Electrochirogenesis: The Possible Role of Low-Energy Spin-Polarized Electrons in Creating Homochirality
Abstract
:1. Introduction
“What is the origin of chirality in nature? Most biomolecules can be synthesized in mirror-image shapes. Yet in organisms, amino acids are always left-handed, and sugars are always right-handed. The origins of this preference remain a mystery.”
2. Sources of Low-Energy Spin-Polarized Electrons
2.1. Valence-Level Photoionization by Ultraviolet (UV) Photons
2.2. Secondary Electrons from a Magnetic Substrate
2.3. Chiral-Induced Spin Selectivity (CISS)
3. Chiral-Selective Chemistry via Low-Energy Spin-Polarized Electrons
3.1. Chiral-Specific Reactions Caused by Spin-Polarized Electrons from a Magnetic Substrate
3.2. Chiral-Specific Reactions Caused by Natural Selection of Spin-Polarized Electrons
3.3. Chiral-Selective Adsorption
4. Mechanisms
5. Spin-Polarized Electrons in the Prebiotic Universe
6. Further Research
- Determination of an ee following X-ray irradiation of a racemic mixture of chiral molecules adsorbed on a magnetic substrate. The X-rays will produce low-energy secondary SPEs which should then selectively react with one enantiomer, leaving an ee of the other. If the cross sections for the two enantiomers differ by ~10% then the plot in the inset of Figure 3 indicates that there should be an ee of ~12% after 2 time constants of irradiation with about 14% of the material remaining. Such differences are well within the sensitivity range of modern chromatography techniques.
- Perform a Miller–Urey type experiment with a magnetized electrode. The magnetized electrode will produce low energy SPEs in the discharge which should selectively react with one of the enantiomers formed in the process. This should yield an ee of the other enantiomer and reversing the magnetization should yield an opposite ee.
- Irradiation of molecules condensed on a magnetic substrate by UV light. Previous work has shown that racemic amino acids can be produced by UV irradiation of simple molecules condensed on a non-magnetic substrate [57,58]. If the same experiment were performed using a magnetic substrate, SPEs would be produced which could result in the direct formation of a chiral amino acid or the destruction of a particular enantiomer from an initially formed racemic mixture. Reversing the magnetization directions should result in an opposite ee.
- Theory: although there has been significant progress made in modelling the manner by which SPES are scattered by the gas phase [81] and adsorbed [82,83] chiral molecules, the mechanisms by which low energy SPEs cause chiral specific reactions are not well understood and could benefit from focused calculations using modern computational methods.
7. Conclusions
Funding
Conflicts of Interest
References
- Avalos, M.; Babiano, R.; Cintas, P.; Jiménez, J.L.; Palacios, J.C.; Barron, L.D. Absolute asymmetric synthesis under physical fields: Facts and fictions. Chem. Rev. 1998, 98, 2391–2404. [Google Scholar] [CrossRef]
- Bonner, W.A. The origin and amplification of biomolecular chirality. Orig. Life Evol. Biosph. 1991, 21, 59–111. [Google Scholar] [CrossRef] [PubMed]
- Cintas, P. Chirality of living systems: A helping hand from crystals and oligopeptides. Angew. Chem. Int. Ed. 2002, 41, 1139–1145. [Google Scholar] [CrossRef]
- Feringa, B.L.; Delden, R.A.v. Absolute asymmetric synthesis: The origin, control, and amplification of chirality. Angew. Chem. Int. Ed. 1999, 38, 3418–3438. [Google Scholar] [CrossRef]
- Keszthelyi, L. Origin of the homochirality of biomolecules. Q. Rev. Biophys. 1995, 28, 473–507. [Google Scholar] [CrossRef] [PubMed]
- Podlech, J. Origin of organic molecules and biomolecular homochirality. Cell. Mol. Life Sci. 2001, 58, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Tsarev, V. Physical and astrophysical aspects of the problem of origin of chiral asymmetry of the biosphere. Phys. Part. Nucl. 2009, 40, 998–1029. [Google Scholar] [CrossRef]
- Davankov, A.V. Biological homochirality on the Earth, or in the universe? A selective review. Symmetry 2018, 10, 749. [Google Scholar] [CrossRef]
- Cintas, P.; Viedma, C. On the physical basis of asymmetry and homochirality. Chirality 2012, 24, 894–908. [Google Scholar] [CrossRef] [PubMed]
- Meierhenrich, U. Amino Acids and the Asymmetry of Life; Springer: Berlin/Heidelberg, Germany, 2008; p. 241. [Google Scholar]
- Meierhenrich, U.J.; Thiemann, W.H.P. Photochemical concepts on the origin of biomolecular asymmetry. Orig. Life Evol. Biosph. 2004, 34, 111–121. [Google Scholar] [CrossRef]
- Meinert, C.; de Marcellus, P.; d’Hendecourt, S.L.; Nahon, L.; Jones, N.C.; Hoffmann, S.V.; Bredehöft, J.H.; Meierhenrich, U.J. Photochirogenesis: Photochemical models on the absolute asymmetric formation of amino acids in interstellar space. Phys. Life Rev. 2011, 8, 307–330. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.D.; Yang, C.N. Question of parity conservation in weak interactions. Phys. Rev. 1956, 104, 254. [Google Scholar] [CrossRef]
- Wu, C.S.; Ambler, E.; Hayward, R.W.; Hoppes, D.D.; Hudson, R.P. Experimental test of parity conservation in beta decay. Phys. Rev. 1957, 105, 1413. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Vester, F. Attempts to induce optical activity with polarized β-radiation. Tetrahedron 1962, 18, 629. [Google Scholar] [CrossRef]
- Vester, F.; Ulbricht, T.L.V.; Krauch, H. Optische aktivität und die paritätsverletzung im β-zerfall. Naturwissenschaften 1959, 46, 68. [Google Scholar] [CrossRef]
- Walker, D.C. Leptons in chemistry. Acc. Chem. Res. 1985, 18, 167–173. [Google Scholar] [CrossRef]
- Rosenberg, R.A. Spin-polarized electron induced asymmetric reactions in chiral molecules. In Electronic and Mangetic Properties of Chiral Molecules and Supramolecular Architectures; Naaman, R., Beratan, D.N., Waldeck, D.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 298, pp. 279–306. [Google Scholar]
- Arumainayagam, C.R.; Lee, H.-L.; Nelson, R.B.; Haines, D.R.; Gunawardane, R.P. Low-energy electron-induced reactions in condensed matter. Surf. Sci. Rep. 2010, 65, 1–44. [Google Scholar] [CrossRef]
- Bass, A.D.; Sanche, L. Reactions induced by low energy electrons in cryogenic films. Low Temp. Phys. 2003, 29, 202–214. [Google Scholar] [CrossRef]
- Xu, Y.B.; Greig, D.; Seddon, E.A.; Matthew, J.A.D. Spin-resolved photoemission of in situ sputtered iron and iron-yttrium alloys. Phys. Rev. B 1997, 55, 11442. [Google Scholar] [CrossRef]
- Eib, W.; Alvarado, S.F. Spin-polarized photoelectrons from nickel single crystals. Phys. Rev. Lett. 1976, 37, 444–446. [Google Scholar] [CrossRef]
- Pierce, D.T.; Meier, F. Photoemission of spin-polarized electrons from GaAs. Phys. Rev. B 1976, 13, 5484. [Google Scholar] [CrossRef]
- Meier, F.; Pescia, D. Band-structure investigation of gold by spin-polarized photoemission. Phys. Rev. Lett. 1981, 47, 374. [Google Scholar] [CrossRef]
- Heinzmann, U.; Dil, J.H. Spin–orbit-induced photoelectron spin polarization in angle-resolved photoemission from both atomic and condensed matter targets. J. Phys. Condens. Matter 2012, 24, 173001. [Google Scholar] [CrossRef] [PubMed]
- Heinzmann, U. Angle-, energy- and spin-resolved photoelectron emission using circularly polarized synchrotron radiation. Phys. Scr. 1987, T17, 77. [Google Scholar] [CrossRef]
- Koike, K.; Kirschner, J. Primary energy dependence of secondary electron polarization. J. Phys. D Appl. Phys. 1992, 25, 1139. [Google Scholar] [CrossRef]
- Penn, D.R.; Apell, S.P.; Girvin, S.M. Spin polarization of secondary electrons in transition metals: Theory. Phys. Rev. B 1985, 32, 7753. [Google Scholar] [CrossRef]
- Penn, D.R.; Apell, S.P.; Girvin, S.M. Theory of spin-polarized secondary electrons in transition metals. Phys. Rev. Lett. 1985, 55, 518. [Google Scholar] [CrossRef]
- Solleder, B.; Lemell, C.; Tőkési, K.; Hatcher, N.; Burgdörfer, J. Spin-dependent low-energy electron transport in metals. Phys. Rev. B 2007, 76, 075115. [Google Scholar] [CrossRef]
- Tamura, K.; Yasuda, M.; Murata, K.; Koike, K.; Kotera, M. Analysis of the Spin polarization of secondary electrons emitted from permalloy polycrystals. Jpn. J. Appl. Phys. 1999, 38, 7173. [Google Scholar] [CrossRef]
- Carmeli, I.; Leitus, G.; Naaman, R.; Reich, S.; Vager, Z. Magnetism induced by the organization of self-assembled monolayers. J. Chem. Phys. 2003, 118, 10372–10375. [Google Scholar] [CrossRef]
- Naaman, R.; Vager, Z. Electron transmission through organized organic thin films. Acc. Chem. Res. 2003, 36, 291–299. [Google Scholar] [CrossRef]
- Naaman, R.; Vager, Z. New electronic and magnetic properties emerging from adsorption of organized organic layers. Phys. Chem. Chem. Phys. 2006, 8, 2217–2224. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.; Ananthavel, S.P.; Waldeck, D.H.; Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 1999, 283, 814–816. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.G.; Daube, S.S.; Leitus, G.; Vager, Z.; Naaman, R. Chirality-induced spin-selective properties of self-assembled monolayers of dna on gold. Phys. Rev. Lett. 2006, 96, 036101. [Google Scholar] [CrossRef] [PubMed]
- Skourtis, S.S.; Beratan, D.N.; Naaman, R.; Nitzan, A.; Waldeck, D.H. Chiral control of electron transmission through molecules. Phys. Rev. Lett. 2008, 101, 238103-4. [Google Scholar] [CrossRef]
- Göhler, B.; Hamelbeck, V.; Markus, T.Z.; Kettner, M.; Hanne, G.F.; Vager, Z.; Zacharias, H. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 2011, 331, 894–897. [Google Scholar] [CrossRef]
- Michaeli, K.; Varade, V.; Naaman, R.; Waldeck, D.H. A new approach towards spintronics–spintronics with no magnets. J. Phys. Condens. Matter 2017, 29, 103002. [Google Scholar] [CrossRef]
- Naaman, R.; Paltiel, Y.; Waldeck, D.H. Chirality and spin: A Different perspective on enantioselective interactions. CHIMIA Int. J. Chem. 2018, 72, 394–398. [Google Scholar] [CrossRef]
- Alizadeh, E.; Orlando, T.M.; Sanche, L. Biomolecular damage induced by ionizing radiation: The direct and indirect effects of low-energy electrons on DNA. Ann. Rev. Phys. Chem. 2015, 66, 379–398. [Google Scholar] [CrossRef] [PubMed]
- Boudaïffa, B.; Cloutier, P.; Hunting, D.; Huels, M.A.; Sanche, L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 2000, 287, 1658–1660. [Google Scholar]
- Dugal, P.C.; Huels, M.A.; Sanche, L. Low-energy (5–25 eV) electron damage to homo-oligonucleotides. Radiat. Res. 1999, 151, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.A.; Haija, M.A.; Ryan, P.J. Chiral-selective chemistry induced by spin-polarized secondary electrons from a magnetic substrate. Phys. Rev. Lett. 2008, 101, 178301. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.A.; Mishra, D.; Naaman, R. Chiral selective chemistry induced by natural selection of spin-polarized electrons. Angew. Chem. Int. Ed. 2015, 54, 7295–7298. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.A.; Symonds, J.M.; Kalyanaraman, V.; Markus, T.; Orlando, T.M.; Naaman, R.; Mujica, V. Kinetic energy dependence of spin filtering of electrons transmitted through organized layers of DNA. J. Phys. Chem. C 2013, 117, 22307–22313. [Google Scholar] [CrossRef]
- Banerjee-Ghosh, K.; Ben Dor, O.; Tassinari, F.; Capua, E.; Yochelis, S.; Capua, A.; Yang, S.H.; Parkin, S.S.P.; Sarkar, S.; Kronik, L.; et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 2018, 360, 1331. [Google Scholar] [CrossRef]
- Luque, F.J.; Nino, M.A.; Spilsbury, M.J.; Kowalik, I.A.; Arvanitis, D.; de Miguel, J.J. Enantiosensitive bonding of chiral molecules on a magnetic substrate investigated by means of electron spectroscopies. CHIMIA Int. J. Chem. 2018, 72, 418–423. [Google Scholar] [CrossRef]
- Rosenberg, R.A.; Symonds, J.M.; Vijayalakshmi, K.; Mishra, D.; Orlando, T.M.; Naaman, R. The relationship between interfacial bonding and radiation damage in adsorbed DNA. Phys. Chem. Chem. Phys. 2014, 16, 15319–15325. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Capua, E.; Kesharwani, M.K.; Martin, J.M.; Sitbon, E.; Waldeck, D.H.; Naaman, R. Chirality-induced spin polarization places symmetry constraints on biomolecular interactions. Proc. Nat. Acad. Sci. 2017, 114, 2474. [Google Scholar] [CrossRef]
- Altobelli, N.; Postberg, F.; Fiege, K.; Trieloff, M.; Kimura, H.; Sterken, V.J.; Hsu, H.W.; Hillier, J.; Khawaja, N.; et al. Moragas-Klostermeyer, G.; et al. Flux and composition of interstellar dust at Saturn from Cassini’s Cosmic Dust Analyzer. Science 2016, 352, 312. [Google Scholar] [CrossRef]
- Brownlee, D.; Tsou, P.; Aléon, J.; Alexander, C.M.D.; Araki, T.; Bajt, S.; Borg, J. Comet 81P/wild 2 under a microscope. Science 2006, 314, 1711. [Google Scholar] [CrossRef]
- Draine, B.T.; Hensley, B. Magnetic nanoparticles in the interstellar medium: Emission spectrum and polarization. Astrophys. J. 2013, 765, 159. [Google Scholar] [CrossRef]
- Hoang, T.; Lazarian, A. Polarization of magnetic dipole emission and spinning dust emission from magnetic nanoparticles. Astrophys. J. 2016, 821, 91. [Google Scholar] [CrossRef]
- Morris, R.V.; Golden, D.C.; Bell, J.F., III; Shelfer, T.D.; Scheinost, A.C.; Hinman, N.W.; Furniss, G.; Mertzman, S.A.; Bishop, J.L.; Ming, D.W.; et al. Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. J. Geophys. Res. Planets 2000, 105, 1757–1817. [Google Scholar] [CrossRef]
- Tivey, M.A.; Dyment, J. The magnetic signature of hydrothermal systems in slow spreading environments. In Slow Spreading Environments. In Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges; Rona, P.A., Devey, C.W., Dyment, J., Murton, B.J., Eds.; American Geophysical Union: Washington, DC, USA, 2010; pp. 43–66. [Google Scholar]
- Bernstein, M.P.; Dworkin, J.P.; Sandford, S.A.; Cooper, G.W.; Allamandola, L.J. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 2002, 416, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Caro, G.M.; Meierhenrich, U.J.; Schutte, WA.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W.H.; Brack, A.; Greenberg, J.M. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 2002, 416, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Bonner, W.A. Chirality and life. Orig. Life Evol. Biosph. 1995, 25, 175–190. [Google Scholar] [CrossRef]
- Greenberg, J.M. Chirality in interstellar dust and in comets: Life from dead stars. AIP Conf. Proc. 1996, 379, 185–210. [Google Scholar]
- McGuire, B.A.; Carroll, P.B.; Loomis, R.A.; Finneran, I.A.; Jewell, P.R.; Remijan, A.J.; Blake, G.A. Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O). Science 2016, 352, 1449. [Google Scholar] [CrossRef]
- Kuan, Y.J.; Charnley, S.B.; Huang, H.C.; Tseng, W.L.; Kisiel, Z. Interstellar glycine. Astrophys. J. 2003, 593, 848–867. [Google Scholar] [CrossRef]
- Elsila, J.E.; Glavin, D.P.; Dworkin, J.P. Cometary glycine detected in samples returned by stardust. Meteorit. Planet. Sci. 2009, 44, 1323–1330. [Google Scholar] [CrossRef]
- Cronin, J.R.; Pizzarello, S. Enantiomeric excesses in meteoritic amino acids. Science 1997, 275, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Pizzarello, S. The chemistry of life’s origin: A carbonaceous meteorite perspective. Acc. Chem. Res. 2006, 39, 231–237. [Google Scholar] [CrossRef]
- Pizzarello, S.; Huang, Y.; Alexandre, M.R. Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite. Proc. Natl. Acad. Sci. USA 2008, 105, 3700–3704. [Google Scholar] [CrossRef] [PubMed]
- Glavin, D.P.; Dworkin, J.P. Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proc. Natl. Acad. Sci. USA 2009, 106, 5487–5492. [Google Scholar] [CrossRef] [PubMed]
- Bryson, J.F.; Nimmo, F.; Harrison, R.J. Magnetic meteorites and the early solar system. Astron. Geophys. 2015, 56, 4.36–4.42. [Google Scholar] [CrossRef]
- Nagata, T. Meteorite magnetism and the early solar system magnetic field. Phys. Earth Planet. Inter. 1979, 20, 324–341. [Google Scholar] [CrossRef]
- Pechersky, D.M.; Markov, G.P.; Tsel’movich, V.A. Pure iron and other magnetic minerals in meteorites. Sol. Syst. Res. 2015, 49, 61–71. [Google Scholar] [CrossRef]
- BBryson, J.F.; Nichols, C.I.; Herrero-Albillos, J.; Kronast, F.; Kasama, T.; Alimadadi, H.; Harrison, R.J. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature 2015, 517, 472. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.; Benning, L.G.; Wirth, R.; Siljeström, S.; Fries, M.D.; Hauri, E.; Needham, A. Organic synthesis on Mars by electrochemical reduction of CO2. Sci. Adv. 2018, 4, eaat5118. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, T.; Horikawa, H.; Matsumoto, K.; Miyoshi, M. An electrochemical synthesis of 2-acetoxy-2-amino acid and 3-acetoxy-3-amino acid derivatives. J. Org. Chem. 1977, 42, 2419–2423. [Google Scholar] [CrossRef] [PubMed]
- Root, D.K.; Smith, W.H. Electrochemical behavior of selected imine derivatives, reductive carboxylation, α-amino acid synthesis. J. Electrochem. Soc. 1982, 129, 1231–1236. [Google Scholar] [CrossRef]
- Smith, D.L.; Elving, P.J. Electrochemical reduction of purine, adenine and related compounds: Polarography and macroscale electrolysis. J. Am. Chem. Soc. 1962, 84, 1412–1420. [Google Scholar] [CrossRef]
- Mondal, P.C.; Fontanesi, C.; Waldeck, D.H.; Naaman, R. Spin-dependent transport through chiral molecules studied by spin-dependent electrochemistry. Acc. Chem. Res. 2016, 49, 2560–2568. [Google Scholar] [CrossRef]
- Farmer, J.D.; Des Marais, D.J. Exploring for a record of ancient Martian life. J. Geophys. Res. Planets 1999, 104, 26977–26995. [Google Scholar] [CrossRef]
- Fortes, A.D. Exobiological implications of a possible ammonia–water ocean inside titan. Icarus 2000, 146, 444–452. [Google Scholar] [CrossRef]
- Wang, W. Electron spin and the origin of Bio-homochirality II. Prebiotic inorganic-organic reaction model. arXiv 2014, arXiv:1410.6555. [Google Scholar]
- Wang, W. Electron spin and the origin of Bio-homochirality I. Extant enzymatic reaction model. arXiv 2013, arXiv:1309.1229. [Google Scholar]
- Musigmann, M.; Blum, K.; Thompson, D.G. Scattering of polarized electrons from anisotropic chiral ensembles. J. Phys. B 2001, 34, 2679. [Google Scholar] [CrossRef]
- Medina, E.; López, F.; Ratner, M.A.; Mujica, V. Chiral molecular films as electron polarizers and polarization modulators. EPL Europhys. Lett. 2012, 99, 17006. [Google Scholar] [CrossRef]
- Yeganeh, S.; Ratner, M.A.; Medina, E.; Mujica, V. Chiral electron transport: Scattering through helical potentials. J. Chem. Phys. 2009, 131, 014707. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenberg, R.A. Electrochirogenesis: The Possible Role of Low-Energy Spin-Polarized Electrons in Creating Homochirality. Symmetry 2019, 11, 528. https://doi.org/10.3390/sym11040528
Rosenberg RA. Electrochirogenesis: The Possible Role of Low-Energy Spin-Polarized Electrons in Creating Homochirality. Symmetry. 2019; 11(4):528. https://doi.org/10.3390/sym11040528
Chicago/Turabian StyleRosenberg, Richard A. 2019. "Electrochirogenesis: The Possible Role of Low-Energy Spin-Polarized Electrons in Creating Homochirality" Symmetry 11, no. 4: 528. https://doi.org/10.3390/sym11040528
APA StyleRosenberg, R. A. (2019). Electrochirogenesis: The Possible Role of Low-Energy Spin-Polarized Electrons in Creating Homochirality. Symmetry, 11(4), 528. https://doi.org/10.3390/sym11040528