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Abstract: An interesting regular increasing monotone (RIM) quantifier problem is investigated.
Amin and Emrouznejad [Computers & Industrial Engineering 50(2006) 312–316] have introduced the
extended minimax disparity OWA operator problem to determine the OWA operator weights. In this
paper, we propose a corresponding continuous extension of an extended minimax disparity OWA
model, which is the extended minimax disparity RIM quantifier problem, under the given orness
level and prove it analytically.

Keywords: fuzzy sets; RIM quantifier; extended minimax disparity; OWA model; RIM quantifier
problem

1. Introduction

One of the important topic in the theory of ordered weighted averaging (OWA) operators is
the determination of the associated weights. Several authors have suggested a number of methods
for obtaining associated weights in various areas such as decision making, approximate reasoning,
expert systems, data mining, fuzzy systems and control [1–18]. Researchers can easily see most of
OWA papers in the recent bibliography published in Emrouznejad and Marra [5]. Yager [16] proposed
RIM quantifiers as a method for finding OWA weight vectors through fuzzy linguistic quantifiers.
Liu [19] and Liu and Da [20] gave solutions to the maximum-entropy RIM quantifier model when the
generating functions are differentiable. Liu and Lou [21] studied the equivalence of solutions to the
minimax ratio and maximum-entropy RIM quantifier models, and the equivalence of solutions to the
minimax disparity and minimum-variance RIM quantifier problems. Hong [22,23] gave the proof of
the minimax ratio RIM quantifier problem and the minimax disparity RIM quantifier model when the
generating functions are absolutely continuous. He also gave solutions to the maximum-entropy RIM
quantifier model and the minimum-variance RIM quantifier model when the generating functions
are Lebesgue integrable. Liu [24] proposed a general RIM quantifier determination model, proved
it analytically using the optimal control method and investigated the solution equivalence to the
minimax problem for the RIM quantifier. However, Hong [11] recently provided a modified model for
the general RIM quantifier model and the correct formulation of Liu’s result.

Amin and Emrouznejad [1] have introduced the following the extended minimax disparity OWA
operator model to determine the OWA operator weights:

Minimize max
i∈{1,··· ,n−1}, j∈{i+1,··· ,n}

|wi − wj|

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.
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In this paper, we propose a corresponding extended minimax disparity model for RIM quantifier
determination under given orness level and prove it analytically. This paper is organized as follows:
Section 2 presents the preliminaries and Section 3 reviews some models for the RIM quantifier problems
and propose the extended minimax disparity model for the RIM quantifier problem. In Section 4,
we prove the extended minimax disparity model problem mathematically for the case in which the
generating functions are Lesbegue integrable functions.

2. Preliminaries

Yager [15] introduced a new aggregation technique based on the OWA operators. An OWA
operator of dimension n is a function F : Rn → R that has an associated weighting vector
W = (w1, · · · , wn)T of having the properties 0 ≤ wi ≤ 1, i = 1, · · · , n, w1 + · · · + wn = 1,
and such that

F(a1, · · · , an) =
n

∑
i=1

wibi,

where bj is the jth largest element of the collection of the aggregated objects {a1, · · · , an}. In [15], Yager
defined a measure of “orness” associated with the vector W of an OWA operator as

orness(W) =
n

∑
i=1

n− i
n− 1

wi,

and it characterizes the degree to which the aggregation is like an or operation.
The RIM quantifiers was introduced by Yager [16] as a method for obtaining the OWA weight

vectors via fuzzy linguistic quantifiers. The RIM quantifiers can provide information aggregation
procedures guided by a dimension independent description and verbally expressed concepts of the
desired aggregation.

Definition 1 ([14]). A fuzzy subset Q is called a RIM quantifier if Q(0) = 0, Q(1) = 1 and Q(x) ≥ Q(y)
for x > y.

The quantifier f or all is represented by the fuzzy set

Q∗(r) =

{
1, x = 1,

0, x 6= 1.

The quantifier there exist, not none, is defined as

Q∗(r) =

{
0, x = 0,

1, x 6= 0.

Both of these are examples of RIM quantifier. To analyze the relationship between OWA and RIM
quantifier, a generating function representation of RIM quantifier was proposed.

Definition 2. For f (t) on [0, 1] and a RIM quantifier Q(x), f (t) is called generating function of Q(x),
if it satisfies

Q(x) =
∫ x

0
f (t)dt

where f (t) ≥ 0 and
∫ 1

0 f (t)dt = 1.

If Q(x) is an absolutely continuous function, then f (x) is a Lesbegue integrable function; moreover,
f (x) is unique in the sense of “almost everywhere” in abbreviated form, a.e.
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Yager extended the orness measure of OWA operator, and defined the orness of a RIM
quantifier [16].

orness(Q) =
∫ 1

0
Q(x)dx =

∫ 1

0
(1− t) f (t)dt.

As the RIM quantifier can be seen as the continuous form of OWA operator with generating
function, OWA optimization problem is extended to the RIM quantifier case.

The definitions of essential supremum and essential infimum [21] of f are as follows:

ess sup f = inf {t : |{x ∈ [0, 1] : f (x) > t}| = 0} ,

ess in f f = sup {t : |{x ∈ [0, 1] : f (x) < t}| = 0} ,

where |E| is the Lebesgue measure of the Lebesgue measurable set E.

3. Models for the RIM Quantifier Problems

Fullér and Majlender [8] proposed the minimum variance model, which minimizes the variance of
OWA operator weights under a given level of orness. Their method requires the proof of the following
mathematical programming problem:

Minimize D(W) =
1
n

n−1

∑
i=1

(
wi −

1
n

)2

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

Liu [19,24] extended the minimum variance problem for OWA operator to the RIM quantifier
problem case:

Minimize D f =
∫ 1

0
f 2(r)dr− 1

subject to
∫ 1

0
r f (r)dr = 1− α, 0 < α < 1,∫ 1

0
f (r)dr = 1, f (r) ≥ 0.

Wang and Parkan [13] proposed the minimax disparity problem as follows:

Minimize max
i∈{1,··· ,n−1}

|wi − wi+1|

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

Similar to the minimax disparity OWA operator problem, Hong [11] proposed the minimax
disparity RIM quantifier problem as follows:

Minimize ess supt∈[0,1]
∣∣ f ′(t)∣∣

subject to
∫ 1

0
r f (r)dr = 1− α, 0 < α < 1,∫ 1

0
f (r)dr = 1, absolutely continuous f (r) ≥ 0.
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Wang et al. [14] have introduced the following least squares deviation (LSD) method as an
alternative approach to determine the OWA operator weights.

Minimize
n−1

∑
i=1

(wi − wi−1)
2

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

Hong [25] proposed the following corresponding least squares disparity RIM quantifier problem
under a given orness level:

Minimize D f =
∫ 1

0
( f ′)2(r)dr

subject to
∫ 1

0
(1− r) f (r)dr = α, 0 < α < 1,∫ 1

0
f (r)dr = 1,

f (r) > 0.

Recently, Amin and Emrouznejad [1] proposed a problem of minimizing the maximum disparity
of any distinct pairs of weights instead of adjacent weights. that is:

Minimize max
i∈{1,··· ,n−1}, j∈{i+1,··· ,n}

|wi − wj| (1)

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

We consider the following easy important fact.
Note

maxi∈{1,··· ,n−1}, j∈{i+1,··· ,n}|wi − wj| = max wi −min wi.

For this, first it is trivial that

maxi∈{1,··· ,n−1}, j∈{i+1,··· ,n}|wi − wj| ≤ max wi −min wi.

Next, suppose that max wi = wi0 , min wi = wj0 . If i0 < j0, then

max wi −min wi = wi0 − wj0

= |wi0 − wj0 |
≤ maxi∈{1,··· ,n−1}, j∈{i0+1,··· ,n}|wi − wj|

If i0 > j0, then

max wi −min wi = wi0 − wj0

= |wj0 − wi0 |
≤ maxi∈{1,··· ,n−1}, j∈{j0+1,··· ,n}|wi − wj|.

and hence the equality holds.
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Then the corresponding extended minimax disparity model for RIM quantifier problem with
given orness level can be proposed as follows:

Minimize ess sup f − ess in f f (2)

subject to
∫ 1

0
r f (r)dr = 1− α, 0 < α < 1,∫ 1

0
f (r)dr = 1, f (r) ≥ 0.

4. Relation of Solutions between OWA Operator Model and RIM Quantifier Model

The following result is the solution of the extended minimax OWA operator problem given by
Hong [26].

Theorem 1 (n = 2k:even). An optimal weight for the constrained optimization problem (2) for a given level of
α = orness(W) should satisfy the following equation:

H(α) = Minimize

{
max

i∈{1,··· ,n−1}, j∈{i+1,··· ,n}
|wi − wj|

}
=

∣∣∣∣ (1− 2α)(n− 1)
(n−m)m

∣∣∣∣
w∗1 = w∗2 = · · · = w∗m, w∗k+1 = w∗k+2 = · · · = w∗n,

where

w∗1 =
m− (1− 2α)(n− 1)

nm
and

w∗m+1 =
n−m− (2α− 1)(n− 1)

n(n−m)
.

Here m satisfies the following:

m =


d(1− 2α)(n− 1)e, if 0 ≤ α ≤ n−2

4(n−1) ,

k, if n−2
4(n−1) ≤ α ≤ 3n−2

4(n−1) ,

n− d(2α− 1)(n− 1)e, if 3n−2
4(n−1) ≤ α ≤ 1.

where dxe = m + 1⇐⇒ m < x ≤ m + 1 for any integer m.

Can we get a hint about the solution of the extended minimax Rim quantifier problem? Here, we
suggest an idea.

For a given associated weighting vector Wn = (w1, · · · , wn) of having the property
w1 + · · ·+ wn = 1, 0 ≤ wi ≤ 1, i = 1, · · · , n, we define a generating function f (t)

fWn(x) = nwi, x ∈
[

i
n

,
i + 1

n

)
, i = 0, 1, · · · , n− 1,

having the property
∫ 1

0 f n
W(x)dx = 1 and let

f ∗(x) = lim
n→∞

= fWn(x).

Can this function f ∗(x) be a solution of the corresponding extended minimax Rim quantifier
problem? Maybe, yes! Let’s try to follow this idea.
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For given W∗n = (w∗1 , · · · , w∗n) from above Theorem 1, we have for 0 < α ≤ 1
4 ,

fW∗n (x) =


d(1−2α)(n−1)e−(1−2α)(n−1)

d(1−2α)(n−1)e , if x ∈
[
0, d(1−2α)(n−1)e

n

)
n−d(1−2α)(n−1)e−(2α−1)(n−1)

n−d(1−2α)(n−1)e , if x ∈
[
d(1−2α)(n−1)e

n , 1
]

.

for 1
4 ≤ α ≤ 3

4 ,

fW∗n (x) =


n/2−(1−2α)(n−1)

n/2 , if x ∈
[
0, 1

2

)
n/2−(2α−1)(n−1)

(n/2) , if x ∈
[

1
2 , 1
]

.

for 3/4 ≤ α ≤ 1,

fW∗n (x) =


n−d(2α−1)(n−1)e−(1−2α)(n−1)

n−d(2α−1)(n−1)e , if x ∈
[
0, 1− d(1−2α)(n−1)e

n

)
d(2α−1)(n−1)e−(2α−1)(n−1)

d(2α−1)(n−1)e if x ∈
[
1− d(1−2α)(n−1)e

n , 1
]

.

Let limn→∞ fW∗n (x) = f ∗(x), then

1. for 0 < α ≤ 1
4 ,

f ∗(r) =

{
0, if r ∈ [0, 1− 2α),
1

2α , if r ∈ [1− 2α, 1].

2. for 1
4 ≤ α ≤ 3

4 ,

f ∗(r) =

4α− 1, if r ∈
[
0, 1

2

)
,

3− 4α, if r ∈
[

1
2 , 1
]

.

3. for 3
4 < α ≤ 1,

f ∗(r) =

 1
2(1−α)

, if r ∈ [0, 2α],

0, elsewhere.

In the following section, we will show that f ∗ can be the solution of the extended minimax RIM
quantifier problem.

5. Proof of the Extended Minimax RIM Quantifier Problem

In this section, we prove the following main result.

Theorem 2. The optimal solution for problem (2) for given orness level α is the weighting function f ∗ such that

1. for 0 < α ≤ 1
4 ,

f ∗(r) =

{
0 a.e., if r ∈ [0, 1− 2α),
1

2α a.e., if r ∈ [1− 2α, 1].

2. for 1
4 ≤ α ≤ 3

4 ,

f ∗(r) =

4α− 1 a.e., if r ∈
[
0, 1

2

)
,

3− 4α a.e., if r ∈
[

1
2 , 1
]

.
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3. for 3
4 < α ≤ 1,

f ∗(r) =

 1
2(1−α)

a.e., if r ∈ [0, 2α],

0 a.e., elsewhere.

and

H(α) = Minimize |ess sup f − ess in f f | =


1

2α if 0 < α ≤ 1
4 ,

4|(1− 2α)| if 1
4 ≤ α ≤ 3

4 ,
1

2α if 3
4 < α ≤ 1.

We need the following two lemma’s to prove the main result. We denote D f (x) =
∫ x

0 f (t)dt,

0 ≤ x ≤ 1 and E( f ) =
∫ 1

0 r f (r)dr.
The following result is known.

Lemma 1. E( f ) =
∫ 1

0 (1− D f (t))dt.

Lemma 2. Let ess in f f = β0 ≥ 0 and ess sup f = β1 > 0 such that
∫ 1

0 f (r)dr = 1 and define a function
f0 as

f0(r) =

{
β0 a.e., if r ∈ [0, c0),

β1 a.e., if r ∈ [c0, 1].

for some c0 ∈ (0, 1) such that
∫ 1

0 f0(r)dr = 1. Then we have E( f ) ≤ E( f0) and the equality holds iff f = f0 a.e.

Proof. The result follows immediately from Lemma 1 if we show that D f0(x) ≤ D f (x), x ∈ [0, 1].
It is clear that D f0(x) ≤ D f (x), x ∈ [0, c0]. Suppose that there exists a point t0 ∈ (c0, 1) such that
D f0(t0) > D f (t0). Then

∫ 1

t0

β1dr =
∫ 1

t0

f0(r)dr = 1− D f0(t0) < 1− D f (t0) =
∫ 1

t0

f (r)dr

which implies ess sup(t0,1) f > β1. It is a contradiction.

Proof of Theorem 2. If α = 1
2 , we clearly have the optimal solution is f ∗(r) = 1 a.e. for r ∈ [0, 1].

Note that ess in f f ∗ < 1 < ess sup f ∗ for α ∈
(

0, 1
2

)
. Without loss of generality, we can assume

that α ∈
(

0, 1
2

)
, since if a weighting function f ∗(r) is optimal to problem (2) for some given level of

preference α ∈
(

0, 1
2

]
, then f ∗(1− r) is optimal to the problem (2) for a given level of preference 1− α.

Indeed, since D f = D f R ,
∫ 1

0 f (r)dr =
∫ 1

0 f R(r)dr and E( f R) = 1− E( f ), where f R(r) = f (1− r)
hence for α > 1

2 , we can consider problem (2) for the level of preference with index 1− α, and then
take the reverse of that optimal solution. We can easily check that the weighting functions, f ∗, given
above are feasible for problem (2). We show that f ∗ is the unique optimal solution for a given α. Let
nonnegative function f satisfy 1 =

∫ 1
0 f (r)dr and E( f ) =

∫ 1
0 r f (r)dr = 1− α. Let ess in f f = β0 and

ess sup f = β1.

Case (A): α ∈
(

0, 1
4

]
.
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We note that ess in f f ∗ − ess in f f ∗ = 1
2α . We will show that β1 − β0 ≥ 1

2α . To show this, we
define a function f0 as

f0(r) =

{
β0 if r ∈ [0, x0),

β1 if r ∈ [x0, 1],

for some x0 ∈ (0, 1) such that
∫ 1

0 f0(r)dr = 1. Then by Lemma 2, E( f ) ≤ E( f0). Suppose that
β1 − β0 < 1

2α and define another function f ∗0 as

f ∗0 (r) =

{
β0 if r ∈ [0, x∗0),

β0 +
1

2α if r ∈ [x∗0 , 1],

for some x∗0 ∈ (0, 1) such that
∫ 1

0 f ∗0 (r)dr = 1. Then E( f0) < E( f ∗0 ). We note that 1 = β0x∗0 + (1−
x∗0)(β0 +

1
2α ). Then

x∗0 = 2αβ0 + 1− 2α. (3)

We know that

E( f ∗0 ) = β0

∫ x∗0

0
xdx +

(
β0 +

1
2α

) ∫ 1

x∗0
xdx

=
β0

2
+

1
4α
−

x∗0
2

4α

and

E( f ∗) =
1

2α

∫ 1

1−2α
xdx = 1− α.

And we have

E( f ∗)− E( f ∗0 ) =
1
2

x∗0
2

2α
− 1

2
(1− 2α)2

2α
− β0

2

=
1
2

[
1

2α
x∗0

2 − (1− 2α)2

2α
− β0

]
=

1
2

[
1

2α
(2αβ0 + 1− 2α)2 − (1− 2α)2

2α
− β0

]
=

β0

2
[2αβ0 + 2(1− 2α)− 1]

≥ 0

where the third equality comes from (3) and the last inequality comes from the facts that 1− 2α ≥ 1
2 ,

β0 ≥ 0 and α > 0. This proves E( f ) < E( f ∗0 ) ≤ E( f ∗) = 1− α, which is a contradiction. Hence f ∗ is

an optimal solution for the case of α ∈
(

0, 1
4

]
.

Case (B): α ∈
(

1
4 , 1

2

)
.

We note that ess in f f ∗ − ess in f f ∗ = 4(1− 2α). We will show that β1 − β0 ≥ 4(1− 2α). As in
the Case (A), we define a function f0 as

f0(r) =

{
β0 if r ∈ [0, x0),

β1 if r ∈ [x0, 1],
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for some x0 ∈ (0, 1) such that
∫ 1

0 f0(r)dr = 1. Then by lemma 2, E( f ) ≤ E( f0). Suppose that
β1 − β0 < 1

2α and define another function f ∗1 as

f ∗1 (r) =

{
β0 if r ∈ [0, x∗1),

β0 + 4(1− 2α) if r ∈ [x∗1 , 1],

for some x∗1 ∈ (0, 1) such that
∫ 1

0 f ∗1 (r)dr = 1. Then, since x0 < x∗1 , by lemma 2 E( f0) < E( f ∗1 ). We
note that 1 = β0x∗1 + (1− x∗1)(β0 + 4(1− 2α)). Then

x∗1 = 1 +
β0 − 1

4(1− 2α)

and

x∗1
2 = 1 +

β0 − 1
2(1− 2α)

+
(β0 − 1)2

16(1− 2α)2 (4)

We know that

E( f ∗0 ) = β0

∫ x∗1

0
xdx + (β0 + 4(1− 2α))

∫ 1

x∗1
xdx

=
1
2
[β0 + 4(1− 2α)]− 2(1− 2α)x∗1

2

and

E( f ∗) = (4α− 1)
∫ 1

2

0
xdx + (3− 4α)

∫ 1

1
2

xdx

= 1− α.

Then we have that

E( f ∗)− E( f ∗1 ) = 3α− 1− β0

2
+ 2(1− 2α)x∗1

2

=
(β0 − 1)2

8(1− 2α)
+

β0

2
− α

=
[β0 − (4α− 1)]2

8(1− 2α)

≥ 0

where the second equality comes from (4) and hence E( f ) < E( f ∗1 ) ≤ E( f ∗) = 1− α, which is a
contradiction. This completes the proof.

6. Conclusions

Previous studies have suggested a number of methods for obtaining optimal solution of the RIM
quantifier problem. This paper proposes the extended minimax disparity RIM quantifier problem
under a given orness level. We completely prove it analytically.
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