω={x∈Ω0∣dX(x)>t0} and v=vX,t0 is given by


vX,t0(x)=1t0dX(x).



(15)




Furthermore, if the value t0=r0 satisfies (11) then problem (13) admits the same solution as before provided that Ω is not empty and has a differentiable boundary.




	(ii)

	
If Equation (11) possesses a unique solution t0∈(0,r0), and if (tq(t)−1)(t−t0)≥0 for every t∈(0,r0), then the solution given in (i) is unique in the class of all domains Ω⊂⊂Ω0 satisfying (14) and with a differentiable boundary.




	(iii)

	
If q is continuous, and if Equation (11) does not possess any solution in (0,r0), then problem (13) is unsolvable in the class mentioned above.











As before, if Equation (11) has a solution t0∈(0,r0) and the product tq(t) is strictly increasing, then assertions (i) and (ii) apply. A corresponding result for the Laplace operator is illustrated in ([20], Theorem 4.1) and in the subsequent ([20], Example (1), p. 108). Remarkably, the monotonicity condition required there for the standard Laplacian (namely, tq(t) non-increasing) excludes the case q(t)= constant and is opposite to the one in Theorem 3. It is also to be recalled that the usual interior Bernoulli problem (2) lacks uniqueness of the solution. By contrast, if the Laplacian in (2) is replaced with the infinity-Laplacian, or equivalently if q(t)=a (constant) in (13), with a>1/r0, then the assumptions in Claim (i) and Claim (ii) of Theorem 3 are satisfied, and existence and uniqueness follow. These differences between Δ and Δ∞ are related to the different behavior of the radial solutions which was put into evidence in Example 2.



The proofs of both Theorem 2 and Theorem 3 are given in Section 4, using Jensen’s comparison principle ([16], Theorem 3.11). The explicit construction of prospective solutions is done in Section 3, and it is based on some fundamental properties of the distance function, which are in their turn recalled in the next section. The method of proof was introduced in [20] in connection with the Laplacian, and it is a refinement of the approach in [21]. Further applications are found in [11,22,23,24,25,26].




2. Basic Properties of the Distance Function


The function dX(x) measures the distance from the running point x∈RN to a given nonempty closed subset X⊂RN. The properties of dX(x) needed to prove Theorem 2 and Theorem 3 are found in [17,19,27] (see also [28]). Here we collect the main statements under a unified notation, and give precise references to the sources. We start with the notion of proximal normal and proximal smoothness.



Definition 3.

(Cf. ([27], Definitions 3.6.3 and 3.6.5), and ([17], pp. 119–120)). Let X≠∅ be a proper subset of RN.

	(i)

	
A unit vector ν∈RN is a perpendicular, or a proximal normal, shortly a P-normal, to X at y∈∂X if there exists r∈(0,+∞) such that Br(y+rν)∩X=∅.




	(ii)

	
Any vector ζ≠0 is also a P-normal at y if the unit vector ν=|ζ|−1ζ is a P-normal at y in the sense given above. In this case we say that ζ is realized by an r-ball, where r is as before.




	(iii)

	
Finally, the set X is proximally smooth with radius r0∈(0,+∞) if for every y∈∂X and for every unit P-normal ν (if there exist any) at y we have Br0(y+r0ν)∩X=∅. Equivalently, X is proximally smooth with radius r0 if every P-normal ζ≠0 is realized by an r0-ball.











From the definition it is clear that if X is proximally smooth with radius r0 then X is also proximally smooth with radius r for every r∈(0,r0). Proximal smoothness can be considered equivalent to positive reach in the following sense:



Proposition 1.

Let X≠∅ be a closed, proper subset of RN.

	(i)

	
If X is proximally smooth with radius r0 then X is a set with positive reach and r0≤reach(X).




	(ii)

	
If X is a set with positive reach then for every finite r∈(0,reach(X)] the function dX belongs to the class C1(U(r)) and X is proximally smooth with radius r.











Proof. 

(i) Suppose that X is proximally smooth with radius r0, and define U(r0) according to (5). Let us check that every point x∈U(r0) has a unique projection onto X. Take x∈U(r0), define r=dX(x)∈(0,r0) and suppose, contrary to the claim, that there exist y1,y2∈∂X such that y1≠y2 and |x−yi|=r for i=1,2. By the definition of r, the open ball Br(x) does not intersect X, hence the unit vector νi=|x−yi|−1(x−yi) is a perpendicular to ∂X at yi for i=1,2. Since X is proximally smooth with radius r0 by assumption, the ball B=Br0(y1+r0ν1) does not intersect X as well. However B contains Br(x) together with all boundary points of Br(x) excepted y1. In particular, B contains the point y2∈∂X. However, since X is closed, we have y2∈X which shows that B does intersect X: a contradiction. Hence every point x∈U(r0) must have a unique projection onto X and Claim (i) follows.



(ii) Assume that X is a set with positive reach and choose a finite r∈(0,reach(X)]. By Definition 2, every x∈U(r) has a unique projection onto X. Since the projection πX(x) is well defined for all x∈U(r), by Claim (5) of ([19], Theorem 4.8) the distance function dX belongs to the class C1(U(r)). By ([17], Theorem 4.1 (a),(d)), this is equivalent to say that every P-normal ζ≠0 is realized by an r-ball, hence X is proximally smooth with radius r. □





Claim (ii) of Proposition 1 implies that if X is a set with positive reach then for every r∈(0,reach(X)) the set X+Br(0) has a C1 boundary (in fact C1,1: see ([19], Theorem 4.8, Claim (9))). The last assertion fails, in general, when r=reach(X):



Example 4.

The closed, unbounded set X=RN\B1(0) satisfies reach(X)=1. (i) The corresponding set X+B1(0) equals the punctured space RN\{0} and does not have a differentiable boundary. (ii) For every r∈(0,1] the set Y(r) defined in (6) satisfies Y(r)={x∈RN∣|x|≤1−r}, and therefore reach(Y(r))=+∞ (see Corollary 1 for a general statement).





We now recall equality (17), which is essential for our purposes.



Lemma 1.

Let X≠∅ be a closed, proper subset of RN with positive reach. For every finite r∈(0,reach(X)] define U(r) and Y(r) as in (5) , (6) , and take x0∈U(r).

	(i)

	
The projection πX(x0) is uniquely determined.




	(ii)

	
The distance function dX, which is differentiable at x0 by Proposition 1 (ii), satisfies


∇dX(x0)=x0−πX(x0)|x0−πX(x0)|.



(16)








	(iii)

	
The set Y(r) is not empty, and the following equality holds:


dX(x0)+dY(r)(x0)=r.



(17)








	(iv)

	
The projection πY(r)(x0) is uniquely determined, and the three points πX(x0), x0, πY(r)(x0) are aligned.




	(v)

	
For every x on the segment whose endpoints are πX(x0) and πY(r)(x0) we have


dX(x)=|πX(x0)−x|.



(18)















Proof. 

(i) The projection πX(x) is uniquely defined for all x∈U(r) because X is a set with positive reach.



(ii) Formula (16) is found, for instance, in ([27], Corollary 3.4.5 (i)) as well as in ([29], Theorem 1).



(iii) We first use part (ii) of Proposition 1 to see that X is proximally smooth with radius r. Then we follow the proof of ([27], Theorem 3.6.7): in particular, formula (3.52) in [27] corresponds to (17) above.



(iv) Choose y∈Y(r) such that |x0−y|=dY(r)(x0). From (17) and the triangle inequality we get


|πX(x0)−y|≤|πX(x0)−x0|+|x0−y|=r.











However by definition (6) we also have r≤|πX(x0)−y|, hence the triangle inequality holds with equality, and therefore the projection πY(r)(x0)=y is uniquely determined and the three points πX(x0),x0,πY(r)(x0) are aligned, as claimed.



(v) Observe that for every x on the segment whose endpoints are πX(x0) and πY(r)(x0) we obviously have dX(x)≤|πX(x0)−x|, with equality at x=x0. Let us check that the equality also holds for x≠x0. Suppose, by contradiction, that there is y∈X such that |y−x|<|πX(x0)−x|. By the definition (6) of Y(r), the point πY(r)(x0) satisfies r≤|y−πY(r)(x0)|. This and the triangle inequality imply


r≤|y−x|+|x−πY(r)(x0)|<|πX(x0)−x|+|x−πY(r)(x0)|.








Since both x0 and x lie on the segment whose endpoints are πX(x0) and πY(r)(x0), we may replace the right-hand side with |πX(x0)−x0|+|x0−πY(r)(x0)|. Thus, the inequality above becomes


r<|πX(x0)−x0|+|x0−πY(r)(x0)|=dX(x0)+dY(r)(x0),








which contradicts (17). Claim (v) follows, and the proof is complete. □





Corollary 1.

Let X≠∅ be a closed, proper subset of RN with positive reach. For every finite r∈(0,reach(X)] the set Y(r) given by (6) is also a set with positive reach, and reach(Y(r))≥r.





Proof. 

The set Y(r) is not empty by Lemma 1 (iii). In view of Definition 2, let us check that every point in V(r)={x∈RN∣0<dY(r)(x)<r} has a unique projection onto Y(r). This follows from Lemma 1 (iv) provided we show that V(r)⊂U(r). We note in passing that the reverse inclusion (⊃) follows immediately from (17). To prove that V(r)⊂U(r) we expand RN=X∪U(r)∪Y(r) and observe that Y(r)∩V(r)=∅, hence V(r)⊂X∪U(r). It remains to verify that X∩V(r)=∅. To this aim, observe that for every x∈X and y∈Y(r) we have |x−y|≥dX(y)≥r, hence dY(r)(x)≥r and the conclusion follows. □





We conclude with a lemma that is needed in the proof of Claim (i) of both Theorem 2 and Theorem 3, to manage the extremal case when t0=reach(X)<+∞.



Lemma 2.

Let X≠∅ be a closed, proper subset of RN, N≥2, with positive reach r0<+∞. If the open set Ω=X+Br0(0) has a differentiable boundary, then the distance function dX is differentiable at every x0∈∂Ω, and (16) holds.





Proof. 

The lemma follows from ([27], Corollary 3.4.5 (i)), as well as from ([29], Theorem 1) after having shown that every x0∈∂Ω has a unique projection onto X. To simplify the notation, without loss of generality let x0=0 and suppose that the inner normal to ∂Ω at 0 is the unit vector eN=(0,…,0,1). We claim that the projection πX(0) is uniquely determined, and it is given by πX(0)=r0eN. Let y¯ be any point on X that realizes |y¯|=r0. By definition of distance we have


r0=dX(x)≤|x−y¯|foreveryx∈∂Ω.











By assumption, in a neighborhood U of x0=0 the boundary ∂Ω is the graph of a differentiable function xN=xN(x1,…,xN−1) such that ∇xN(0)=0, and the intersection U∩Ω lies above that graph. Letting x′=(x1,…,xN−1) and y¯′=(y¯1,…,y¯N−1) we may write


r02≤|x′−y¯′|2+(xN(x′)−y¯N)2








in a neighborhood of x′=0, with equality at the origin. Hence the right-hand side (say f(x′)) is minimal at x′=0 and therefore its gradient ∇f(0)=−2y¯′ must vanish. However, then the only possible value for y¯ is y¯=r0eN, and therefore the projection πX(0) is uniquely determined, as claimed. □






3. Solutions in Parallel Sets


The proofs of Theorem 2 and Theorem 3 are based on a comparison with the particular solutions uK,t0 and vX,t0 that are constructed below.



Lemma 3.

If K≠∅ is a compact, connected set in RN with positive reach r0∈(0,+∞], then for every finite t0∈(0,r0] the function u=uK,t0 in (12) is the unique solution of the boundary-value problem


Δ∞u=0inU(t0);u=1on∂K;u(x)=0wheneverdK(x)=t0,



(19)




where U(t0) is defined by letting X=K in (5).





Proof. 

The uniqueness of the solution of (19) follows from the comparison principle in ([16], Theorem 3.11). The boundary conditions are easily verified. Let us check that the equality


Δ∞uK,t0(x0)=0



(20)




holds in the viscosity sense whenever x0∈U(t0). Since K is a set with positive reach, by Proposition 1 (ii) and by (16) the distance function dK is differentiable at x0 and its gradient is the unit vector −ν given by −ν=|x0−πK(x0)|−1(x0−πK(x0)). Consequently the function uK,t0 defined in (12) is also differentiable at x0, and by differentiation we find


∇uK,t0(x0)=ν/t0.



(21)







Concerning the second derivatives, since uK,t0 may fail to be of class C2 in a neighborhood of x0 we investigate its restriction to the line ℓ passing through x0 and directed by ν. Define the set Y(t0) by letting X=K and r=t0 in (6), and notice that by Lemma 1 (iv) the three points πK(x0), x0, πY(t0)(x0) are aligned, hence the line ℓ passes through all of them. Using Claim (v) of Lemma 1 we may write


uK,t0(x)=1−1t0|x−πK(x0)|foreveryx∈ℓ∩U(t0).











Hence (uK,t0)νν(x0)=0. Consequently, every smooth function φ such that the difference φ(x)−uK,t0(x) has a local minimum at x0 must satisfy ∇φ(x0)=∇uK,t0(x0)=ν/t0 (by (21)) as well as φij(x0)φi(x0)φj(x0)=φνν(x0)φν2(x0)≥0. Similarly, any smooth function ψ such that the difference ψ(x)−uK,t0(x) has a local maximum at x0 satisfies ∇ψ(x0)=∇uK,t0(x0) and ψνν(x0)ψν2(x0)≤0. By Definition 1, equality (20) holds in the viscosity sense, as claimed. □





Lemma 4.

Let Ω0≠∅ be a bounded domain of RN, N≥2, whose complement X=Ω0c is a set with positive reach, and define r0=reach(X)∈(0,+∞). For every t0∈(0,r0] the function v=vX,t0 in (15) is the unique solution of the boundary-value problem


Δ∞v=0inU(t0);v(x)=1wheneverdX(x)=t0;v=0on∂Ω0;








where U(t0) is defined as in (5).





Proof. 

The argument is similar to the proof of Lemma 3. In the present case, for x0∈U(t0) we find


∇vX,t0(x0)=ν/t0



(22)




where the unit vector ν is given by ν=|x0−πX(x0)|−1(x0−πX(x0)). We may write vX,t0(x)=1t0|x−πX(x0)| for every x∈ℓ∩U(t0), where ℓ is the line passing through x0 and directed by ν, and the proof proceeds as before. □






4. Proofs of Theorem 2 and Theorem 3


Proof of Theorem 2.

Claim (i). The boundary of the domain Ω=K+Bt0(0) is differentiable for t0∈(0,r0) because ∂Ω is a level surface of the function dK, which is of class C1 by Proposition 1 (ii) and has a nonvanishing gradient by (16). Let u=uK,t0 be given by (12). From Lemma 3 we know that uK,t0 is the unique solution of the boundary-value problem (19). To prove that the couple (uK,t0,Ω) is a solution of Bernoulli’s exterior problem (8) it remains to check that the last condition there, namely condition (7), is satisfied for every x∈∂Ω. Observe that (7) reduces to |∇uK,t0(x)|=q(t0) for x∈∂Ω, i.e. for x satisfying dK(x)=t0. However, since t0 is a solution of (11), we have to check that |∇uK,t0(x)|=1/t0. In the case when t0<r0, we know that the distance function dK is differentiable along ∂Ω and therefore (21) holds. If, instead, t0=reach(K)<+∞, then Ω has a differentiable boundary by assumption, and (21) follows from Lemma 2. From (21) we get |∇uK,t0(x)|=1/t0, as expected.



To prove Claim (ii), suppose that Bernoulli’s exterior problem (8) admits a solution (u,Ω) where Ω is a bounded domain satisfying the assumptions. Define


t1=minz∈∂ΩdK(z),t2=maxz∈∂ΩdK(z).











Assume, contrary to the claim, that t1<t2. Define the parallel sets Ωi=K+Bti(0), i=1,2, and consider the functions ui(x)=uK,ti(x) given by (12). Observe that Ω1⊂Ω⊂Ω2. Since u≥0 on ∂Ω as well as on ∂K, by the comparison principle ([16], Theorem 3.11) it follows that u≥0 on ∂Ω1⊂Ω¯\K. However, then


0≤u1≤uinΩ1\K.



(23)







Similarly, since u2≥0 along the boundary ∂Ω⊂Ω¯2\K, we obtain


u≤u2≤1inΩ\K.











Let us consider a point P1∈∂Ω1∩∂Ω, i.e., a point on ∂Ω such that dK(P1)=t1. By (9) we also have t1<t2≤reach(K), hence the boundary ∂Ω1, which is the level set {dK(x)=t1} of the continuously differentiable function dK(x), is differentiable at P1 and it is tangent to ∂Ω there. Since u1(P1)=u(P1)=0, and by (23), we deduce


t1−1=|∇u1(P1)|≤|∇u(P1)|=q(t1),



(24)




where the last equality comes from (7). Thus, we have t1q(t1)≥1. Since Equation (11) has a unique solution t0 by assumption, and the inequality (tq(t)−1)(t−t0)≥0 holds for all finite t∈(0,r0], we deduce t1≥t0. Now we argue at a point P2∈∂Ω2∩∂Ω. Notice that the function dK may fail to be differentiable at P2 in case t2=reach(K)<+∞: indeed, although Ω has a differentiable boundary, we have not proven that Ω is a parallel set to K, yet, and therefore Lemma 2 is not applicable. To overcome this difficulty we let X=K and r=t2 in (17) and obtain dK(x)=t2−d∂Ω2(x)≥t2−|x−P2| for all x∈Ω2\K. Hence writing t2 in place of t0 in (12) we get


u(x)≤u2(x)≤1−1t2(t2−|x−P2|)=1t2|x−P2|forallx∈Ω\K.











Hence the gradient of u, which exists by assumption, must satisfy the estimate


q(t2)=|∇u(P2)|≤t2−1



(25)




and consequently t2≤t0≤t1, contradicting the assumption t1<t2. Hence we must have t1=t2, and Claim (ii) is followed by uniqueness (Lemma 3).



To prove Claim (iii) we suppose, by contradiction, that problem (8) is solvable, and show that Equation (11) has a solution t0∈(0,r0], in contrast with the assumption. We follow the same argument as before. In the case when t1<t2 we arrive again at (24) and (25), hence the difference tq(t)−1 is non-negative at t1 and non-positive at t2: a contradiction arises because q is continuous. If, instead, t1=t2, then we may write Ω=K+Bt0(0) where t0 denotes the common value of t1,t2. By uniqueness (Lemma 3), the alleged solution u must coincide with the function uK,t0 in (12). Since Ω has a differentiable boundary, uK,t0 is differentiable along ∂Ω (by Lemma 2) and (21) holds. Hence q(t0)=|∇u(x)|=|∇uK,t0(x)|=1/t0 for x∈∂Ω, which shows that Equation (11) still has a solution t0∈(0,r0]. The proof is complete. □





Proof of Theorem 3.

The argument is similar to the proof of Theorem 2, with minor differences. In particular, in the proof of Claim (i) we use Lemma 4 and (22) to show that the couple (vX,t0,Ω) is a solution of problem (13). The conclusion also holds in case t0=r0 by Lemma 2 because the two sets X+Br0(0) and Ω={x∈Ω0∣dX(x)>r0} have the same boundary. To prove Claim (ii), denote by (v,Ω) a solution of (13) and let


t1=minz∈∂ΩdX(z),t2=maxz∈∂ΩdX(z).











Define Ωi={x∈Ω0∣dX(x)>ti} and vi=vX,ti for i=1,2. Let us check that U(t1)⊂Ω0\Ω¯, or equivalently Ω¯⊂Y(t1), where U(t1) and Y(t1) are defined according to (5),(6). Suppose, by contradiction, that there exists x0∈Ω¯∩U(t1). The segment joining x0 to πX(x0) must intersect the boundary ∂Ω at some point z (possibly z=x0). By Lemma 1 (v) we have dX(z)=|z−πX(x0)|≤dX(x0)<t1, but this contradicts the definition of t1. Now let us check that Ω0\Ω¯⊂U(t2), which is equivalent to Y(t2)⊂Ω¯. Suppose, by contradiction, that there exists x0∈Y(t2)\Ω¯. Now the set Y(r0) comes into play. Recall that Y(r0) is a set with positive reach by Corollary 1. By (14), the segment joining x0 to πY(r0)(x0) must intersect the boundary ∂Ω at some point z≠x0, and we have dY(r0)(z)=|z−πY(r0)(x0)|<dY(r0)(x0). Using (17), the last inequality leads to dX(x0)<dX(z). However we also have t2≤dX(x0) because x0∈Y(t2), hence we get t2<dX(z) in contrast with the definition of t2. In summary, we have


U(t1)⊂Ω0\Ω¯⊂U(t2)








and by comparison we get


v2≤vinΩ0\Ω¯,v≤v1inU(t1).



(26)







Now choose Pi∈∂Ω such that dX(Pi)=ti for i=1,2. Assume, by contradiction, that t1<t2. By (26) we obtain


q(t2)=|∇v(P2)|≤|∇v2(P2)||∇v1(P1)|≤|∇v(P1)|=q(t1).











For this purpose, note that vi is differentiable at Pi, i=1,2, because t2<r0 as a consequence of assumption (14). Finally, using (22), we arrive at


t2q(t2)≤1≤t1q(t1),








and the proof of Claim (ii), as well as the proof of Claim (iii) proceeds as before. □
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Figure 1. The half-moon X=B¯R(0,0)\BR(R,0)⊂R2 satisfies reach(X)=R. The point x=(R,0) has infinitely many nearest points y∈X. 
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