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Abstract

:

The q-rung orthopair fuzzy graph is an extension of intuitionistic fuzzy graph and Pythagorean fuzzy graph. In this paper, the degree and total degree of a vertex in q-rung orthopair fuzzy graphs are firstly defined. Then, some product operations on q-rung orthopair fuzzy graphs, including direct product, Cartesian product, semi-strong product, strong product, and lexicographic product, are defined. Furthermore, some theorems about the degree and total degree under these product operations are put forward and elaborated with several examples. In particular, these theorems improve the similar results in single-valued neutrosophic graphs and Pythagorean fuzzy graphs.
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1. Introduction


In 2017, Yager proposed the concept of q-rung orthopair fuzzy sets (q-ROFSs) [1], which is a generalization of intuitionistic fuzzy sets (IFSs) [2] and Pythagorean fuzzy sets (PFSs) [3,4]. The q-ROFSs are fuzzy sets in which the membership grades of an element x are pairs of values in the unit interval, <μA(x),νA(x)>, one of which indicates membership degree in the fuzzy set and the other nonmembership degree [1]. For the q-ROFSs, the membership grades need to satisfy the following conditions: (μA(x))q+(νA(x))q≤1,μA(x)∈[0,1],νA(x)∈[0,1]andq≥1, where the parameter q determines the range of information expression. As q increases, the range of information expression increases. As we all known, IFSs require the condition μA(x)+νA(x)≤1 and PFSs require the condition (μA(x))2+(νA(x))2≤1. It is obvious to observe that q-ROFSs further diminish the restriction of IFSs and PFSs on membership grades. Therefore, compared with IFSs and PFSs, q-ROFSs provide decision-makers more elasticity to voice opinions with respect to membership grades of an element. Recently, the q-ROFSs have become a hotspot research topic and attracted broad attention [5,6,7,8,9,10,11,12,13,14,15,16,17].



Graph is a convenient tool to describe the decision-making problems diagrammatically [18]. By using this tool, the decision-making objects and their relationships are represented by vertex and edge. With different representations of decision-making information, many different types of graphs have been proposed, such as fuzzy graph [19], intuitionistic fuzzy graph (IFG) [20], single-valued neutrosophic graph (SVNG) [21], intuitionistic fuzzy soft graph [22], rough fuzzy graph [23], Pythagorean fuzzy graph (PFG) [24]. In consideration of the superiority of q-ROFSs, Habib et al. [25] proposed the concept of q-rung orthopair fuzzy graph (q-ROFG) based on the q-ROFSs in 2019. The q-ROFG is an extension of IFG [20] and PFG [24]. Compared with IFG and PFG, q-ROFG has a more powerful ability to model uncertainty in decision-making problems.



Product operations on graphs are highly important part in graph theory [26]. Many scholars have discussed product operations on different graphs. Mordeson and Peng [27,28,29,30] defined some product operations on fuzzy graphs. Later, using these operations, the degree of the vertices is obtained from two fuzzy graphs in [31,32]. Gong and Wang [33] defined some product operations on fuzzy hypergraphs. Sahoo and Pal [34] presented some product operations on IFGs and calculated the degree of a vertex in IFGs. Rashmanlou et al. [35] proposed product operations on interval-valued fuzzy graphs and study about the degree of a vertex in interval-valued fuzzy graphs. Naz et al. [21] discussed some product operations of SVNGs and applied SVNGs to multi-criteria decision-making. More recently, Akram et al. [24] investigated some product operations of PFGs and the degree and total degree of a vertex in PFGs. However, the product operations on q-ROFGs have not been researched yet, so we will pay our attention to this subject in this paper. Moreover, we have found that in SVNGs and PFGs, the results about the degree and total degree under some product operations fail to work in some cases. To improve these results, we introduced the number of adjacent vertices and obtained some more general theorems.



The reminder of this paper is organized as follows. Some notions of q-ROFSs and q-ROFGs are reviewed in Section 2. The degree and total degree of a vertex in a q-ROFG are defined in Section 3. Some product operations on q-ROFGs, such as direct product, Cartesian product, semi-strong product, strong product and lexicographic product, are defined, and the theorems about the degree and total degree under the defined product operations are obtained in Section 4. Some conclusions are given in Section 5.




2. Preliminaries


In this section, we review some definitions that are necessary.



2.1. Graph Theory


Definition 1

([19]). A graph is a pair of sets G=(V,E), satisfying E(G)⊆V×V. The elements of V(G) and E(G) are the vertices and edges of the graph G, respectively. The standard products of graphs: direct product, Cartesian product, semi-strong product, strong product and lexicographic product of two graphs G1=(V1,E1) and G2=(V2,E2) will be denoted by G1×G2, G1□G2, G1•G2, G1⊠G2 and G1[G2], respectively. Let (x1,x2),(y1,y2)∈V1×V2. Then


E(G1×G2)={(x1,x2),(y1,y2)|x1y1∈E1andx2y2∈E2},E(G1□G2)={(x1,x2),(y1,y2)|x1=y1andx2y2∈E2,orx1y1∈E1andx2=y2},E(G1•G2)={(x1,x2),(y1,y2)|x1=y1andx2y2∈E2,orx1y1∈E1andx2y2∈E2},E(G1⊠G2)=E(G1□G2)∪E(G1×G2),E(G1[G2])={(x1,x2),(y1,y2)|x1y1∈E1,orx1=y1andx2y2∈E2}.













Definition 2

([19]). A fuzzy subset ξ of a set V is a function ξ:V→[0,1]. A fuzzy relation on a set V is a mapping η:V×V→[0,1] such that η(x,y)≤ξ(x)∧ξ(y) for all x,y∈V. A fuzzy graph is a pair G=(ξ,η), where ξ is a fuzzy subset of a set V and η is a fuzzy relation on ξ.






2.2. q-Rung Othopair Fuzzy Set


Definition 3

([1]). Let X be a universe of discourse, a q-ROFS A defined on X is given by


A=x,μA(x),νA(x)|x∈X








where μA(x)∈[0,1] and νA(x)∈[0,1] respectively represent the membership and nonmembership degrees of the element x to the set A satisfying μAq(x)+νAq(x)≤1,(q≥1). The indeterminacy degree of the element x to the set A is πA(x)q=(μA(x)q+νA(x)q−μA(x)qνA(x)q)1/q. For convenience, the pair (μA(x),νA(x)) is called a q-rung orthopair fuzzy number (q-ROFN) [8].






2.3. q-Rung Orthopair Fuzzy Graph


Definition 4

([25]). A q-ROFS Q on X×X is said to be a q-rung orthopair fuzzy relation (q-ROFR) on X, denoted by


Q={⟨xy,μQ(xy),νQ(xy)⟩|xy∈X×X},








where μQ:X×X→[0,1] and νQ:X×X→[0,1] represent the membership and nonmembership function of Q, respectively, such that 0≤μQq(xy)+νQq(xy)≤1 for all xy∈X×X and q≥1. The proposed concept of q-ROFG is a generalization of IFG [20] and PFG [24].





Definition 5

([25]). A q-ROFG on a non-empty set X is a pair G=(P,Q), where P is a q-ROFS on X and Q is a q-ROFR on X such that


μQ(xy)≤min{μP(x),μP(y)},νQ(xy)≥max{νP(x),νP(y)}








and 0≤μQq(xy)+νQq(xy)≤1 for all x,y∈X and q≥1. We call P and Q the q-rung orthopair fuzzy vertex set and the q-rung orthopair fuzzy edge set of G, respectively.







3. The Degree and Total Degree


In this section, the degree and total degree of a vertex in a q-ROFG are defined.



Definition 6.

The degree and total degree of a vertex x∈V in a q-ROFG G are defined as dG(x)=(dμ(x),dν(x)) and tdG(x)=(tdμ(x),tdν(x)), respectively, where


dμ(x)=∑x,y≠x∈VμQ(xy),dν(x)=∑x,y≠x∈VνQ(xy),tdμ(x)=∑x,y≠x∈VμQ(xy)+μP(x),tdν(x)=∑x,y≠x∈VνQ(xy)+νP(x).













Example 1.

Considering a road network problem, there are four locations l,m,n,o, assume that locations are performed by vertices, roads by edges, and the traffic congestion between adjacent locations is subjectively evaluated by decision-maker. The road network can be performed as a q-ROFG G=(P,Q), where P and Q respectively represent a q-ROFS of locations (vertices) and a q-ROFS of roads (edges). The traffic congestion of locations and roads are respectively denoted as (μP(x),νP(x)) and (μQ(x),νQ(x)), see Figure 1. For example, l(0.6,0.5) means that the congestion degree of location l is 0.6 and the non-congestion degree of location l is 0.5. lm(0.5,0.9) means that the congestion degree of road lm is 0.5 and the non-congestion degree of road lm is 0.9.


P=l(0.6,0.5),m(0.7,0.9),n(0.3,0.2),o(0.5,0.1),Q=lm(0.5,0.9),mn(0.1,0.9),no(0.2,0.5).













To obtain more traffic congestion information of the road network, the degree and total degree of each location are calculated. By Definition 6, dG(m)=(dμ(m),dν(m)). Since dμ(x)=∑x,y≠x∈VμQ(xy)anddν(x)=∑x,y≠x∈VνQ(xy), we can get dG(m)=(μQ(lm)+μQ(mn),νQ(lm)+νQ(mn))=(0.5+0.1,0.9+0.9)=(0.6,1.8). The degree of the location m represents the sum of congestion grades between m and other neighbor locations. By Definition 6, tdG(m)=(tdμ(m),tdν(m)). Since tdμ(x)=∑x,y≠x∈VμQ(xy)+μP(x)andtdν(x)=∑x,y≠x∈VνQ(xy)+νP(x), so we can get tdG(m)=(μQ(lm)+μQ(mn)+μP(m),νQ(lm)+νQ(mn)+νP(m))=(0.5+0.1+0.7,0.9+0.9+0.9)=(1.3,2.7). The total degree of the location m represents the sum of total congestion grades of the location m in road network. Similarly, we can obtain dG(l) = (0.5, 0.9), tdG(l) = (1.1, 1.4), dG(n) = (0.3, 1.4), tdG(n) = (0.6, 1.6), dG(o) = (0.2, 0.5) and tdG(o) = (0.7, 0.6).




4. Some Product Operations on q-Rung Orthopair Fuzzy Graphs


In this section, product operations on q-ROFGs, including direct product, Cartesian product, semi-strong product, strong product and lexicographic product, are analyzed.



Definition 7.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs of the graphs G1=(V1,E1) and G2=(V2,E2), respectively. The direct product of G1 and G2 is denoted by G1×G2=(P1×P2,Q1×Q2) and defined as:

	(i) 

	
(μP1×μP2)(x1,x2)=μP1(x1)∧μP2(x2)(νP1×νP2)(x1,x2)=νP1(x1)∨νP2(x2)forall(x1,x2)∈V1×V2,




	(ii) 

	
(μQ1×μQ2)(x1,x2)(y1,y2)=μQ1(x1y1)∧μQ2(x2y2)(νQ1×νQ2)(x1,x2)(y1,y2)=νQ1(x1y1)∨νQ2(x2y2)forallx1y1∈E1,forallx2y2∈E2.











Remark 1.

The direct product of G1 and G2 can be understood that the edges of G1 combine with the each edge of G2 to form a new graph G1×G2.





Proposition 1.

Let G1 and G2 be the q-ROFGs of the graphs G1 and G2 respectively. The direct product G1×G2 of G1 and G2 is a q-ROFG.





Definition 8.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. Then, for any vertex, (x1,x2)∈V1×V2,


(dμ)G1×G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1×E2(μQ1×μQ2)((x1,x2)(y1,y2))=∑x1y1∈E1,x2y2∈E2μQ1(x1y1)∧μQ2(x2y2),(dν)G1×G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1×E2(νQ1×νQ2)((x1,x2)(y1,y2))=∑x1y1∈E1,x2y2∈E2νQ1(x1y1)∨νQ2(x2y2).













Theorem 1.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. If μQ2≥μQ1,νQ2≤νQ1, then dG1×G2(x1,x2)=c(x2)dG1(x1), where c(x2)=∑x2y2∈E21, represents the number of points adjacent to x2 in G2 and if μQ1≥μQ2,νQ1≤νQ2, then dG1×G2(x1,x2)=c(x1)dG2(x2) for all (x1,x2)∈V1×V2, where c(x1)=∑x1y1∈E11 represents the number of points adjacent to x1 in G1.





Proof. 

By definition of degree of a vertex in G1×G2, we have


(dμ)G1×G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1×E2(μQ1×μQ2)((x1,x2)(y1,y2))=∑x1y1∈E1,x2y2∈E2μQ1x1y1∧μQ2x2y2=∑x1y1∈E1,x2y2∈E2μQ1x1y1sinceμQ2≥μQ1=∑x2y2∈E21×∑x1y1∈E1μQ1x1y1=c(x2)∑x1y1∈E1μQ1x1y1=c(x2)dμG1x1,(dν)G1×G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1×E2(νQ1×νQ2)((x1,x2)(y1,y2))=∑x1y1∈E1,x2y2∈E2νQ1x1y1∨νQ2x2y2=∑x1y1∈E1,x2y2∈E2νQ1x1y1sinceνQ2≤νQ1=∑x2y2∈E21×∑x1y1∈E1νQ1x1y1=c(x2)∑x1y1∈E1νQ1x1y1=c(x2)dνG1x1.











Hence, dG1×G2(x1,x2)=c(x2)dG1(x1). Likewise, it is easy to show that if μQ1≥μQ2,νQ1≤νQ2, then dG1×G2(x1,x2)=c(x1)dG2(x2). □





Remark 2.

In the SVNGs [21] and PFGs [24], If μQ2≥μQ1,νQ2≤νQ1, then dG1×G2(x1,x2)=dG1(x1). If μQ1≥μQ2,νQ1≤νQ2, then dG1×G2(x1,x2)=dG2(x2) (cf. Theorem 3.4 in [21] and Theorem 1 in [24]). It is obvious that they do not consider the effect of c(x2) or c(x1) on the degree under direct product.





Definition 9.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For any vertex (x1,x2)∈V1×V2,


(tdμ)G1×G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1×E2(μQ1×μQ2)((x1,x2)(y1,y2))+(μP1×μP2)(x1,x2)=∑x1y1∈E1,x2y2∈E2μQ1(x1y1)∧μQ2(x2y2)+μP1(x1)∧μP2(x2),(tdν)G1×G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1×E2(νQ1×νQ2)((x1,x2)(y1,y2))+(νP1×νP2)(x1,x2)=∑x1y1∈E1,x2y2∈E2νQ1(x1y1)∨νQ2(x2y2)+νP1(x1)∨νP2(x2).













Theorem 2.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For any (x1,x2)∈V1×V2, if

	(1) 

	
μQ2≥μQ1, then (tdμ)G1×G2(x1,x2)=c(x2)(dμ)G1(x1)+μP1(x1)∧μP2(x2);




	(2) 

	
νQ2≤νQ1, then (tdν)G1×G2(x1,x2)=c(x2)(dν)G1(x1)+νP1(x1)∨νP2(x2);




	(3) 

	
μQ1≥μQ2, then (tdμ)G1×G2(x1,x2)=c(x1)(dμ)G2(x2)+μP1(x1)∧μP2(x2);




	(4) 

	
νQ2≤νQ1, then (tdν)G1×G2(x1,x2)=c(x1)(dν)G2(x2)+νP1(x1)∨νP2(x2).









In the above equalities, c(x2) represents the number of points adjacent to x2 in G2 and c(x1) represents the number of points adjacent to x1 in G1.





Proof. 

The proof can be obtained by Definition 9 and Theorem 1. □





Remark 3.

In the PFGs [24], if

	(1) 

	
μQ2≥μQ1, then (tdμ)G1×G2(x1,x2)=(dμ)G1(x1)+μP1(x1)∧μP2(x2);




	(2) 

	
νQ2≤νQ1, then (tdν)G1×G2(x1,x2)=(dν)G1(x1)+νP1(x1)∨νP2(x2);




	(3) 

	
μQ1≥μQ2, then (tdμ)G1×G2(x1,x2)=(dμ)G2(x2)+μP1(x1)∧μP2(x2);




	(4) 

	
νQ1≤νQ2, then (tdν)G1×G2(x1,x2)=(dν)G2(x2)+νP1(x1)∨νP2(x2) (cf. Theorem 2 in [24]).









It is obvious that they do not consider the effect of c(x2) or c(x1) on the total degree under direct product.





Example 2.

Consider two q-ROFGs G1=(P1,Q1) and G2=(P2,Q2) on V1={l,m} and V2={n,p,s}, respectively, as shown in Figure 2. Their direct product G1×G2 is shown in Figure 3.



Since μQ2≥μQ1, νQ2≤νQ1, by Theorem 1, we have


(dμ)G1×G2(l,p)=c(p)(dμ)G1(l)={n,s}(dμ)G1(l)=2×0.1=0.2,(dν)G1×G2(l,p)=c(p)(dν)G1(l)={n,s}(dν)G1(l)=2×0.8=1.6.











Therefore, (d)G1×G2(l,p) = (0.2, 1.6). In addition, by Theorem 2, we have


(tdμ)G1×G2(l,p)=c(p)(dμ)G1(l)+μP1(l)∧μP2(p)={n,s}(dμ)G1(l)+μP1(l)∧μP2(p)=2×0.1+0.9∧0.9=1.1,(tdν)G1×G2(l,p)=c(p)(dν)G1(l)+νP1(l)∨νP2(p)={n,s}(dν)G1(l)+νP1(l)∨νP2(p)=2×0.8+0.6∨0.5=2.2.











Therefore, (td)G1×G2(l,p) = (1.1, 2.2). Likewise, we can get the degree and total degree of each vertex in G1×G2.





Remark 4.

Klement and Mesiar [36] show that results concerning various fuzzy structures actually follow from results of ordinary fuzzy structures. These results include those from PFSs, IFSs, and many others. Although PFSs and q-rung orthopair fuzzy sets are isomorphism, Theorem 1 and Theorem 2 in this paper cannot be obtained from the results of PFGs. In the PFGs [24], they do not consider the effect of c(x2)=∑x2y2∈E21 and their results fail to work in Example 2. For example, when using theorem 1 in PFGs [24], we can get


(dμ)G1×G2(l,p)=(dμ)G1(l)=0.1(dν)G1×G2(l,p)=(dν)G1(l)=0.8.











However, (dμ)G1×G2(l,p)=0.2≠(dμ)G1(l)=0.1 and (dν)G1×G2(l,p)=1.6≠(dν)G1(l)=0.8. When using theorem 2 in PFGs [24], we can get


(tdμ)G1×G2(l,p)=(dμ)G1(l)+μP1(l)∧μP2(p)=(dμ)G1(l)+μP1(l)∧μP2(p)=0.1+0.9∧0.9=1.0,(tdν)G1×G2(l,p)=(dν)G1(l)+νP1(l)∨νP2(p)=(dν)G1(l)+νP1(l)∨νP2(p)=0.8+0.6∨0.5=1.4.











However, (tdμ)G1×G2(l,p)=1.1≠1.0 and (tdν)G1×G2(l,p)=2.2≠1.4.





Definition 10.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs of G1=(V1,E1) and G2=(V2,E2), respectively. The Cartesian product of G1 and G2 is denoted by G1□G2=(P1□P2,Q1□Q2) and defined as:

	(i) 

	
(μP1□μP2)(x1,x2)=μP1(x1)∧μP2(x2)(νP1□νP2)(x1,x2)=νP1(x1)∨νP2(x2)forall(x1,x2)∈V1×V2,




	(ii) 

	
(μQ1□μQ2)(x,x2)(x,y2)=μP1(x)∧μQ2(x2y2)(νQ1□νQ2)(x,x2)(x,y2)=νP1(x)∨νQ2(x2y2)forallx∈V1,forallx2y2∈E2,




	(iii) 

	
(μQ1□μQ2)(x1,z)(y1,z)=μP1(x1y1)∧μP2(z)(νQ1□νQ2)(x1,z)(y1,z)=νP1(x1x2)∨νQ2(z)forallz∈V2,forallx1y1∈E1.











Remark 5.

The Cartesian product of G1 and G2 can be understood that the vertices of G1 combine with the each edge of G2 and the vertices of G2 combine with the each edge of G1 to form a new graph G1□G2.





Proposition 2.

Let G1 and G2 be the q-ROFGs of the graphs G1 and G2, respectively. The Cartesian product G1□G2 of G1 and G1 is a q-ROFG.





Definition 11.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For any vertex (x1,x2)∈V1×V2,


(dμ)G1□G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1□E2(μQ1□μQ2)((x1,x2)(y1,y2))=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x2=y2,x1y1∈E1μP2(x2)∧μQ1(x1y1),(dν)G1□G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1□E2(νQ1□νQ2)((x1,x2)(y1,y2))=∑x1=y1,x2y2∈E2νP1(x1)∨νQ2(x2y2)+∑x2=y2,x1y1∈E1νP2(x2)∨νQ1(x1y1).













Theorem 3.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. If μP1≥μQ2,μP2≥μQ1 and νP1≤νQ2,νP2≤νQ1. Then dG1□G2(x1,x2)=dG1(x1)+dG2(x2) for any (x1,x2)∈V1×V2.





Proof. 

By definition of degree of a vertex in G1□G2, we have


(dμ)G1□G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1□E2(μQ1□μQ2)((x1,x2)(y1,y2))=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x2=y2,x1y1∈E1μP2(x2)∧μQ1(x1y1)=∑x1=y1,x2y2∈E2μQ2(x2y2)+∑x2=y2,x1y1∈E1μQ1(x1y1)(ByusingμP1≥μQ2andμP1≤μQ2)=∑x1=y11×∑x2y2∈E2μQ2x2y2+∑x2=y21×∑x1y1∈E1μQ1x1y1=∑x2y2∈E2μQ2x2y2+∑x1y1∈E1μQ1x1y1=(dμ)G1(x1)+(dμ)G2(x2),(dν)G1□G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1□E2(νQ1□νQ2)((x1,x2)(y1,y2))=∑x1=y1,x2y2∈E2νP1(x1)∨νQ2(x2y2)+∑x2=y2,x1y1∈E1νP2(x2)∨νQ1(x1y1)=∑x1=y1,x2y2∈E2νQ2(x2y2)+∑x2=y2,x1y1∈E1νQ1(x1y1)(ByusingνP1≤νQ2andνP2≤νQ1)=∑x1=y11×∑x2y2∈E2νQ2x2y2+∑x2=y21×∑x1y1∈E1νQ1x1y1=∑x2y2∈E2νQ2x2y2+∑x1y1∈E1νQ1x1y1=(dν)G1(x1)+(dν)G2(x2).











Hence, dG1□G2(x1,x2)=dG1(x1)+dG2(x2). □





Definition 12.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For any vertex (x1,x2)∈V1×V2,


(tdμ)G1□G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1□E2(μQ1□μQ2)((x1,x2)(y1,y2))+(μP1□μP2)(x1,x2)=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x2=y2,x1y1∈E1μP2(x2)∧μQ1(x1y1)+μP1(x1)∧μP2(x2),(tdν)G1□G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1□E2(νQ1□νQ2)((x1,x2)(y1,y2))+(νP1□νP2)(x1,x2)=∑x1=y1,x2y2∈E2νP1(x1)∧νQ2(x2y2)+∑x2=y2,x1y1∈E1νP2(x2)∧νQ1(x1y1)+νP1(x1)∨νP2(x2).













Theorem 4.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For any (x1,x2)∈V1×V2,

	(1) 

	
If μP1≥μQ2andμP2≥μQ1, then


(tdμ)G1□G2(x1,x2)=(tdμ)G1(x1)+(tdμ)G2(x2)−μP1(x1)∨μP2(x2);












	(2) 

	
If νP1≤νQ2andνP2≤νQ1, then


(tdν)G1□G2(x1,x2)=(tdν)G1(x1)+(tdν)G2(x2)−νP1(x1)∧νP2(x2).



















Proof. 

By definition of total degree of a vertex in G1□G2,


(1)(tdμ)G1□G2(x1,x2)=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x2=y2,x1y1∈E1μP2(x2)∧μQ1(x1y1)+μP1(x1)∧μP2(x2)=∑x1=y11×∑x2y2∈E2μQ2(x2y2)+∑x2=y21×∑x1y1∈E1μQ1(x1y1)+μP1(x1)+μP2(x2)−μP1(x1)∨μP2(x2)(sinceμP1≥μQ2,μP2≥μQ1)=∑x2y2∈E2μQ2(x2y2)+μP2(x2)+∑x1y1∈E1μQ1(x1y1)+μP1(x1)−μP1(x1)∨μP2(x2)=(tdμ)G1(x1)+(tdμ)G2(x2)−μP1(x1)∨μP2(x2),(2)(tdν)G1□G2(x1,x2)=∑x1=y1,x2y2∈E2νP1(x1)∨νQ2(x2y2)+∑x2=y2,x1y1∈E1νP2(x2)∨νQ1(x1y1)+νP1(x1)∨νP2(x2)=∑x1=y11×∑x2y2∈E2νQ2(x2y2)+∑x2=y21×∑x1y1∈E1νQ1(x1y1)+νP1(x1)+νP2(x2)−νP1(x1)∧νP2(x2)(sinceνP1≤νQ2,νP2≤νQ1)=(tdν)G1(x1)+(tdν)G2(x2)−νP1(x1)∧νP2(x2).








□





Example 3.

Consider two q-ROFGs G1 and G2 in Example 2, where μP1≥μQ2,μP2≥μQ1 and νP1≤μQ2,νP2≤νQ1. Their Cartesian product G1□G2 is shown in Figure 4.



By Theorem 3, we have


(dμ)G1□G2(l,p)=(dμ)G1(l)+(dμ)G2(p)=0.1+0.7+0.2=1.0,(dν)G1□G2(l,p)=(dν)G1(l)+(dν)G2(p)=0.8+0.6+0.7=2.1.











Therefore, dG1□G2(l,p)=(1.0,2.1). In addition, by Theorem 4, we can get


(tdμ)G1□G2(l,p)=(tdμ)G1(l)+(tdμ)G2(p)−μP1(l)∨μP2(p)=0.9+0.1+0.7+0.2+0.9−0.9∨0.9=1.9,(tdν)G1□G2(l,p)=(tdν)G1(l)+(tdν)G2(p)−νP1(l)∧νP2(p)=0.8+0.6+0.6+0.7+0.5−0.6∧0.5=2.7.











Therefore, tdG1□G2(l,p)=(1.9,2.7). Likewise, we can get the degree and total degree of each vertex in G1□G2.





Definition 13.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs of the graphs G1=(V1,E1) and G2=(V2,E2), respectively. The semi-strong product of G1 and G2, denoted by G1•G2=(P1•P2,Q1•Q2), is defined as:

	(i) 

	
(μP1•μP2)(x1,x2)=μP1(x1)∧μP2(x2)(νP1•νP2)(x1,x2)=νP1(x1)∨νP2(x2)forall(x1,x2)∈V1×V2,




	(ii) 

	
(μQ1•μQ2)(x,x2)(x,y2)=μP1(x)∧μQ2(x2y2),(νQ1•νQ2)(x,x2)(x,y2)=νP1(x)∨νQ2(x2y2)forallx∈V1,forallx2y2∈E2,




	(iii) 

	
(μQ1•μQ2)(x1,x2)(y1,y2)=μP1(x1y1)∧μQ2(x2y2),(νQ1•νQ2)(x1,x2)(y1,y2)=νP1(x1y1)∨νQ2(x2y2)forallx1y1∈E1,forallx2y2∈E2.











Remark 6.

The semi-strong product of G1 and G2 can be understood that the vertices of G1 combine with the each edge of G2 and the edges of G1 combine with the each edge of G2 to form a new graph G1•G2.





Proposition 3.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs of the graphs G1 and G2, respectively. The semi-strong product G1•G2 of G1 and G2 is a q-ROFG.





Definition 14.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For any vertex (x1,x2)∈V1×V2,


(dμ)G1•G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1•E2(μQ1•μQ2)((x1,x2)(y1,y2))=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x1y1∈E1,x2y2∈E2μQ1(x1y1)∧μQ2(x2y2),(dν)G1•G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1•E2(νQ1•νQ2)((x1,x2)(y1,y2))=∑x1=y1,x2y2∈E2νP1(x1)∨νQ2(x2y2)+∑x1y1∈E1,x2y2∈E2νQ1(x1y1)∨νQ2(x2y2).













Theorem 5.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. If μP1≥μQ2,μQ1≤μQ2 and νP1≤νQ2,νQ1≥νQ2. Then (d)G1•G2(x1,x2)=c(x2)dG1(x1)+dG2(x2) for any (x1,x2)∈V1×V2, where c(x2) represents the number of points adjacent to x2 in G2.





Proof. 

By definition of degree of a vertex in G1•G2, we have


(dμ)G1•G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1•E2(μQ1•μQ2)((x1,x2)(y1,y2))=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x1y1∈E1,x2y2∈E2μQ2(x2y2)∧μQ1(x1y1)=∑x1=y1,x2y2∈E2μQ2(x2y2)+∑x1y1∈E1,x2y2∈E2μQ1(x1y1)(SinceμP1≥μQ2andμQ1≤μQ2)=∑x1=y11×∑x2y2∈E2μQ2(x2y2)+∑x2y2∈E21×∑x1y1∈E1μQ1(x1y1)=∑x2y2∈E2μQ2(x2y2)+c(x2)∑x1y1∈E1μQ1(x1y1)=(dμ)G2(x2)+c(x2)(dμ)G1(x1).











Analogously, it is easy to show that (dν)G1•G2(x1,x2)=c(x2)dνG1(x1)+dνG2(x2). Hence, dG1•G2(x1,x2)=c(x2)dG1(x1)+dG2(x2). □





Remark 7.

In the SVNGs [21] and PFGs [24], if μP1≥μQ2,μQ1≤μQ2 and νP1≤νQ2,νQ1≥νQ2, then (d)G1•G2(x1,x2)=dG1(x1)+dG2(x2) (cf. Theorem 3.14 in [21] and Theorem 5 in [24]). It is obvious that they do not consider the effect of c(x2) on the degree under semi-strong product.





Definition 15.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For any vertex (x1,x2)∈V1×V2,


(tdμ)G1•G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1•E2(μQ1•μQ2)((x1,x2)(y1,y2))+(μP1•μP2)(x1,x2)=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x1y1∈E1,x2y2∈E2μQ2(x1y1)∧μQ2(x2y2)+μP1(x1)∧μP2(x2),(tdν)G1•G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1•E2(νQ1•νQ2)((x1,x2)(y1,y2))+(νP1•νP2)(x1,x2)=∑x1=y1,x2y2∈E2νP1(x1)∨νQ2(x2y2)+∑x1y1∈E1,x2y2∈E2νQ1(x1y1)∨νQ2(x2y2)+νP1(x1)∨νP2(x2).













Theorem 6.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For all (x1,x2)∈V1×V2,

	(1) 

	
If μP1≥μQ2,μQ1≤μQ2, then


(tdμ)G1•G2(x1,x2)=(c(x2))(tdμ)G1(x1)+(tdμ)G2(x2)+(1−c(x2))μP1(x1)−μP1(x1)∨μP2(x2);












	(2) 

	
If νP1≤νQ2,νQ1≥νQ2, then


(tdν)G1•G2(x1,x2)=(c(x2))(tdν)G1(x1)+(tdν)G2(x2)+(1−c(x2))νP1(x1)−νP1(x1)∧νP2(x2).

















In the above equalities, c(x2) represents the number of points adjacent to x2 in G2.





Proof. 

By definition 6 of total degree of a vertex in G1•G2,


(1)(tdμ)G1•G2(x1,x2)=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x1y1∈E1,x2y2∈E2μQ1(x1y1)∧μQ2(x2y2)+μP1(x1)∧μP2(x2)=∑x1=y11×∑x2y2∈E2μQ2(x2y2)+∑x2y2∈E21×∑x1y1∈E1μQ1(x1y1)+μP1(x1)+μP2(x2)−μP1(x1)∨μP2(x2)(SinceμP1≥μQ2,μQ1≤μQ2)=∑x2y2∈E2μQ2(x2y2)+c(x2)∑x1y1∈E1μQ1(x1y1)+μP1(x1)+μP2(x2)−μP1(x1)∨μP2(x2)=(c(x2))(tdμ)G1(x1)+(tdμ)G2(x2)+(1−c(x2))μP1(x1)−μP1(x1)∨μP2(x2).











Analogously, we can prove (2). □





Remark 8.

In the PFGs [24], if μP1≥μQ2,μQ1≤μQ2, then



(tdμ)G1•G2(x1,x2)=(tdμ)G1(x1)+(tdμ)G2(x2)−μP1(x1)∨μP2(x2);



If νP1≤νQ2,νQ1≥νQ2, then



(tdν)G1•G2(x1,x2)=(tdν)G1(x1)+(tdν)G2(x2)−νP1(x1)∧νP2(x2) (cf. Theorem 6 in [24]).



It is obvious that they do not consider the effect of c(x2), (1−c(x2))μP1(x1) and (1−c(x2))νP1(x1) on the total degree under semi-strong product.





Example 4.

Consider two q-ROFGs G1 and G2 in Example 2, where μP1≥μQ2,μQ1≤μQ2, νP1≤νQ2,νQ1≥νQ2. Their semi-strong product G1•G2 is shown in Figure 5.



By Theorem 5, we can get


(dμ)G1•G2(l,p)=c(p)(dμ)G1(l)+(dμ)G2(p)={n,s}(dμ)G1(l)+(dμ)G2(p)=2×0.1+0.7+0.2=1.1,(dν)G1•G2(l,p)=c(p)(dν)G1(l)+(dν)G2(p)={n,s}(dν)G1(l)+(dν)G2(p)=2×0.8+0.6+0.7=2.9.








Therefore, dG1•G2(l,p)=(1.1,2.9). In addition, by Theorem 6, we have


(tdμ)G1•G2(l,p)=(c(p))(tdμ)G1(l)+(tdμ)G2(p)+(1−c(p))μP1(l)−μP1(l)∨μP2(p)={n,s}(tdμ)G1(l)+(tdμ)G2(p)+(1−c(p))μP1(l)−μP1(l)∨μP2(p)=2×(0.1+0.9)+0.7+0.2+0.9+(1−2)×0.9−0.9∨0.9=2.0,(tdν)G1•G2(l,p)=(c(p))(tdν)G1(l)+(tdν)G2(p)+(1−c(p))νP1(l)−νP1(l)∧νP2(p)={n,s}(tdν)G1(l)+(tdν)G2(p)+(1−c(p))νP1(l)−νP1(l)∧νP2(p)=2×(0.8+0.6)+0.6+0.7+0.5+(1−2)×0.6−0.6∧0.5=3.5.








Therefore, tdG1•G2(m,p)=(2.0,3.5). Likewise, we can get the degree and total degree of each vertex in G1•G2.





Remark 9.

In the PFGs [24], they do not consider the effect of c(x2)=∑x2y2∈E21 and their results fail to work in Example 4. For example, when using theorem 5 in PFGs [24], we can get


(dμ)G1•G2(l,p)=(dμ)G1(l)+(dμ)G2(p)=(dμ)G1(l)+(dμ)G2(p)=0.1+0.7+0.2=1.0,(dν)G1•G2(l,p)=(dν)G1(l)+(dν)G2(p)=(dν)G1(l)+(dν)G2(p)=0.8+0.6+0.7=2.1.








However, (dμ)G1•G2(l,p)=1.1≠1.0 and (dν)G1•G2(l,p)=2.9≠2.1.



When using Theorem 6 in PFGs [24], we can get


(tdμ)G1•G2(l,p)=(tdμ)G1(l)+(tdμ)G2(p)−μP1(l)∨μP2(p)=(0.1+0.9)+0.7+0.2+0.9−0.9∨0.9=1.9,(tdν)G1•G2(l,p)=(tdν)G1(l)+(tdν)G2(p)−νP1(l)∧νP2(p)=(0.8+0.6)+0.6+0.7+0.5−0.6∧0.5=2.7.








However, (tdμ)G1•G2(l,p)=2.0≠1.9 and (tdν)G1•G2(l,p)=3.5≠2.7.





Definition 16.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs of the G1=(V1,E1) and G2=(V2,E2), respectively. The strong product of these two q-ROFGs is denoted by G1⊠G2=(P1⊠P2,Q1⊠Q2) and defined as:

	(i) 

	
(μP1⊠μP2)(x1,x2)=μP1(x1)∧μP2(x2)(νP1⊠νP2)(x1,x2)=νP1(x1)∨νP2(x2)forall(x1,x2)∈V1×V2,




	(ii) 

	
(μQ1⊠μQ2)(x,x2)(x,y2)=μP1(x)∧μQ2(x2y2),(νQ1⊠νQ2)(x,x2)(x,y2)=νP1(x)∨νQ2(x2y2)forallx∈V1,forallx2y2∈E2,




	(iii) 

	
(μQ1⊠μQ2)(x1,z)(y1,z)=μQ1(x1y1)∧μP2(z)(νQ1⊠νQ2)(x1,z)(y1,z)=νQ1(x1x2)∨νP2(z)forallz∈V2,forallx1y1∈E1,




	(iv) 

	
(μQ1⊠μQ2)(x1,x2)(y1,y2)=μQ1(x1y1)∧μQ2(x2y2)(νQ1⊠νQ2)(x1,x2)(y1,y2)=νQ1(x1y1)∨νQ2(x2y2)forallx1y1∈E1,forallx2y2∈E2.











Remark 10.

The strong product of G1 and G2 can be understood that the vertices of G1 combine with the each edge of G2, the vertices of G2 combine with the each edge of G1 and the edges of G1 combine with the each edge of G2 to form a new graph G1⊠G2.





Proposition 4.

Let G1 and G2 be the q-ROFGs of the graphs G1 and G2, respectively. The strong product G1⊠G2 of G1 and G1 is a q-ROFG.





Definition 17.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For any vertex (x1,x2)∈V1×V2,


(dμ)G1⊠G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1⊠E2(μQ1⊠μQ2)((x1,x2)(y1,y2))=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x2=y2,x1y1∈E1μP2(x2)∧μQ1(x1y1)+∑x1y1∈E1,x2y2∈E2μQ1(x1y1)∧μQ2(x2y2),










(dν)G1⊠G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1⊠E2(νQ1⊠νQ2)((x1,x2)(y1,y2))=∑x1=y1,x2y2∈E2νP1(x1)∨νQ2(x2y2)+∑x2=y2,x1y1∈E1νP2(x2)∨νQ1(x1y1)+∑x1y1∈E1,x2y2∈E2νQ1(x1y1)∨νQ2(x2y2).













Theorem 7.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. If μP1≥μQ2, μP2≥μQ1, μQ1≤μQ2, νP1≤νQ2, νP2≤νQ1, νQ1≥νQ2. Then, for all (x1,x2)∈V1⊠V2, dG1×G2(x1,x2)=1+c(x2)dG1(x1)+dG2(x2), where c(x2) represents the number of points adjacent to x2 in G2.





Proof. 

By definition of degree of a vertex in G1⊠G2, we have


(dμ)G1⊠G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1⊠E2(μQ1⊠μQ2)((x1,x2)(y1,y2))=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x2=y2,x1y1∈E1μP2(x2)∧μQ1(x1y1)+∑x1y1∈E1,x2y2∈E2μQ1(x1y1)∧μQ2(x2y2)=∑x1=y1,x2y2∈E2μQ2(x2y2)+∑x2=y2,x1y1∈E1μQ1(x1y1)+∑x1y1∈E1,x2y2∈E2μQ1(x1y1)(SinceμP1≥μQ2,μP2≥μQ1andμQ1≤μQ2)=∑x1=y11×∑x2y2∈E2μQ2(x2y2)+∑x2=y21×∑x1y1∈E1μQ1(x1y1)+∑x2y2∈E21×∑x1y1∈E1μQ1(x1y1)=∑x2y2∈E2μQ2x2y2+∑x1y1∈E1μQ1x1y1+c(x2)∑x1y1∈E1μQ1x1y1=dμG2x2+dμG1x1+c(x2)dμG1x1=dμG2x2+1+c(x2)dμG1x1.











Analogously, it is easy to show that (dν)G1⊠G2(x1,x2)=1+c(x2)(dν)G1(x1)+(dν)G2(x2). Hence, dG1⊠G2(x1,x2)=1+c(x2)dG1(x1)+dG2(x2). □





Remark 11.

In the SVNGs [21] and PFGs [24], If μP1≥μQ2, μP2≥μQ1, μQ1≤μQ2, νP1≤νQ2, νP2≤νQ1, νQ1≥νQ2, then dG1⊠G2(x1,x2)=V2dG1(x1)+dG2(x2), where V2 represents the number of vertices in G2 (cf. Theorem 3.19 in [21] and Theorem 7 in [24]). It is obvious that they do not consider the effect of c(x2) on the degree under strong product.





Definition 18.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For any vertex (x1,x2)∈V1×V2,


(tdμ)G1⊠G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1⊠E2(μQ1⊠μQ2)((x1,x2)(y1,y2))+(μP1⊠μP2)(x1,x2)=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x2=y2,x1y1∈E1μP2(x2)∧μQ1(x1y1)+∑x1y1∈E1,x2y2∈E2μQ2(x1y1)∧μQ2(x2y2)+μP1(x1)∧μP2(x2),(tdν)G1⊠G2(x1,x2)=∑(x1,x2)(y1,y2)∈E1⊠E2(νQ1⊠νQ2)((x1,x2)(y1,y2))+(νP1⊠νP2)(x1,x2)=∑x1=y1,x2y2∈E2νP1(x1)∨νQ2(x2y2)+∑x2=y2,x1y1∈E1νP2(x2)∨νQ1(x1y1)+∑x1y1∈E1,x2y2∈E2νQ1(x1y1)∨νQ2(x2y2)+νP1(x1)∨νP2(x2).













Theorem 8.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For any (x1,x2)∈V1×V2,

	(1) 

	
If μP1≥μQ2,μP2≥μQ1,μQ1≤μQ2, then


(tdμ)G1⊠G2(x1,x2)=(tdμ)G2(x2)+1+c(x2)(tdμ)G1(x1)−c(x2)μP1(x1)−μP1(x1)∨μP2(x2);












	(2) 

	
If νP1≤νQ2,νP2≤νQ1,μQ1≥μQ2, then


(tdν)G1⊠G2(x1,x2)=(tdν)G2(x2)+1+c(x2)(tdν)G1(x1)−c(x2)νP1(x1)−νP1(x1)∧νP2(x2).

















In the above equalities, c(x2) represents the number of points adjacent to x2 in G2.





Proof. 

For any vertex (x1,x2)∈V1×V2,


(1)(tdμ)G1⊠G2(x1,x2)=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x2=y2,x1y1∈E1μP2(x2)∧μQ1(x1y1)+∑x1y1∈E1,x2y2∈E2μQ1(x1y1)∧μQ2(x2y2)+μP1(x1)∧μP2(x2),=∑x1=y11×∑x2y2∈E2μQ2(x2y2)+∑x2=y21×∑x1y1∈E1μQ1(x1y1)+∑x2y2∈E21×∑x1y1∈E1μQ1(x1y1)+μP1(x1)+μP2(x2)−μP1(x1)∨μP2(x2)(sinceμP1≥μQ2,μP2≥μQ1,μQ1≤μQ2)=∑x2y2∈E2μQ2(x2y2)+μP2(x2)+1+c(x2)∑x1y1∈E1μQ1(x1y1)+1+c(x2)μP1(x1)−(1+c(x2)−1)μP1(x1)−μP1(x1)∨μP2(x2)=(tdμ)G2(x2)+1+c(x2)(tdμ)G1(x1)−(1+c(x2)−1)μP1(x1)−μP1(x1)∨μP2(x2)=(tdμ)G2(x2)+1+c(x2)(tdμ)G1(x1)−c(x2)μP1(x1)−μP1(x1)∨μP2(x2).








Analogously, we can prove (2). □





Remark 12.

In the PFGs [24], if μP1≥μQ2,μP2≥μQ1,μQ1≤μQ2, then



(tdμ)G1⊠G2(x1,x2)=(tdμ)G2(x2)+V2(tdμ)G1(x1)−V2−1μP1(x1)−μP1(x1)∨μP2(x2);



If νP1≤νQ2,νP2≤νQ1,μQ1≥μQ2, then



(tdν)G1⊠G2(x1,x2)=(tdν)G2(x2)+V2(tdν)G1(x1)−V2−1νP1(x1)−νP1(x1)∧νP2(x2) (cf. Theorem 8 in [24]).



It is obvious that they do not consider the effect of c(x2) on the total degree under strong product.





Example 5.

Consider two q-ROFGs G1 and G2 in Example 2, where μP1≥μQ2,νP1≤νQ2, μP2≥μQ1,νP2≤νQ1,μQ1≤μQ2,νQ1≥νQ2 and their strong product G1⊠G2 is shown in Figure 6.



By Theorem 7, we have


(dμ)G1⊠G2(l,p)=dμG2p+1+c(p)dμG1l=dμG2p+1+{n,s}dμG1l=0.7+0.2+(1+2)×0.1=1.2,(dν)G1⊠G2(l,p)=dνG2p+1+c(p)dνG1l=dνG2p+1+{n,s}dνG1l=0.6+0.7+(1+2)×0.8=3.7.








Therefore, dG1⊠G2(l,p)=(1.2,3.7). In addition, by Theorem 8, we have


(tdμ)G1⊠G2(l,p)=(tdμ)G2(p)+1+c(p)(tdμ)G1(l)−c(p)μP1(l)−μP1(l)∨μP2(p)=(tdμ)G2(p)+1+{n,s}(tdμ)G1(l)−{n,s}μP1(l)−μP1(l)∨μP2(p)=0.7+0.2+0.9+(1+2)×(0.1+0.9)−2×0.9−0.9∨0.9=2.1,(tdν)G1⊠G2(l,p)=(tdν)G2(p)+1+c(p)(tdν)G1(l)−c(p)νP1(l)−νP1(l)∧νP2(p)=(tdν)G2(p)+1+{n,s}(tdν)G1(l)−{n,s}νP1(l)−νP1(l)∧νP2(p)=0.6+0.7+0.5+(1+2)×(0.8+0.6)−2×0.6−0.6∧0.5=4.3.








Therefore, tdG1⊠G2(l,p)=(2.1,4.3). Likewise, we can find the degree and total degree of each vertex in G1⊠G2.





Remark 13.

In the PFGs [24], they do not consider the effect of c(x2)=∑x2y2∈E21. For example, when using theorem 7 in PFGs [24], we can get


(dμ)G1⊠G2(l,p)=dμG2p+p2dμG1l=0.7+0.2+3×0.1=1.2,(dν)G1⊠G2(l,p)=dνG2p+p2dνG1l=0.6+0.7+3×0.8=3.7.








When using theorem 8 in PFGs [24], we can get


(tdμ)G1⊠G2(l,p)=(tdμ)G2(p)+p2(tdμ)G1(l)−p2−1μP1(l)−μP1(l)∨μP2(p)=0.7+0.2+0.9+3×(0.1+0.9)−(3−1)×0.9−0.9∨0.9=2.1,(tdν)G1⊠G2(l,p)=(tdν)G2(p)+p2(tdν)G1(l)−p2−1νP1(l)−νP1(l)∧νP2(p)=0.6+0.7+0.5+3×(0.8+0.6)−(3−1)×0.6−0.6∧0.5=4.3.








Although they get the same values as the Example 5, but the variable means different things. p2 is represented by number of points in G2. Actually, p2 should be replaced by 1+c(x2) in Example 5.





Definition 19.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs of the G1=(V1,E1) and G2=(V2,E2), respectively. The lexicographic product of these two q-ROFGs is denoted by G1[G2]=(P1[P2],Q1[Q2]) and defined as follows:

	(i) 

	
(μP1[μP2])(x1,x2)=μP1(x1)∧μP2(x2)(νP1[νP2])(x1,x2)=νP1(x1)∨νP2(x2)forall(x1,x2)∈V1×V2,




	(ii) 

	
(μQ1[μQ2])(x,x2)(x,y2)=μP1(x)∧μQ2(x2y2)(νQ1[νQ2])(x,x2)(x,y2)=νP1(x)∨νQ2(x2y2)forallx∈V1,forallx2y2∈E2,




	(iii) 

	
(μQ1[μQ2])(x1,z)(y1,z)=μQ1(x1y1)∧μP2(z)(νQ1[νQ2])(x1,z)(y1,z)=νQ1(x1x2)∨νP2(z)forallz∈V2,forallx1y1∈E1,




	(iv) 

	
(μQ1[μQ2])(x1,x2)(y1,y2)=μP2(x2)∧μP2(y2)∧μQ1(x1y1)(νQ1[νQ2])(x1,x2)(y1,y2)=νP2(x2)∨νP2(y2)∨νQ1(x1y1)forallx1y1∈E1,x2≠y2.











Remark 14.

The lexicographic product of G1 and G2 can be understood that the vertices of G1 combine with the each edge of G2, the vertices of G2 combine with the each edge of G1 and the edges of G1 combine with the two different vertices of G2 to form a new graph G1[G2].





Proposition 5.

The lexicographic product G1[G2] of two q-ROFGs of G1 and G2 is a q-ROFG.





Definition 20.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For any vertex (x1,x2)∈V1×V2,


(dμ)G1[G2](x1,x2)=∑(x1,x2)(y1,y2)∈E1[E2](μQ1[μQ2])((x1,x2)(y1,y2))=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x2=y2,x1y1∈E1μP2(x2)∧μQ1(x1y1)+∑x2≠y2,x1y1∈E1μP2(y2)∧μP2(x2)∧μQ1(x1y1),(dν)G1[G2](x1,x2)=∑(x1,x2)(y1,y2)∈E1[E2](νQ1[νQ2])((x1,x2)(y1,y2))=∑x1=y1,x2y2∈E2νP1(x1)∨νQ2(x2y2)+∑x2=y2,x1y1∈E1νP2(x2)∨νQ1(x1y1)+∑x2≠y2,x1y1∈E1νP2(y2)∨νP2(x2)∨νQ1(x1y1).













Theorem 9.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. If μP1≥μQ2,μP2≥μQ1 and νP1≤νQ2,νP2≤νQ1. Then, dG1[G2](x1,x2)=(dμ)G2(x2)+V2(dμ)G1(x1), for any (x1,x2)∈V1×V2, where V2 represents the number of vertices in G2.





Proof. 

For any vertex (x1,x2)∈V1×V2,


(dμ)G1[G2](x1,x2)=∑(x1,x2)(y1,y2)∈E1[E2](μQ1[μQ2])((x1,x2)(y1,y2))=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x2=y2,x1y1∈E1μP2(x2)∧μQ1(x1y1)+∑x2≠y2,x1y1∈E1μP2(y2)∧μP2(x2)∧μQ1(x1y1)=∑x1=y1,x2y2∈E2μQ2(x2y2)+∑x2=y2,x1y1∈E1μQ1(x1y1)+∑x2≠y2,x1y1∈E1μQ1(x1y1)(SinceμP1≥μQ2andμP2≥μQ1)=∑x1=y11×∑x2y2∈E2μQ2(x2y2)+∑x2=y21×∑x1y1∈E1μQ1(x1y1)+∑x2≠y21×∑x1y1∈E1μQ1(x1y1)=∑x2y2∈E2μQ2(x2y2)+∑x2=y21+∑x2≠y21∑x1y1∈E1μQ1(x1y1)=(dμ)G2(x2)+V2(dμ)G1(x1).











Analogously, we can show that (dν)G1[G2](x1,x2)=(dν)G2(x2)+V2(dν)G1(x1). Hence, (d)G1[G2](x1,x2)=dG2(x2)+V2dG1(x1). □





Definition 21.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For any vertex (x1,x2)∈V1×V2,


(tdμ)G1[G2](x1,x2)=∑(x1,x2)(y1,y2)∈E1[E2](μQ1[μQ2])((x1,x2)(y1,y2))+(μP1[μP2])(x1,x2)=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x2=y2,x1y1∈E1μP2(x2)∧μQ1(x1y1)+∑x2≠y2,x1y1∈E1μP2(y2)∧μP2(x2)∧μQ1(x1y1)+μP1(x1)∧μP2(x2),(tdν)G1[G2](x1,x2)=∑(x1,x2)(y1,y2)∈E1∘E2(νQ1[νQ2])((x1,x2)(y1,y2))+(νP1[νP2])(x1,x2)=∑x1=y1,x2y2∈E2νP1(x1)∨νQ2(x2y2)+∑x2=y2,x1y1∈E1νP2(x2)∨νQ1(x1y1)+∑x2≠y2,x1y1∈E1νP2(y2)∨νP2(x2)∨νQ1(x1y1)+νP1(x1)∨νP2(x2).













Theorem 10.

Let G1=(P1,Q1) and G2=(P2,Q2) be two q-ROFGs. For any (x1,x2)∈V1×V2,

	(1) 

	
If μP1≥μQ2andμP2≥μQ1, then


(tdμ)G1[G2](x1,x2)=(tdμ)G2(x2)+V2(tdμ)G1(x1)−(V2−1)μP1(x1)−μP1(x1)∨μP2(x2);












	(2) 

	
If νP1≤νQ2andνP2≤νQ1, then


(tdν)G1[G2](x1,x2)=(tdν)G2(x2)+V2(tdν)G1(x1)−(V2−1)νP1(x1)−νP1(x1)∧νP2(x2).

















In the above equalities, V2 represents the number of vertices in G2.





Proof. 

For any vertex (x1,x2)∈V1×V2,


(1)(tdμ)G1[G2](x1,x2)=∑x1=y1,x2y2∈E2μP1(x1)∧μQ2(x2y2)+∑x2=y2,x1y1∈E1μP2(x2)∧μQ1(x1y1)+∑x2≠y2,x1y1∈E1μP2(y2)∧μP2(x2)∧μQ1(x1y1)+μP1(x1)∧μP2(x2)=∑x1=y11×∑x2y2∈E2μQ2(x2y2)+∑x2=y21×∑x1y1∈E1μQ1(x1y1)+∑x2≠y21×∑x1y1∈E1μQ1(x1y1)+μP1(x1)+μP2(x2)−μP1(x1)∨μP2(x2)(SinceμP1≥μQ2,μP2≥μQ1)=(tdμ)G2(x2)+V2(tdμ)G1(x1)−(V2−1)μP1(x1)−μP1(x1)∨μP2(x2).











Analogously, we can prove (2). □





Example 6.

Consider two q-ROFGs G1 and G2 in Example 2, where μP1≥μQ2,μP2≥μQ1 and νP1≤νQ2,νP2≤νQ1 and their lexicographic product G1[G2] is shown in Figure 7.



By Theorem 9, we have


(dμ)G1[G2](l,p)=V2(dμ)G1(l)+(dμ)G2(p)=3×0.1+0.7+0.2=1.2,(dν)G1[G2](l,p)=V2(dν)G1(l)+(dν)G2(p)=3×0.8+0.6+0.7=3.7.











Therefore, dG1[G2](l,p)=(1.2,3.7). In addition, by Theorem 10, we must have


(tdμ)G1[G2](l,p)=V2(tdμ)G1(l)+(tdμ)G2(p)−(V2−1)μP1(l)−μP1(l)∨μP2(p)=3×(0.1+0.9)+0.7+0.2+0.9−(3−1)×0.9−0.9∨0.9=2.1,(tdν)G1[G2](l,p)=V2(tdν)G1(l)+(tdν)G2(p)−(V2−1)νP1(l)−νP1(l)∧νP2(p)=3×(0.8+0.6)+0.6+0.7+0.5−(3−1)×0.6−0.6∧0.5=4.3.











Therefore, tdG1[G2](l,p)=(2.1,4.3). Likewise, we can get the degree and total degree of each vertex in G1[G2].






5. Conclusions


Our paper contributes to the literature on fuzzy graphs in several ways. First, the degree and total degree of a vertex in q-ROFGs are defined. The implications of the degree and total degree of a vertex in q-ROFGs are illustrated by the example of road network. The degree and total degree of a vertex help one understand the properties of the product operations on q-ROFGs. Second, product operations on q-ROFGs, including direct product, Cartesian product, semi-strong product, strong product and lexicographic product, are defined. The product operations on q-ROFGs simplify the number of q-ROFGs and will be helpful when the q-ROFGs are very large. Third, some general theorems about the degree and total degree under the defined product operations on q-ROFGs are obtained. We illustrate these theorems through some examples. These theorems improve the similar results in SVNGs and PFGs. More specifically, these theorems show that the degree (or total degree) of a vertex in product operations on q-ROFGs are not only related to the degree (or total degree) of vertices but also the number of adjacent points, which is omitted in the SVNGs and PFGs.



In the future, we are working to extend our study to: (1) q-rung orthopair fuzzy soft graphs; (2) Rough q-rung orthopair fuzzy graphs; (3) Simplified interval-valued q-rung orthopair fuzzy graphs and; (4) Hesitant q-rung orthopair fuzzy graphs.
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Figure 1. A road network using q-rung orthopair fuzzy graph (q-ROFG) with q = 4. 






Figure 1. A road network using q-rung orthopair fuzzy graph (q-ROFG) with q = 4.



[image: Symmetry 11 00588 g001]







[image: Symmetry 11 00588 g002 550]





Figure 2. Two q-ROFGs with q = 3. 
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Figure 3. Direct product of two q-ROFGs. 
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Figure 4. Cartesian product of two q-ROFGs. 
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Figure 5. Semi-strong product of two q-ROFGs. 
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Figure 6. Strong product of two q-ROFGs. 
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Figure 7. Lexicographic product of two q-ROFGs. 
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