Derivative Free Fourth Order Solvers of Equations with Applications in Applied Disciplines
Abstract
:1. Introduction
2. Convergence Analysis
- (a)
- (b)
- We note that (2) does not change if we adopt the conditions of Theorem 1 instead of the stronger ones given in [3]. In practice, for the error bounds, we can consider the computational order of convergence (COC) [10]:
3. Numerical Examples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall Series in Automatic Computation; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Petkovic, M.S.; Neta, B.; Petkovic, L.; Džunič, J. Multipoint Methods For Solving Nonlinear Equations; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Lee, M.Y.; Kim, Y.I. A family of fast derivative-free fourth order multipoint optimal methods for nonlinear equations. Int. J. Comput. Math. 2012, 89, 2081–2093. [Google Scholar] [CrossRef]
- Amat, S.; Busquier, S.; Plaza, S. Dynamics of the King and Jarratt iterations. Aequ. Math. 2005, 69, 212–223. [Google Scholar] [CrossRef]
- Amat, S.; Busquier, S.; Plaza, S. Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 2010, 366, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Amat, S.; Hernández, M.A.; Romero, N. A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 2008, 206, 164–174. [Google Scholar] [CrossRef]
- Argyros, I.K. Convergence and Application of Newton-Type Iterations; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Argyros, I.K.; Hilout, S. Numerical Methods in Nonlinear Analysis; World Scientific Publ. Comp: River Edge, NJ, USA, 2013. [Google Scholar]
- Behl, R.; Motsa, S.S. Geometric construction of eighth-order optimal families of Ostrowski’s method. Recent Theor. Appl. Approx. Theory 2015, 2015, 614612. [Google Scholar] [CrossRef] [PubMed]
- Ezquerro, J.A.; Hernández, M.A. New iterations of R-order four with reduced computational cost. BIT Numer. Math. 2009, 49, 325–342. [Google Scholar] [CrossRef]
- Kanwar, V.; Behl, R.; Sharma, K.K. Simply constructed family of a Ostrowski’s method with optimal order of convergence. Comput. Math. Appl. 2011, 62, 4021–4027. [Google Scholar] [CrossRef] [Green Version]
- Magreñán, Á.A. Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 2014, 233, 29–38. [Google Scholar]
- Magreñán, Á.A. A new tool to study real dynamics: The convergence plane. Appl. Math. Comput. 2014, 248, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Rheinboldt, W.C. An adaptive continuation process for solving systems of nonlinear equations. Pol. Acad. Sci. Banach Cent. Publ. 1978, 3, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
Cases | Different Values of the Parameters that Satisfy Theorem 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1. | 1 | 0.10526 | 0.27008 | 0.02535 | 0.024 | 4 | 4 | ||
2. | 3 | 2 | 0.00250 | 0.03749 | 0.00082 | 0.0007 | 3 | 4 | |
3. | 3 | 0.00020 | 0.01013 | 0.00004 | 0.0003 | 3 | 4 | ||
4. | 4 | 0.00962 | 0.07090 | 0.00160 | 0.0005 | 3 | 4 |
Cases | Different Values of the Parameters that Satisfy Theorem 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1. | 1 | 0.01427 | 0.05498 | 0.00318 | 0.713 | 4 | 4 | ||
2. | 3 | 2 | 0.00047 | 0.00896 | 0.00015 | 0.7417 | 4 | 4 | |
3. | 3 | 0.00006 | 0.00286 | 0.00001 | 0.7418 | 3 | 4 | ||
4. | 4 | 0.00359 | 0.02201 | 0.00060 | 0.7413 | 4 | 4 |
Cases | Different Values of the Parameters that Satisfy Theorem 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1. | 1 | 0.03470 | 0.07391 | 0.00884 | 0.325 | 4 | 4 | ||
2. | 3 | 2 | 0.03965 | 0.08356 | 0.01225 | 0.329 | 4 | 4 | |
3. | 3 | 0.08363 | 0.13140 | 0.02437 | 0.298 | 5 | 4 | ||
4. | 4 | 0.16367 | 0.18912 | 0.05268 | 0.358 | 5 | 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behl, R.; Argyros, I.K.; Mallawi, F.O.; Tenreiro Machado, J.A. Derivative Free Fourth Order Solvers of Equations with Applications in Applied Disciplines. Symmetry 2019, 11, 586. https://doi.org/10.3390/sym11040586
Behl R, Argyros IK, Mallawi FO, Tenreiro Machado JA. Derivative Free Fourth Order Solvers of Equations with Applications in Applied Disciplines. Symmetry. 2019; 11(4):586. https://doi.org/10.3390/sym11040586
Chicago/Turabian StyleBehl, Ramandeep, Ioannis K. Argyros, Fouad Othman Mallawi, and J. A. Tenreiro Machado. 2019. "Derivative Free Fourth Order Solvers of Equations with Applications in Applied Disciplines" Symmetry 11, no. 4: 586. https://doi.org/10.3390/sym11040586
APA StyleBehl, R., Argyros, I. K., Mallawi, F. O., & Tenreiro Machado, J. A. (2019). Derivative Free Fourth Order Solvers of Equations with Applications in Applied Disciplines. Symmetry, 11(4), 586. https://doi.org/10.3390/sym11040586