

  symmetry-11-00480




symmetry-11-00480







Symmetry 2019, 11(4), 480; doi:10.3390/sym11040480




Article



Shrinking Extragradient Method for Pseudomonotone Equilibrium Problems and Quasi-Nonexpansive Mappings



Manatchanok Khonchaliew 1, Ali Farajzadeh 2 and Narin Petrot 1,3,*[image: Orcid]





1



Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand






2



Department of Mathematics, Razi University, Kermanshah 67149, Iran






3



Centre of Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand









*



Correspondence: narinp@nu.ac.th







Received: 8 March 2019 / Accepted: 29 March 2019 / Published: 3 April 2019



Abstract

:

This paper presents two shrinking extragradient algorithms that can both find the solution sets of equilibrium problems for pseudomonotone bifunctions and find the sets of fixed points of quasi-nonexpansive mappings in a real Hilbert space. Under some constraint qualifications of the scalar sequences, these two new algorithms show strong convergence. Some numerical experiments are presented to demonstrate the new algorithms. Finally, the two introduced algorithms are compared with a standard, well-known algorithm.
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1. Introduction


The equilibrium problem started to gain interest after the publication of a paper by Blum and Oettli [1], which discussed the problem of finding a point x*∈C such that


f(x*,y)≥0,∀y∈C,



(1)




where C is a nonempty closed convex subset of a real Hilbert space H, and f:C×C→(−∞,+∞) is a bifunction. This well-known equilibrium model (1) has been used for studying a variety of mathematical models for physics, chemistry, engineering, and economics. In addition, the equilibrium problem (1) can be applied to many mathematical problems, such as optimization problems, variational inequality problems, minimax problems, Nash equilibrium problems, saddle point problems, and fixed point problems, see [1,2,3,4], and the references therein.



In order to solve the equilibrium problem (1), when f is a monotone bifunction, approximate solutions are frequently based on the proximal point method. That is, given xk, at each step, the next iterate xk+1 can be found by solving the following regularized equilibrium problem: find x∈C such that


f(x,y)+1rk⟨y−x,x−xk⟩≥0,∀y∈C,



(2)




where {rk}⊂(0,∞). Note that the existence of each xk is guaranteed, on condition that the subproblem (2) is a strongly monotone problem (see [5,6]). However, if f is a pseudomonotone bifunction (a property which is weaker than a monotone) the strong monotone-ness of the problem (2) cannot be guaranteed. Therefore, the sequence {xk} may not be well-defined. To overcome this drawback, Tran et al. [7] proposed the following extragradient method for solving the equilibrium problem, when the considered bifunction f is pseudomonotone and Lipschitz-type continuous with positive constants L1 and L2:


x0∈C,yk=argmin{ρf(xk,y)+12∥xk−y∥2:y∈C},xk+1=argmin{ρf(yk,y)+12∥xk−y∥2:y∈C},



(3)




where 0<ρ<min{12L1,12L2}. Tran et al. guaranteed that the sequence {xk} generated by (3) converges weakly to a solution of the equilibrium problem (1).



On the other hand, for a nonempty closed convex subset C of H and a mapping T:C→C, the fixed point problem is a problem of finding a point x∈C such that Tx=x. This fixed point problem has many important applications, such as optimization problems, variational inequality problems, minimax problems, and saddle point problems, see [8,9,10,11], and the references therein. The set of fixed points of a mapping T will be represented by Fix(T).



An iteration method for finding fixed points of the mapping T was proposed by Mann [12] as follows:


x0∈C,xk+1=(1−αk)xk+αkTxk,



(4)




where {αk}⊂(0,1) and ∑k=0∞αk=∞. If T is a nonexpansive mapping and has a fixed point, then the sequence {xk} generated by (4) converges weakly to a fixed point of T. In addition, in 1994, Park and Jeong [13] showed that if T is a quasi-nonexpansive mapping with I−T demiclosed at 0, then the sequence which is generated by the Mann iteration method converges weakly to a fixed point of T.



Furthermore, in order to obtain a strong convergence result for the Mann iteration method, Nakajo and Takahashi [14] proposed the following hybrid method:


x0∈C,yk=αkxk+(1−αk)Txk,Ck={x∈C:∥yk−x∥≤∥xk−x∥},Qk={x∈C:⟨x0−xk,x−xk⟩≤0},xk+1=PCk∩Qk(x0),



(5)




where {αk}⊂[0,1] such that αk≤1−α¯ for some α¯∈(0,1], and PCk∩Qk is the metric projection onto Ck∩Qk. Nakajo and Takahashi proved that if T is a nonexpansive mapping, then the sequence {xk} generated by (5) converges strongly to PFix(T)(x0).



In addition, in 1974, Ishikawa [15] proposed the following method for finding fixed points of a Lipschitz pseudocontractive mapping T:


x0∈C,yk=(1−αk)xk+αkTxk,xk+1=(1−βk)xk+βkTyk,



(6)




where 0≤βk≤αk≤1, limk→∞αk=0 and ∑k=0∞αkβk=∞. If C is a convex compact subset of H, then the sequence {xk} generated by (6) converges strongly to fixed points of T. It has been previously shown that the Mann iteration method is generally not applicable for finding fixed points of a Lipschitz pseudocontractive mapping in a Hilbert space. For example, see [16].



In 2008, by using Ishikawa’s iteration concept, Takahashi et al. [17] proposed the following hybrid method, called the shrinking projection method, which is different from Nakajo and Takahashi’s method [14]:


u0∈H,C1=C,x1=PC1(u0),yk=αkxk+(1−αk)Txk,zk=βkxk+(1−βk)Tyk,Ck+1={x∈Ck:∥zk−x∥≤∥xk−x∥},xk+1=PCk+1(x0),



(7)




where {αk}⊂[α̲,α¯] with 0<α̲≤α¯<1, and {βk}⊂[0,1−β¯] for some β¯∈(0,1). Takahashi et al. proved that if T is a nonexpansive mapping, then the sequence {xk} generated by (7) converges strongly to PFix(T)(x0).



In recent years, many algorithms have been proposed for finding a common element of the set of solutions of the equilibrium problem and the set of solutions of the fixed point problem. See, for instance, [8,11,18,19,20,21,22,23] and the references therein. In 2016, by using both hybrid and extragradient methods together in combination with Ishikawa’s iteration concept, Dinh and Kim [24] proposed the following iteration method for finding a common element of fixed points of a symmetric generalized hybrid mapping T and the set of solutions of the equilibrium problem, when a bifunction f is pseudomonotone and Lipschitz-type continuous with positive constants L1 and L2:


x0∈C,yk=argmin{ρkf(xk,y)+12∥xk−y∥2:y∈C},zk=argmin{ρkf(yk,y)+12∥xk−y∥2:y∈C},tk=αkxk+(1−αk)Txk,uk=βktk+(1−βk)Tzk,Ck={x∈H:∥x−uk∥≤∥x−xk∥},Qk={x∈H:⟨x−xk,x0−xk⟩≤0},xk+1=PCk∩Qk∩C(x0),



(8)




where {ρk}⊂[ρ̲,ρ¯] with 0<ρ̲≤ρ¯<min{12L1,12L2}, {αk}⊂[0,1] such that limk→∞αk=1, and {βk}⊂[0,1−β¯] for some β¯∈(0,1). Dinh and Kim proved that the sequence {xk} generated by (8) converges strongly to PEP(f,C)∩Fix(T)(x0), where EP(f,C) is the solution set of the equilibrium problem.



Now, let us consider the problem of finding a common solution of a finite family of equilibrium problems (CSEP). Let C be a nonempty closed convex subset of H and let fi:C×C→(−∞,+∞), i=1,…,N, be bifunctions satisfying fi(x,x)=0 for each x∈C. The problem CSEP is to find x*∈C such that


fi(x*,y)≥0,∀y∈C,i=1,…,N.



(9)







The solution set of the problem CSEP will be denoted by ∩i=1NEP(fi,C). It is worth pointing out that the problem CSEP is a generalization of many mathematical models, such as common solutions to variational inequality problems, convex feasibility problems and common fixed point problems. See [1,25,26,27] for more details. In 2016, Hieu et al. [28] considered the following problem:


find a pointx*∈Csuch thatTjx*=x*,j=1,…,M,andfi(x*,y)≥0,∀y∈C,i=1,…,N,



(10)




where C is a nonempty closed convex subset of H, Tj:C→C, j=1,…,M, are mappings, and fi:C×C→(−∞,+∞), i=1,…,N, are bifunctions satisfying fi(x,x)=0 for each x∈C. From now on, the solution set of problem (10) will be denoted by S. That is:


S:=(∩j=1MFix(Tj))∩(∩i=1NEP(fi,C)).











By using both hybrid and extragradient methods together in combination with Mann’s iteration concept and parallel splitting-up techniques (see [25,29]), they proposed the following algorithm for finding the solution set of problem (10), when mappings are nonexpansive, and bifunctions are pseudomonotone and Lipschitz-type continuous with positive constants L1 and L2:


x0∈C,yki=argmin{ρfi(xk,y)+12∥xk−y∥2:y∈C},i=1,2,…,N,zki=argmin{ρfi(yki,y)+12∥xk−y∥2:y∈C},i=1,2,…,N,z¯k=argmax{∥zki−xk∥:i=1,2,…,N},ukj=αkxk+(1−αk)Tjz¯k,j=1,2,…,M,u¯k=argmax{∥ukj−xk∥:j=1,2,…,M},Ck={x∈C:∥x−u¯k∥≤∥x−xk∥},Qk={x∈C:⟨x−xk,x0−xk⟩≤0},xk+1=PCk∩Qk(x0),



(11)




where 0<ρ<min{12L1,12L2}, and {αk}⊂(0,1) such that limsupk→∞αk<1. Hieu et al. proved that the sequence {xk} generated by (PHMEM) converges strongly to PS(x0). The algorithm (11) is called PHMEM method.



The current study will continue developing methods for finding the solution set of problem (10). Roughly speaking, some new iterative algorithms will be introduced for finding the solution set of problem (10). Some numerical examples will be considered and the introduced methods will be discussed and compared with the PHMEM algorithm.



This paper is organized as follows: In Section 2, some relevant definitions and properties will be reviewed for use in subsequent sections. Section 3 will present two shrinking extragradient algorithms and prove their convergence. Finally, in Section 4, the performance of the introduced algorithms will be compared to the performance of the PHMEM algorithm and discussed.




2. Preliminaries


This section will present some definitions and properties that will be used subsequently. First, let H be a real Hilbert space induced by the inner product ⟨·,·⟩ and norm ∥·∥. The symbols → and ⇀ will be used here to denote the strong convergence and the weak convergence in H, respectively.



Now, recalled here are definitions of nonlinear mappings related to this work.



Definition 1 

([30,31]). Let C be a nonempty closed convex subset of H. A mapping T:C→C is said to be:

	(i) 

	
pseudocontractive if


∥Tx−Ty∥2≤∥x−y∥2+∥(I−T)x−(I−T)y∥2,∀x,y∈C,








where I denotes the identity operator on H.




	(ii) 

	
Lipschitzian if there exists L≥0 such that


∥Tx−Ty∥≤L∥x−y∥,∀x,y∈C.








In particular, if L=1, then T is said to be nonexpansive.




	(iii) 

	
quasi-nonexpansive if Fix(T) is nonempty and


∥Tx−p∥≤∥x−p∥,∀x∈C,p∈Fix(T).












	(iv) 

	
(α,β,γ,δ)-symmetric generalized hybrid if there exists α,β,γ,δ∈(−∞,+∞) such that


α∥Tx−Ty∥2+β(∥x−Ty∥2+∥y−Tx∥2)+γ∥x−y∥2+δ(∥x−Tx∥2+∥y−Ty∥2)≤0,∀x,y∈C.



















Definition 2. 

(see [32]) Let C be a nonempty closed convex subset of H and T:C→H be a mapping. The mapping T is said to be demiclosed at y∈H if for any sequence {xk}⊂C with xk⇀x*∈C and Txk→y imply Tx*=y.





Note that the class of pseudocontractive mappings includes the class of nonexpansive mappings. In addition, a nonexpansive mapping with at least one fixed point is a quasi-nonexpansive mapping, but the converse is not true. For example, see [33]. Moreover, if a (α,β,γ,δ)-symmetric generalized hybrid mapping satisfies (1)α+2β+γ≥0, (2)α+β>0 and (3)δ≥0 then T is quasi-nonexpansive and I−T demiclosed at 0 (see [34,35]). Moreover, Fix(T) is closed and convex when T is a quasi-nonexpansive mapping (see [36]).



Next, we recall definitions and facts for considering the equilibruim problems.



Definition 3 

([1,4,37]). Let C be a nonempty closed convex subset of H and f:C×C→(−∞,+∞) be a bifunction. The bifunction f is said to be:

	(i) 

	
strongly monotone on C if there exists a constant γ>0 such that


f(x,y)+f(y,x)≤−γ∥x−y∥2,∀x,y∈C;












	(ii) 

	
monotone on C if


f(x,y)+f(y,x)≤0,∀x,y∈C;












	(iii) 

	
pseudomonotone on C if


∀x,y∈C,f(x,y)≥0⇒f(y,x)≤0.












	(iv) 

	
Lipshitz-type continuous on C with constants L1>0 and L2>0 if


f(x,y)+f(y,z)≥f(x,z)−L1∥x−y∥2−L2∥y−z∥2,∀x,y,z∈C.



















Remark 1.

From Definition 3, we observe that (i) ⇒ (ii) ⇒ (iii). However, if f is pseudomonotone, f might not be monotone on C. For example, see [38].





For a nonempty closed convex subset C of H and a bifunction f:C×C→(−∞,+∞) satisfying f(x,x)=0 for each x∈C. In this paper, we are concerned with the following assumptions:

	(A1)

	
f is weakly continuous on C×C in the sense that, if x,y∈C and {xk}, {yk} are two sequences in C converge weakly to x and y respectively, then f(xk,yk) converges to f(x,y);




	(A2)

	
f(x,·) is convex and subdifferentiable on C for each fixed x∈C;




	(A3)

	
f is psuedomonotone on C;




	(A4)

	
f is Lipshitz-type continuous on C with constants L1>0 and L2>0.









It is well-known that the solution set EP(f,C) is closed and convex, when the bifunction f satisfies the assumptions (A1)−(A3). See, for instance, [7,39,40].



The following facts are very important in order to obtain our main results.



Lemma 1 

([18]). Let f:C×C→(−∞,+∞) be satisfied (A2)−(A4). If EP(f,C) is nonempty set and 0<ρ0<min{12L1,12L2}. Let x0∈C. If y0 and z0 are defined by


y0=argmin{ρ0f(x0,w)+12∥w−x0∥2:w∈C},z0=argmin{ρ0f(y0,w)+12∥w−x0∥2:w∈C},








then,

	(i) 

	
ρ0[f(x0,w)−f(x0,y0)]≥⟨y0−x0,y0−w⟩, for all w∈C;




	(ii) 

	
∥z0−q∥2≤∥x0−q∥2−(1−2ρ0L1)∥x0−y0∥2−(1−2ρ0L2)∥y0−z0∥2, for all q∈EP(f,C).











This section will be closed by recalling the projection mapping and calculus concepts in Hilbert space.



Let C be a nonempty closed convex subset of H. For each x∈H, we denote the metric projection of x onto C by PC(x), that is


∥x−PC(x)∥≤∥y−x∥,∀y∈C.











The following facts will also be used in this paper.



Lemma 2.

(see, for instance, [41,42]) Let C be a nonempty closed convex subset of H. Then

	(i) 

	
PC(x) is singleton and well-defined for each x∈H;




	(ii) 

	
z=PC(x) if and only if ⟨x−z,y−z⟩≤0, ∀y∈C;




	(iii) 

	
∥PC(x)−PC(y)∥2≤∥x−y∥2−∥PC(x)−x+y−PC(y)∥2, ∀x,y∈C.











For a nonempty closed convex subset C of H and a convex function g:C→R, the subdifferential of g at z∈C is defined by


∂g(z)={w∈C:g(y)−g(z)≥⟨w,y−z⟩,∀y∈C}.











The function g is said to be subdifferentiable at z if ∂g(z)≠∅.




3. Main Result


In this section, we propose two shrinking extragradient algorithms for finding a solution of problem (10), when each mapping Tj, j=1,2,…,M, is quasi-nonexpansive with I−Tj demiclosed at 0, and each bifunction fi, i=1,2,…,N, satisfies all the assumptions (A1)−(A4). We start by observing that if each bifunction fi, i=1,2,…,N, is Lipshitz-type continuous on C with constants L1i>0 and L2i>0, then


fi(x,y)+fi(y,z)≥fi(x,z)−L1i∥x−y∥2−L2i∥y−z∥2≥fi(x,z)−L1∥x−y∥2−L2∥y−z∥2,








where L1=max{L1i:i=1,2,…,N} and L2=max{L2i:i=1,2,…,N}. This means the bifunctions fi, i=1,2,…,N, are Lipshitz-type continuous on C with constants L1>0 and L2>0. Of course, we will use this notation in this paper. Moreover, for each N∈N and k∈N∪{0}, we denote [k]N for a modulo function at k with respect to N, that is


[k]N=k(modN)+1.











Now, we propose a following cyclic algorithm.



CSEM Algorithm (Cyclic Shrinking Extragradient Method)



Initialization. Pick x0∈C=:C0, choose parameters {ρk} with 0<infρk≤supρk<min{12L1,12L2}, {αk}⊂[0,1] such that limk→∞αk=1, and {βk} with 0≤infβk≤supβk<1.



Step 1. Solve the strongly convex program


yk=argmin{ρkf[k]N(xk,y)+12∥y−xk∥2:y∈C}.











Step 2. Solve the strongly convex program


zk=argmin{ρkf[k]N(yk,y)+12∥y−xk∥2:y∈C}.











Step 3. Compute


tk=αkxk+(1−αk)T[k]Mxk,uk=βktk+(1−βk)T[k]Mzk.











Step 4. Construct closed convex subset of C:


Ck+1={x∈Ck:∥x−uk∥≤∥x−xk∥}.











Step 5. The next approximation xk+1 is defined as the projection of x0 onto Ck+1, i.e.,


xk+1=PCk+1(x0).











Step 6. Put k=k+1 and go to Step 1.



Before going to prove the strong convergence of CSEM Algorithm, we need the following lemma.



Lemma 3.

Suppose that the solution set S is nonempty. Then, the sequence {xk} which is generated by CSEM Algorithm is well-defined.





Proof. 

To prove the Lemma, it suffices to show that Ck is a nonempty closed and convex subset of H, for each k∈N∪{0}. Firstly, we will show the non-emptiness by showing that S⊂Ck, for each k∈N∪{0}. Obviously, S⊂C0.



Now, let q∈S. Then, by Lemma 1 (ii), we have


∥zk−q∥2≤∥xk−q∥2−(1−2ρkL1)∥xk−yk∥2−(1−2ρkL2)∥yk−zk∥2,








for each k∈N∪{0}. This implies that


∥zk−q∥≤∥xk−q∥,



(12)




for each k∈N∪{0}. On the other hand, since q∈Fix(Tj), it follows from the quasi-nonexpansivity of each Tj (j∈{1,2,…,M}) and the definitions of tk, uk that


∥tk−q∥≤αk∥xk−q∥+(1−αk)∥T[k]Mxk−q∥≤αk∥xk−q∥+(1−αk)∥xk−q∥=∥xk−q∥,



(13)




and


∥uk−q∥≤βk∥tk−q∥+(1−βk)∥T[k]Mzk−q∥≤βk∥tk−q∥+(1−βk)∥zk−q∥,








for each k∈N∪{0}. The relations (12) and (13) imply that


∥uk−q∥≤βk∥xk−q∥+(1−βk)∥xk−q∥=∥xk−q∥,



(14)




for each k∈N∪{0}. Now, suppose that S⊂Ck. Thus, by using (14), we see that S⊂Ck+1. So, by induction, we have S⊂Ck, for each k∈N∪{0}. Since S is a nonempty set, we obtain that Ck is a nonempty set, for each k∈N∪{0}.



Next, we show that Ck is a closed and convex subset, for each k∈N∪{0}. Note that we already have that C0 is a closed and convex subset. Now, suppose that Ck is a closed and convex subset, we will show that Ck+1 is likewise. To do this, let us consider a set Bk={x∈H:∥x−uk∥≤∥x−xk∥}. We see that


Bk={x∈H:⟨xk−uk,x⟩≤12(∥xk∥2−∥uk∥2)}.











This means that Bk is a halfspace and Ck+1=Ck∩Bk. Thus, Ck+1 is a closed and convex subset. Thus, by induction, we can conclude that Ck is a closed and convex subset, for each k∈N∪{0}. Consequently, we can guarantee that {xk} is well-defined.  □





Theorem 1.

Suppose that the solution set S is nonempty. Then, the sequence {xk} which is generated by CSEM Algorithm converges strongly to PS(x0).





Proof. 

Let q∈S. By the definition of xk+1, we observe that xk+1∈Ck+1⊂Ck, for each k∈N∪{0}. Since xk=PCk(x0) and xk+1∈Ck, we have


∥xk−x0∥≤∥xk+1−x0∥,








for each k∈N∪{0}. This means that {∥xk−x0∥} is a nondecreasing sequence. Similarly, for each q∈S⊂Ck+1, we obtain that


∥xk+1−x0∥≤∥q−x0∥,








for each k∈N∪{0}. By the above inequalities, we get


∥xk−x0∥≤∥q−x0∥,



(15)




for each k∈N∪{0}. So {∥xk−x0∥} is a bounded sequence. Consequently, we can conclude that {∥xk−x0∥} is a convergent sequence. Moreover, we see that {xk} is bounded. Thus, in view of (13) and (14), we get that {tk} and {uk} are also bounded. Suppose k,j∈N∪{0} such that k>j. It follows that xk∈Ck⊂Cj. Then, by Lemma 2 (iii), we have


∥PCj(xk)−PCj(x0)∥2≤∥x0−xk∥2−∥PCj(xk)−xk+x0−PCj(x0)∥2.











Consequently,


∥xk−xj∥2≤∥x0−xk∥2−∥xj−x0∥2.











Thus, by using the existence of limk→∞∥xk−x0∥, we get


limk,j→∞∥xk−xj∥=0.











That is {xk} is a Cauchy sequence in C. Since C is closed, there exists p∈C such that


limk→∞xk=p.



(16)







By the definition of Ck+1 and xk+1∈Ck, we see that


∥xk+1−uk∥≤∥xk+1−xk∥,








for each k∈N∪{0}. It follows that


∥uk−xk∥≤∥uk−xk+1∥+∥xk+1−xk∥≤∥xk+1−xk∥+∥xk+1−xk∥=2∥xk+1−xk∥,



(17)




for each k∈N∪{0}. Since xk→p and xk+1→p, as k→∞, we obtain that


limk→∞∥xk+1−xk∥=0.











This together with (17) imply that


limk→∞∥uk−xk∥=0.



(18)







Since limk→∞αk=1 and the quasi-nonexpansivity of each Tj (j∈{1,2,…,M}), it follows that


limk→∞∥tk−xk∥=limk→∞∥αkxk+(1−αk)T[k]Mxk−xk∥=limk→∞(1−αk)∥xk−T[k]Mxk∥=0.



(19)







Consider,


∥uk−q∥2=∥βk(tk−q)+(1−βk)(T[k]Mzk−q)∥2=βk∥tk−q∥2+(1−βk)∥T[k]Mzk−q∥2−βk(1−βk)∥tk−T[k]Mzk∥2≤βk∥tk−q∥2+(1−βk)∥T[k]Mzk−q∥2,








for each k∈N∪{0}. By using (13) and the quasi-nonexpansivity of each Tj (j∈{1,2,…,M}), we obtain


∥uk−q∥2≤βk∥xk−q∥2+(1−βk)∥zk−q∥2,








for each k∈N∪{0}. Then, by Lemma 1 (ii), we have


∥uk−q∥2≤βk∥xk−q∥2+(1−βk)[∥xk−q∥2−(1−2ρkL1)∥xk−yk∥2−(1−2ρkL2)∥yk−zk∥2]≤∥xk−q∥2−(1−βk)[(1−2ρkL1)∥xk−yk∥2+(1−2ρkL2)∥yk−zk∥2],








for each k∈N∪{0}. It follows that


(1−βk)[(1−2ρkL1)∥xk−yk∥2+(1−2ρkL2)∥yk−zk∥2]≤∥xk−uk∥(∥xk−q∥+∥uk−q∥),



(20)




for each k∈N∪{0}. Thus, by using (18) and the choices of {βk}, {ρk}, we have


limk→∞∥xk−yk∥=0,



(21)




and


limk→∞∥yk−zk∥=0.



(22)







These imply that


limk→∞∥xk−zk∥=0.



(23)







Then, by limk→∞xk=p, we also have


limk→∞yk=p,



(24)




and


limk→∞zk=p.



(25)







Next, we claim that p∈S. From the definition of uk, we see that


(1−βk)∥T[k]Mzk−zk∥=∥uk−zk−βk(tk−zk)∥≤∥uk−zk∥+βk∥tk−zk∥≤∥uk−xk∥+βk∥tk−xk∥+(1+βk)∥xk−zk∥,








for each k∈N∪{0}. Then, by using (18), (19) and (23), we have


limk→∞∥T[k]Mzk−zk∥=0.



(26)







Furthermore, for each fixed j∈{1,2,…,M}, we observe that


[(j−1)+kM]M=j,








for each k∈N∪{0}. Thus, it follows from (26) that


0=limk→∞∥T[(j−1)+kM]Mz(j−1)+kM−z(j−1)+kM∥=limk→∞∥Tjz(j−1)+kM−z(j−1)+kM∥,



(27)




for each j∈{1,2,…,M}. Since zk→p, as k→∞, then for each j∈{1,2,…,M}, we get z(j−1)+kM→p, as k→∞. Combining with (27), by the demiclosedness at 0 of I−Tj, implies that


Tjp=p,








for each j=1,2,…,M.



Similarly, for each fixed i∈{1,2,…,N}, we note that


[(i−1)+kN]N=i,








for each k∈N∪{0}. Since xk→p and yk→p, as k→∞, then for each i∈{1,2,…,N}, we have x(i−1)+kN→p and y(i−1)+kN→p, as k→∞. By Lemma 1 (i), for each i∈{1,2,…,N}, we obtain


ρ(i−1)+kN[f[(i−1)+kN]N(x(i−1)+kN,y)−f[(i−1)+kN]N(x(i−1)+kN,y(i−1)+kN)]≥⟨y(i−1)+kN−x(i−1)+kN,y(i−1)+kN−y⟩,∀y∈C.











It follows that, for each i∈{1,2,…,N}, we have


f[(i−1)+kN]N(x(i−1)+kN,y)−f[(i−1)+kN]N(x(i−1)+kN,y(i−1)+kN)≥−1ρ(i−1)+kN∥y(i−1)+kN−x(i−1)+kN∥∥y(i−1)+kN−y∥,∀y∈C.











By using (21) and weak continuity of each fi (i∈{1,2,…,N}), we get that


fi(p,y)≥0,∀y∈C,








for each i=1,2,…,N. Then, we had shown that p∈S.



Finally, we will show that p=PS(x0). In fact, since PS(x0)∈S, it follows from (15) that


∥xk−x0∥≤∥PS(x0)−x0∥,








for each k∈N∪{0}. Then, by using the continuity of norm and limk→∞xk=p, we see that


∥p−x0∥=limk→∞∥xk−x0∥≤∥PS(x0)−x0∥.











Thus, by the definition of PS(x0) and p∈S, we obtain that p=PS(x0). This completes the proof.  □





Next, by replacing cyclic method by parallel method, we propose the following algorithm.



PSEM Algorithm (Parallel Shrinking Extragradient Method)



Initialization. Pick x0∈C=:C0, choose parameters {ρki} with 0<infρki≤supρki<min{12L1,12L2},i=1,2,…,N, {αk}⊂[0,1] such that limk→∞αk=1, and {βk} with 0≤infβk≤supβk<1.



Step 1. Solve N strongly convex programs


yki=argmin{ρkifi(xk,y)+12∥y−xk∥2:y∈C},i=1,2,…,N.











Step 2. Solve N strongly convex programs


zki=argmin{ρkifi(yki,y)+12∥y−xk∥2:y∈C},i=1,2,…,N.











Step 3. Find the farthest element from xk among zki, i=1,2,…,N, i.e.,


z¯k=argmax{∥zki−xk∥:i=1,2,…,N}.











Step 4. Compute


tkj=αkxk+(1−αk)Tjxk,j=1,2,…,M,ukj=βktkj+(1−βk)Tjz¯k,j=1,2,…,M.











Step 5. Find the farthest element from xk among ukj, j=1,2,…,M, i.e.,


u¯k=argmax{∥ukj−xk∥:j=1,2,…,M}.











Step 6. Construct closed convex subset of C:


Ck+1={x∈Ck:∥x−u¯k∥≤∥x−xk∥}.











Step 7. The next approximation xk+1 is defined as the projection of x0 onto Ck+1, i.e.,


xk+1=PCk+1(x0)








.



Step 8. Put k=k+1 and go to Step 1.



Theorem 2.

Suppose that the solution set S is nonempty. Then, the sequence {xk} which is generated by PSEM Algorithm converges strongly to PS(x0).





Proof. 

Let q∈S. By the definition of z¯k, we suppose that ik∈{1,2,…,N} such that zkik=z¯k=argmax{∥zki−xk∥:i=1,2,…,N}. Then, by Lemma 1 (ii), we have


∥z¯k−q∥2≤∥xk−q∥2−(1−2ρkikL1)∥xk−ykik∥2−(1−2ρkikL2)∥ykik−z¯k∥2,








for each k∈N∪{0}. This implies that


∥z¯k−q∥≤∥xk−q∥,



(28)




for each k∈N∪{0}. On the other hand, by the definition of tkj and the quasi-nonexpansivity of each Tj (j∈{1,2,…,M}), we have


∥tkj−q∥≤αk∥xk−q∥+(1−αk)∥Tjxk−q∥≤αk∥xk−q∥+(1−αk)∥xk−q∥=∥xk−q∥,



(29)




for each k∈N∪{0}. Additionally, by the definition of u¯k, we suppose that jk∈{1,2,…,M} such that ukjk=u¯k=argmax{∥ukj−xk∥:j=1,2,…,M}. It follows from the quasi-nonexpansivity of each Tj (j∈{1,2,…,M}) that


∥u¯k−q∥≤βk∥tkjk−q∥+(1−βk)∥Tjkz¯k−q∥≤βk∥tkjk−q∥+(1−βk)∥z¯k−q∥,








for each k∈N∪{0}. The relations (28) and (29) imply that


∥u¯k−q∥≤βk∥xk−q∥+(1−βk)∥xk−q∥=∥xk−q∥,



(30)




for each k∈N∪{0}. Following the proof of Lemma 3 and Theorem 1, we can show that Ck is a closed convex subset of H and S⊂Ck, for each k∈N∪{0}. Moreover, we can check that the sequence {xk} is a convergent sequence, say


limk→∞xk=p,



(31)




for some p∈C.



By the definition of Ck+1 and xk+1∈Ck, we see that


∥xk+1−u¯k∥≤∥xk+1−xk∥,








for each k∈N∪{0}. It follows that


∥u¯k−xk∥≤∥u¯k−xk+1∥+∥xk+1−xk∥≤∥xk+1−xk∥+∥xk+1−xk∥=2∥xk+1−xk∥,



(32)




for each k∈N∪{0}. Since xk→p and xk+1→p, as k→∞, we obtain that


limk→∞∥xk+1−xk∥=0.











This together with (32) implies that


limk→∞∥u¯k−xk∥=0.











Then, by the definition of u¯k, we have


limk→∞∥ukj−xk∥=0,



(33)




for each j=1,2,…,M. Since limk→∞αk=1 and the quasi-nonexpansivity of each Tj (j∈{1,2,…,M}), it follows that


limk→∞∥tkj−xk∥=limk→∞∥αkxk+(1−αk)Tjxk−xk∥=limk→∞(1−αk)∥xk−Tjxk∥=0,



(34)




for each j=1,2,…,M. Beside, by the definition of ukj, for each j=1,2,…,M, we see that


∥ukj−q∥2=∥βk(tkj−q)+(1−βk)(Tjz¯k−q)∥2=βk∥tkj−q∥2+(1−βk)∥Tjz¯k−q∥2−βk(1−βk)∥tkj−Tjz¯k∥2≤βk∥tkj−q∥2+(1−βk)∥Tjz¯k−q∥2,








for each k∈N∪{0}. Thus, by using (29) and the quasi-nonexpansivity of each Tj (j∈{1,2,…,M}), we have


∥ukj−q∥2≤βk∥xk−q∥2+(1−βk)∥z¯k−q∥2,








for k∈N∪{0}. So, by Lemma 1 (ii), for each j=1,2,…,M, we get that


∥ukj−q∥2≤βk∥xk−q∥2+(1−βk)[∥xk−q∥2−(1−2ρkikL1)∥xk−ykik∥2−(1−2ρkikL2)∥ykik−z¯k∥2]=∥xk−q∥2−(1−βk)[(1−2ρkikL1)∥xk−ykik∥2+(1−2ρkikL2)∥ykik−z¯k∥2],








for each k∈N∪{0}. It follows that, for each j=1,2,…,M, we have


(1−βk)[(1−2ρkikL1)∥xk−ykik∥2+(1−2ρkikL2)∥ykik−z¯k∥2]≤∥xk−q∥2−∥ukj−q∥2=∥xk−ukj∥(∥xk−q∥+∥ukj−q∥),



(35)




for each k∈N∪{0}. Thus, by using (33) and the choices of {βk}, {ρki}, we see that


limk→∞∥xk−ykik∥=0,



(36)




and


limk→∞∥ykik−z¯k∥=0.



(37)







These imply that


limk→∞∥xk−z¯k∥=0.



(38)







Then, by the definition of z¯k, we have


limk→∞∥xk−zki∥=0,



(39)




for each i=1,2,…,N. Moreover, by Lemma 1 (ii), for each i=1,2,…,N, we get that


∥zki−q∥2≤∥xk−q∥2−(1−2ρkiL1)∥xk−yki∥2−(1−2ρkiL2)∥yki−zki∥2,








for each k∈N∪{0}. It follows that, for each i=1,2,…,N, we have


(1−2ρkiL1)∥xk−yki∥2+(1−2ρkiL2)∥yki−zki∥2≤∥xk−q∥2−∥zki−q∥2=∥xk−zki∥(∥xk−q∥+∥zki−q∥),








for each k∈N∪{0}. Combining with (39) implies that


limk→∞∥xk−yki∥=0,



(40)




and


limk→∞∥yki−zki∥=0,



(41)




for each i=1,2,…,N. Thus, by using (38), (40) and limk→∞xk=p, we have


limk→∞z¯k=p,



(42)




and


limk→∞yki=p,



(43)




for each i=1,2,…,N.



Next, we claim that p∈S. From the definition of ukj, for each j=1,2,…,M, we see that


(1−βk)∥Tjz¯k−z¯k∥=∥ukj−z¯k−βk(tkj−z¯k)∥≤∥ukj−z¯k∥+βk∥tkj−z¯k∥≤∥ukj−xk∥+βk∥tkj−xk∥+(1+βk)∥xk−z¯k∥,








for each k∈N∪{0}. Thus, in view of (33), (34), and (38), we get that


limk→∞∥Tjz¯k−z¯k∥=0,



(44)




for each j=1,2,…,M. Combining with (42), by the demiclosedness at 0 of I−Tj, implies that


Tjp=p,








for each j=1,2,…,M.



On the other hand, by Lemma 1 (i), for each i=1,2,…,N, we see that


ρki[fi(xk,y)−fi(xk,yki)]≥⟨yki−xk,yki−y⟩,∀y∈C.











It follows that, for each i=1,2,…,N, we get


fi(xk,y)−fi(xk,yki)≥−1ρki∥yki−xk∥∥yki−y∥,∀y∈C.











By using (31), (40), (43) and weak continuity of each fi (i∈{1,2,…,N}), we have


fi(p,y)≥0,∀y∈C,








for each i=1,2,…,N. Thus, we can conclude that p∈S. The rest of the proof is similar to the arguments in the proof of Theorem 1, and it leads to the conclusion that the sequence {xk} converges strongly to PS(x0).  □





Remark 2.

We note that for the PSEM algorithm we solve yki, zki, i=1,2,…,N, by using N bifunctions and compute tkj, ukj, j=1,2,…,M, by using M mappings. The farthest elements from xk among all zki and ukj are chosen for the next step calculation. However, we solve only yk, zk, by using a bifunction and compute only tk, uk, by using a mapping for the CSEM algorithm. After that, we construct closed convex subset Ck+1, and the approximation xk+1 is the projection of x0 onto Ck+1 for both algorithms. We claim that the numbers of iterations of the PSEM algorithm should be less than the CSEM algorithm. However, the computational times of the CSEM algorithm should be less than the PSEM algorithm for sufficiently large N,M. On the other hand, for the PHMEM algorithm they solved yki, zki, i=1,2,…,N, by using N bifunctions, and computed ukj, j=1,2,…,M, by using M mappings. The farthest elements from xk among all zki and ukj are chosen similar to the PSEM algorithm. However, they constructed two closed convex subsets Ck, Qk, and the approximation xk+1 is the projection of x0 onto Ck∩Qk, which is difficult to compute. We will focus on these observations in the next section.






4. A Numerical Experiment


This section will compare the two introduced algorithms, CSEM and PSEM, with the PHMEM algorithm, which was presented in [28]. The following setting is taken from Hieu et al. [28]. Let H=R be a Hilbert space with the standard inner product ⟨x,y⟩=xy and the norm ∥x∥=|x|, for each x,y∈H. To be considered here are the nonexpansive self-mappings Tj, j=1,2,…,M, and the bifunctions fi, i=1,2,…,N, which are given on C=[0,1] by


Tj(x)=xjsinj−1(x)2j−1,j=1,2,…,M,








and


fi(x,y)=Bi(x)(y−x),i=1,2,…,N,








where Bi(x)=0 if 0≤x≤ξi, and Bi(x)=ex−ξi+sin(x−ξi)−1 if ξi<x≤1. Moreover, 0<ξ1<ξ2<…<ξN<1. Then, the bifunctions fi, i=1,2,…,N, satisfy conditions (A1)−(A4) (see [28]). Indeed, the bifunctions fi, i=1,2,…,N, are Lipshitz-type continuous with constants L1=L2=2. Note that the solution set S is nonempty because 0∈S.



The following numerical experiment is considered with these parameters: ρk=15, ξ[k]N=[k]NN+1 for the CSEM algorithm; ρki=15, ξi=iN+1, i=1,2,…,N for the PSEM algorithm, when N=1000 and M=2000. The following six cases of the parameters αk and βk are considered:



Case 1. αk=1−1k+2, βk=1k+2.



Case 2. αk=1−1k+2, βk=0.5+1k+3.



Case 3. αk=1−1k+2, βk=0.99−1k+2.



Case 4. αk=1, βk=1k+2.



Case 5. αk=1, βk=0.5+1k+3.



Case 6. αk=1, βk=0.99−1k+2.



The experiment was written in Matlab R2015b and performed on a PC desktop with Intel(R) Core(TM) i3-3240 CPU @ 3.40GHz 3.40GHz and RAM 4.00 GB. The function fmincon in Matlab Optimization Toolbox was used to solve vectors yk, zk for the CSEM algorithm; yki, zki, i=1,2,…,N, for the PSEM algorithm. The set Ck+1 was computed by using the function solve in Matlab Symbolic Math Toolbox. One can see that the set Ck+1 is the interval [a,b], where a,b∈[0,1], a≤b. Consequently, the metric projection of a point x0 onto the set Ck+1 was computed by using this form


PCk+1(x0)=max{min{x0,b},a},








see [41]. The CSEM and PSEM algorithms were tested along with the PHMEM algorithm by using the stopping criteria |xk+1−xk|<10−4 and the results below were presented as averages calculated from four starting points: x0 at 0.01, 0.25, 0.75 and 1.



Table 1 shows that the parameter βk=1k+2 yields faster computational times and fewer computational iterations than other cases. Compare cases 1–3 with each other and cases 4–6 with each other. Meanwhile, the parameter αk=1, in which the Ishikawa iteration reduces to the Mann iteration, yields slower computational times and more computational iterations than the other case. Compare cases 1 with 4, 2 with 5, and 3 with 6. Moreover, the computational times of the CSEM algorithm are faster than other algorithms, while the computational iterations of the PSEM algorithm are fewer than or equal to other algorithms. Finally, we see that both computational times and iterations of the CSEM and PSEM algorithms are better than or equal to those of the PHMEM algorithm.



Remark 3.

Let us consider the case of parameters αk=1 and βk=0, in which the Ishikawa iteration will be reduced to the Picard iteration. We notice that the convergence of PHMEM algorithm cannot be guaranteed in this setting. The computational results of the CSEM and PSEM algorithms are shown as follows.





From Table 2, we see that both computational times and iterations are better than all those cases presented in Table 1. However, it should be warned that the Picard iteration method may not always converge to a fixed point of a nonexpansive mapping in general. For example, see [43].




5. Conclusions


We introduce the methods for finding a common element of the set of fixed points of a finite family for quasi-nonexpansive mappings and the solution set of equilibrium problems of a finite family for pseudomonotone bifunctions in a real Hilbert space. In fact, we consider both extragradient and shrinking projection methods together in combination with Ishikawa’s iteration concept for introducing a sequence which is strongly convergent to a common solution of the considered problems. Some numerical experiments are also provided and discussed. For the future research direction, the convergence analysis of the proposed algorithms and some practical applications should be considered and implemented.







Author Contributions


Conceptualization, M.K., A.F. and N.P.; methodology, M.K., A.F. and N.P.; formal analysis, M.K., A.F. and N.P.; investigation, M.K., A.F. and N.P.; writing—original draft preparation, M.K., A.F. and N.P.; writing—review and editing, M.K., A.F. and N.P.; funding acquisition, N.P.




Funding


This research is patially supported by Faculty of Science, Naresuan University.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Blum, E.; Oettli, W. From optimization and variational inequalities to equilibrium problems. Math. Stud. 1994, 63, 127–149. [Google Scholar]

	



Bigi, G.; Castellani, M.; Pappalardo, M.; Passacantando, M. Existence and solution methods for equilibria. Eur. J. Oper. Res. 2013, 227, 1–11. [Google Scholar] [CrossRef][Green Version]

	



Daniele, P.; Giannessi, F.; Maugeri, A. Equilibrium Problems and Variational Models; Kluwer: Dordrecht, The Netherlands, 2003. [Google Scholar]

	



Muu, L.D.; Oettli, W. Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. TMA 1992, 18, 1159–1166. [Google Scholar] [CrossRef]

	



Combettes, P.L.; Hirstoaga, A. Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 2005, 6, 117–136. [Google Scholar]

	



Moudafi, A. Proximal point algorithm extended to equilibrium problems. J. Nat. Geom. 1999, 15, 91–100. [Google Scholar]

	



Tran, D.Q.; Dung, L.M.; Nguyen, V.H. Extragradient algorithms extended to equilibrium problems. Optimization 2008, 57, 749–776. [Google Scholar] [CrossRef]

	



Ahn, P.N. A hybrid extragradient method for pseudomonotone equilibrium problems and fixed point problems. Bull. Malays. Math. Sci. Soc. 2013, 36, 107–116. [Google Scholar]

	



Ansari, Q.H.; Nimana, N.; Petrot, N. Split hierarchical variational inequality problems and related problems. Fixed Point Theory Appl. 2014, 2014, 208. [Google Scholar] [CrossRef][Green Version]

	



Iiduka, H. Convex optimization over fixed point sets of quasi-nonexpansive and nonexpansive mappings in utility-based bandwidth allocation problems with operational constraints. J. Comput. Appl. Math. 2015, 282, 225–236. [Google Scholar] [CrossRef]

	



Moradlou, F.; Alizadeh, S. Strong convergence theorem by a new iterative method for equilibrium problems and symmetric generalized hybrid mappings. Mediterr. J. Math. 2016, 13, 379–390. [Google Scholar] [CrossRef]

	



Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]

	



Park, J.Y.; Jeong, J.U. Weak convergence to a fixed point of the sequence of Mann type iterates. J. Math. Anal. Appl. 1994, 184, 75–81. [Google Scholar] [CrossRef]

	



Nakajo, K.; Takahashi, W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 2003, 279, 372–379. [Google Scholar] [CrossRef][Green Version]

	



Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 40, 147–150. [Google Scholar] [CrossRef]

	



Chidume, C.E.; Mutangadura, S.A. An example of the Mann iteration method for Lipschitz pseudocontractions. Proc. Am. Math. Soc. 2001, 129, 2359–2363. [Google Scholar] [CrossRef]

	



Takahashi, W.; Takeuchi, Y.; Kubota, R. Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 2008, 341, 276–286. [Google Scholar] [CrossRef]

	



Ahn, P.N. A hybrid extragradient method extended to fixed point problems and equilibrium problems. Optimization 2013, 62, 271–283. [Google Scholar]

	



Anh, P.N.; Muu, L.D. A hybrid subgradient algorithm for nonexpansive mappings and equilibrium problems. Optim. Lett. 2014, 8, 727–738. [Google Scholar] [CrossRef]

	



Ceng, L.C.; Al-Homidan, S.; Ansari, Q.H.; Yao, J.C. An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings. J. Comput. Appl. Math. 2009, 223, 967–974. [Google Scholar] [CrossRef][Green Version]

	



Maingé, P.E. A hybrid extragradient viscosity methods for monotone operators and fixed point problems. SIAM J. Control. Optim. 2008, 47, 1499–1515. [Google Scholar] [CrossRef]

	



Plubtieng, S.; Kumam, P. Weak convergence theorem for monotone mappings and a countable family of nonexpansive semigroups. J. Comput. Appl. Math. 2009, 224, 614–621. [Google Scholar] [CrossRef]

	



Vuong, P.T.; Strodiot, J.J.; Nguyen, V.H. On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space. Optimization 2015, 64, 429–451. [Google Scholar] [CrossRef]

	



Dinh, B.V.; Kim, D.S. Extragradient algorithms for equilibrium problems and symmetric generalized hybrid mappings. Optim. Lett. 2016, 11, 537–553. [Google Scholar] [CrossRef][Green Version]

	



Anh, P.K.; Hieu, D.V. Parallel and sequential hybrid methods for a finite family of asmyptotically quasi ϕ-nonexpansive mappings. J. Appl. Math. Comput. 2015, 48, 241–263. [Google Scholar] [CrossRef]

	



Censor, Y.; Chen, W.; Combettes, P.L.; Davidi, R.; Herman, G.T. On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput. Optim. Appl. 2012, 51, 1065–1088. [Google Scholar] [CrossRef]

	



Censor, Y.; Gibali, A.; Reich, S.; Sabach, S. Common solutions to variational inequalities. Set-Valued Var. Anal. 2012, 20, 229–247. [Google Scholar] [CrossRef]

	



Hieu, D.V.; Muu, L.D.; Anh, P.K. Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings. Numer. Algor. 2016, 73, 197–217. [Google Scholar] [CrossRef][Green Version]

	



Anh, P.K.; Chung, C.V. Parallel hybrid methods for a finite family of relatively nonexpansive mappings. Numer. Funct. Anal. Optim. 2014, 35, 649–664. [Google Scholar] [CrossRef]

	



Browder, F.E.; Petryshyn, W.V. Construction of fixed points of nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl. 1967, 20, 197–228. [Google Scholar] [CrossRef]

	



Takahashi, W.; Wong, N.C.; Yao, J.C. Fixed point theorems for new generalized hybrid mappings in Hilbert spaces and applications. Taiwan J. Math. 2013, 17, 1597–1611. [Google Scholar] [CrossRef]

	



Browder, F.E. Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Am. Math. Soc. 1968, 74, 660–665. [Google Scholar] [CrossRef]

	



Dotson, W.G., Jr. Fixed points of quasi-nonexpansive mappings. J. Aust. Math. Soc. 1972, 13, 167–170. [Google Scholar] [CrossRef]

	



Hojo, M.; Suzuki, T.; Takahashi, W. Fixed point theorems and convergence theorems for generalized hybrid non-self mappings in Hilbert spaces. J. Nonlinear Convex Anal. 2013, 14, 363–376. [Google Scholar]

	



Kawasaki, T.; Takahashi, W. Existence and mean approximation of fixed points of generalized hybrid mappings in Hilbert spaces. J. Nonlinear Convex Anal. 2013, 14, 71–87. [Google Scholar]

	



Itoh, S.; Takahashi, W. The common fixed point theory of single-valued mappings and multi-valued mappings. Pac. J. Math. 1978, 79, 493–508. [Google Scholar] [CrossRef]

	



Mastroeni, G. On auxiliary principle for equilibrium problems. In Equilibrium Problems and Variational Models; Daniele, P., Giannessi, F., Maugeri, A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 289–298. [Google Scholar]

	



Karamardian, S.; Schaible, S.; Crouzeix, J.P. Characterizations of generalized monotone maps. J. Optim. Theory Appl. 1993, 76, 399–413. [Google Scholar] [CrossRef]

	



Bianchi, M.; Schaible, S. Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 1996, 90, 31–43. [Google Scholar] [CrossRef]

	



Quoc, T.D.; Anh, P.N.; Muu, L.D. Dual extragradient algorithms extended to equilibrium problems. J. Glob. Optim. 2012, 52, 139–159. [Google Scholar] [CrossRef]

	



Andrzej, C. Iterative Methods for Fixed Point Problems in Hilbert Spaces; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]

	



Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA, 1984. [Google Scholar]

	



Krasnoselski, M.A. Two observations about the method of succesive approximations. Uspehi Math. Nauk 1955, 10, 123–127. [Google Scholar]








[image: Table]





Table 1. Numerical results for six different cases of parameters αk and βk.






Table 1. Numerical results for six different cases of parameters αk and βk.





	

	
Average Times (sec)

	
Average Iterations




	
Cases

	
CSEM

	
PSEM

	
PHMEM

	
CSEM

	
PSEM

	
PHMEM






	
1

	
4.905197

	
165.099794

	
173.347257

	
14.25

	
13.75

	
14.25




	
2

	
7.326055

	
287.918141

	
345.025914

	
25.25

	
24.25

	
28.25




	
3

	
20.371064

	
834.001035

	
2004.693844

	
91.25

	
74.25

	
177




	
4

	
5.079676

	
173.091716

	
173.347257

	
14.75

	
14.25

	
14.25




	
5

	
8.016109

	
342.870819

	
345.025914

	
28.75

	
28.25

	
28.25




	
6

	
42.035240

	
1986.147273

	
2004.693844

	
200

	
177

	
177
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Table 2. Numerical results for parameters αk=1 and βk=0.






Table 2. Numerical results for parameters αk=1 and βk=0.





	
Average Times (sec)

	
Average Iterations




	
CSEM

	
PSEM

	
CSEM

	
PSEM






	
4.657696

	
137.200812

	
12.50

	
11.50
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