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Abstract: Resistance distance is a concept developed from electronic networks. The calculation of
resistance distance in various circuits has attracted the attention of many engineers. This report
considers the resistance-based graph invariant, the Resistance–Harary index, which represents
the sum of the reciprocal resistances of any vertex pair in the figure G, denoted by RH(G).
Vertex bipartiteness in a graph G is the minimum number of vertices removed that makes the
graph G become a bipartite graph. In this study, we give the upper bound and lower bound of the
RH index, and describe the corresponding extremal graphs in the bipartite graph of a given order.
We also describe the graphs with maximum RH index in terms of graph parameters such as vertex
bipartiteness, cut edges, and matching numbers.

Keywords: Resistance–Harary index; resistance distance; cut edges; bipartite graph; matching
number; vertex bipartiteness

1. Introduction

There are graph invariants that describe certain properties of a graph, which we call topological
indices. Various topological indices are proposed and researched by both theoretical chemists and
mathematicians. Topological index is mainly used to study the quantitative relationship between
structure and performance and between structure and activity. It would be helpful for describing
partially biological and chemical properties. Some of them have been proved to be successful [1].
Recently, finding the extreme value for the topological indices, as well as the related problem of
characterizing the extremal graphs, attracted the attention of many researchers, and many results
were obtained.

Among these topological indices, one of most widely known topological description is the Wiener
index, which was proposed in 1947 and represents the sum of the distances of all pairs of vertices in
the graph, i.e.,

W(G) = ∑
{u,v}∈V(G)

dG(u, v).

Another graph invariant based on distance is called the Harary index, has been introduced
independently by Placšić et al. [2] and by Ivanciuc et al. [3] in 1993, which is the sum of the reciprocal
distances of any vertex pair in graph G, i.e.,

H(G) = ∑
{u,v}∈V(G)

1
dG(u, v)

.

More results on the Harary index can be found in the literature [4–7].
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Recently, graph invariants based on resistance distance have attracted the attention of theorists,
such as the Kirchhoff index. The resistance distance is what Klein and Randić [8] came up with as
a function of the distance of the graph. The resistance distance between two vertices u and v of G,
denoted by rG(u, v), represents the effective resistance of two elements u and v in a circuit, and each
edge in G means the cell resistance.

Similar to the distance in the path graph, the resistance distance is also closely related to the
structure of the graph, and not only has good mathematics and physics characteristics [9,10], but also
has widespread chemistry applications.

The Kirchhoff index is one of the most studied topological indices, which is defined as

k f (G) = ∑
{x,y}⊆V(G)

rG(x, y).

With the continuous development and improvement of electrical network theory, D.J. Klein and
O. Ivanciue [11] investigated the global cyclictiy index C(G), defined as

C(G) = ∑
uv∈E(G)

[
1

rG(u, v)
− 1

dG(u, v)
],

Y. Yang [12] obtained some results on global cyclicity index.
Inspired by the Harary index, S. Chen et al. [13] modify the global cyclicity index and put forward

the Resistance–Harary index, described as

RH(G) = ∑
{u,v}⊆V(G)

1
rG(u, v)

.

In [14], the structure of the graph with maximum RH value is described among the connected graph
with given order and cut edges.

All graphs considered here are connected and simple. Let G be a graph with vertex set V(G) and
edge set E(G), and the degree of each vertex v is expressed as dG(v), which means the number of
neighbors of v in G. dG(u, v) is the distance between u and v in G, the longest distance between any
two vertices in the graph is called the diameter.

As usual, let Cn, Sn and Pn be a cycle, a star, and a path with n vertices, respectively. G − uv
represents the subgraph obtained by deleting an edge uv from graph G. Similarly, G + uv represents
the graph obtained by adding an edge uv to graph G. Let U and W be all the vertex sets of G. Where
W ⊆ U, then U \W represents the complement of W in U. The pendant vertex of G refers to the vertex
of graph G with degree 1. The pendant edge is the edge adjacent to the pendant vertex.

A bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and
independent sets X and Y, such that every edge connects a vertex in X to one in Y. Vertex sets X and
Y are usually called the parts of the graph. If a graph G is a bipartite graph, and all vertices in X are
connected to all vertices in Y, then G is a completed bipartite graph.

If the number of vertices in each part of the completed bipartite is m and n, respectively, denoted it
by Km,n. The cut vertex (edge) will increase the number of branches of the graph if it is removed.
Other terms not defined here are referred to [15].

A matching M in graph G is a set of non-adjacent edges, that is, no two edges share a common
vertex. A maximum matching (also known as maximum-cardinality matching) is a matching that
contains the largest possible number of edges. There may be many maximum matchings. The matching
number of a graph G is the size of a maximum matching.

Inspired by the above results, it is natural to consider these extremal problems from the class
of general connected graphs to the bipartite graphs. Our aim in this article is to study the extremal
bipartite graphs with given parameters on Resistance–Harary index. First, we give the upper bound
and lower bound of RH index, and describe the corresponding extremal graphs in the bipartite graph
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of a given order. We also describe the graphs with maximum RH index in terms of graph parameters
such as vertex bipartiteness vb, (where 1 ≤ vb ≤ n− 2), cut edges, and matching numbers.

2. General Connected Bipartite Graphs

In this section, we give the upper bound and lower bound of RH index, and describe the
corresponding extremal graphs in the bipartite graph of a given order. In the simple connected
acyclic graph, the Resistance distance and distance from the two points in the graph are equal, that is,
the Resistance–Harary index and the Harary index are the same in the acyclic graph. There is a formula
for this scenario:

RH(Pn) = H(Pn) = 1 + n
n−1

∑
i=2

1
i

.

However, when the connected graph contains cycles, the resistance distance is different from the
general distance. Our calculation is based on electrical network theory, given a fixed resistor on each
edge, the shortest distance between two vertices represents the effective resistance of the corresponding
two components in the circuit. Let Ck = u1u2 . . . uku1 be the cycle on k vertices, where k ≥ 3. By Ohm’s
law, any two components in a circuit us, ut ∈ V(Ck) with s < t, we have

1
rCk (us, ut)

=
1

t− s
+

1
k− (t− s)

,

then, we have

rCk (us, ut) =
(t− s)(k + s− t)

k
.

We start with some useful lemmas.

Lemma 1 ([8]). w is the cut vertex of graph G, and let u and v be two vertices of different components of G−w.
There must be rG(u, v) = rG(u, w) + rG(w, v).

Lemma 2 ([14]). Let G be a graph that is not complete. Add an edge from G and we get the graph G∗. So there
is RH(G∗) > RH(G). That is to say, RH(G) increases with addition of edges.

Corollary 1. G is a connected graph with n vertices, and H is a connected spanning subgraph of G.
Then RH(H) ≤ RH(G), the equal sign is true when G ∼= H.

Lemma 3 ([13]). Let T be a tree on n vertices different from Pn and Sn. Then

RH(Pn) < RH(T) < RH(Sn).

Theorem 1. Kb n
2 c,d

n
2 e is the graph with maximum RH index among all connected bipartite graphs of order n.

Proof. Choose G0 as the graph such that its Resistance–Harary index is as large as possible, let (X, Y)
be its two divisions, where |X|+ |Y| = n. We first prove the following two claims.

Claim 1. G0 is a complete bipartite graph.
Suppose to the contrary that G0 = (X, Y) is a graph that is not complete. Thus we can add one

edge from u ∈ X to v ∈ Y to form a new graph G0 + uv. It is obvious that G0 + uv is still a bipartite
graph. By Lemma 2, we know that RH(G0 + uv) > RH(G0), which contradicts the maximality of G0.

Claim 2. G0 ∼= Kb n
2 c,d

n
2 e.

From Claim 1, we denote G0 as Ks,t. In a complete connected bipartite graph Ks,t, Klein [16]
obtain that the resistance distance between vertices from X and Y, respectively, is s+t−1

st . The resistance
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distance between any two vertices in X and in Y is 2
t and 2

s , respectively, hence, by Lemma 1 and the
definition of RH index, we can get that

RH(Ks,t) =
st

s + t− 1
st +

s
2

(
t
2

)
+

t
2

(
s
2

)
,

=
s2t2

s + t− 1
+

st(t− 1)
4

+
st(s− 1)

4
,

=
st(4st + (s + t)2 − 3(s + t) + 2)

4(s + t− 1)
.

RH(Ks−1,t+1) =
(s− 1)(t + 1)(4(s− 1)(t + 1) + (s + t)2 − 3(s + t) + 2)

4(s + t− 1)
.

Let M = (s + t)2 − 3(s + t) + 2, if s > t + 1, then, we have

RH(Ks−1,t+1)− RH(Ks,t) =
[(s− 1)(t + 1)(4(s− 1)(t + 1) + M)− st(4st + M)]

4(s + t− 1)
,

=
4(s− 1)2(t + 1)2 + M(s− 1)(t + 1)− 4s2t2 −M · st

4(s + t− 1)
,

=
4(s− t− 1)(2st + s− t− 1) + M(s− t− 1)

4(s + t− 1)
,

> 0.

Then,

RH(Ks−1,t+1) > RH(Ks,t).

So RH(Ks,t) obtain the extremal value if and only if Ks,t ∼= Kb n
2 cd

n
2 e. This completes the proof.

Theorem 2. For any bipartite graph G of order n, we have

1 + n
n−1

∑
i=2

1
i
≤ RH(G) ≤

b n
2 cd

n
2 e(4b

n
2 cd

n
2 e+ n2 − 3n + 2)

4(n− 1)
.

Proof. By Lemma 3 and Corollary 1, we can deduce that Pn has minimal RH index in the bipartite
graphs of order n. By Theorem 1, one can see that Kb n

2 c,d
n
2 e has the maximum Resistance–Harary index.

By direct calculation, we have

RH(Kb n
2 c,d

n
2 e) =

b n
2 cd

n
2 e(4b

n
2 cd

n
2 e+ n2 − 3n + 2)

4(n− 1)

and

RH(Pn) = H(Pn) = 1 + n
n−1

∑
i=2

1
i

.

This completes the proof.
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3. Bipartite Graphs Given Number of Matchings

In this section, we are going to characterize the extremal bipartite graphs of order n with given
matching number q for the Resistance–Harary index.

Lemma 4. The function for f (x) = x2q2

x+q−1 for q > 1 and x > q is strictly increasing.

Proof. Now, let us compute the derivative of this function

f ′(x) =
2xq2(x + q− 1)− x2q2

(x + q− 1)2 ,

=
x2q2 + 2xq3 − 2xq2

(x + q− 1)2 ,

=
x2q2 + 2xq2(q− 1)

(x + q− 1)2 ,

> 0.

This completes the proof.

Theorem 3. Graph Kq,n−q has the largest RH in the bipartite graphs of order n given matching number q.

Proof. We assume that G is a bipartite graph of a given matching number q, and (U, W) is its vertex
partition, and G has the largest RH index. Obviously, q ≤ b n

2 c, if q = b n
2 c, by Lemma 2 and Theorem 1,

the extremal graph happens to be isomorphic to Kb n
2 c,d

n
2 e, as expected. We are going to prove that,

q < b n
2 c, naturally, we make |W| ≥ |U| and take |M| = q as the maximal matching of G, by Lemma 2,

the value of the Resistance–Harary index is increasing when we increase the number of edges. So if
|U| = q, the extremal graph G ∼= Kq,n−q. Next, we consider |U| > q. Let UM, WM be the vertex subset
sets in U, W saturated with M, respectively. Then, |UM| = |WM| = q. By the maximality of M, we infer
that there are no edges set between U \UM and W\WM. Add as many edges between the vertices
of UM and WM, UM and W \WM, U \UM and WM as we can from G, we get the result graph G

′
.

Note that W\WM 6= ∅ and U \UM 6= ∅ and G
′

has at least q + 1 matching number. So, G 6= G′ and by
Lemma 2, we have RH(G′) > RH(G). We get another bipartite graph G

′′
by separating two vertices

sets of U \UM and WM and associating two sets of U \UM and UM in graph G′. Obviously, G′′ is
isomorphic to the complete bipartite graph Kq,n−q, which has the matching number q. Next, we will
prove that

RH(G′′) > RH(G′).

Let |U \ UM| = n1, |W \WM| = n2. Suppose that n2 ≥ n1, we partition VG′ = VG′′ into
UM

⋃
WM

⋃
(W \WM)

⋃
(U \UM) as shown in Figure 1. For all x ∈ W \WM (rep. y ∈ UM, z ∈ WM,

w ∈ U \UM), by computing immediately, we have
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∑
x∈W\WM

y∈UM

1
rG′(x, y)

= ∑
x∈W\WM

y∈UM

1
rG′′(x, y)

=
n2

2q2

n2 + q− 1
.

∑
x∈W\WM

z∈WM

1
rG′(x, z)

= ∑
x∈W\WM

z∈WM

1
rG′′(x, z)

=
n2q2

2
+

n2
2q
2

.

∑
y∈UM
z∈WM

1
rG′(y, z)

= ∑
y∈UM
z∈WM

1
rG′′(y, z)

=
q4

2q− 1
.

∑
z∈WM

w∈U\UM

1
rG′(z, w)

=
n1q2

2
+

qn2
1

2
. ∑

z∈WM
w∈U\UM

1
rG′′(z, w)

=
n2

2q2

n2 + q− 1
.

∑
y∈UM

w∈U\UM

1
rG′(y, w)

=
n2

1q2

n1 + q− 1
. ∑

y∈UM
w∈U\UM

1
rG′′(y, w)

=
n2q2

2
+

qn2
2

2
.

For x ∈W \WM and w ∈ U \UM, the resistance distance between two vertices x and w is

rG′(x, w) = 1 + 1 +
2q− 1

q2 =
2q2 + 2q− 1

q2 .

Then, we have

∑
x∈W\WM
w∈U\UM

1
rG′(x, w)

=
q2n1n2

2q2 + 2q− 1
. ∑

x∈W\WM
w∈U\UM

1
rG′′(x, w)

=
n1n2q

2
.

This gives

RH(G′′)− RH(G′) = ( ∑
x∈W\WM
w∈U\UM

1
rG′′(x, w)

+ ∑
y∈UM

w∈U\UM

1
rG′′(y, w)

+ ∑
z∈WM

w∈U\UM

1
rG′′(z, w)

)

− ( ∑
x∈W\WM
w∈U\UM

1
rG′(x, w)

+ ∑
y∈UM

w∈U\UM

1
rG′(y, w)

+ ∑
z∈WM

w∈U\UM

1
rG′(z, w)

).

= (
n1n2q

2
+

n2
2q2

n2 + q− 1
+

n2q2 + n2
2q

2
)

− (
q2n1n2

2q2 + 2q− 1
+

n2
1q2

n1 + q− 1
+

n1q2 + n2
1q

2
).

= n1n2
2q3 − q

2(2q2 + 2q− 1)
+

q2

2
(n2 − n1) +

q
2
(n2

2 − n2
1)

+
n2

2q2

n2 + q− 1
−

n2
1q2

n1 + q− 1
.

where n2 − n1 > 0, n2
2 − n2

1 > 0 for n2 > n1. 2q3−q
2(2q2+2q−1) > 0 for q ≥ 1. By Lemma 4, the function

f (x) = x2q2

x+q−1 for q > 1 and x > q is strictly increasing. Thus when n2 ≥ n1 > q, we have

n2
2q2

n2 + q− 1
−

n2
1q2

n1 + q− 1
> 0.
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According to the above analysis, we have RH(G
′′
)− RH(G′) > 0, thus

RH(G
′′
) > RH(G′).

This completes the proof.
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Figure 1. Two graphs G′ and G
′′

in Theorem 3.

4. Graphs with Given Vertex Bipartiteness

In this section, we described the extremal graph with a given vertex bipartiteness for
Resistance–Harary index. Let G1 and G2 be the graphs where any two vertices do not intersect.
We obtain the joint graph of G1 and G2 through the correlation of every vertex of graph G1 with every
vertex of graph G2, denoted it by G1 ∨ G2. The vertex bipartiteness of a graph G is the minimum
number of vertices removed makes the graph G a bipartite graph, which is denoted by vb(G), see [17].
Let Gn,δ be the set of the graphs with n vertices and vb(G) ≤ δ, where δ is the positive integer that
does not exceed n− 2.

Lemma 5. Let G be the graph in Gn,δ. There is a pair of positive integers s and t that satisfies s + t = n− δ,
we have RH(G) ≤ RH(G∗) for all graphs G ∈ Gn,δ, and the equality holds if and only if G∗ ∼= Kδ ∨ Ks,t.

Proof. By Lemma 2, we know that RH is a topological index whose value increases with the number
of edges. Let G∗ ∈ Gn,δ be the graph with the largest RH index value, that is to say, RH(G∗) ≥ RH(G)

for all graphs G ∈ Gn,δ. Since G∗ ∈ Gn,δ, there are v1, v2, · · · , vk ∈ V(G∗) (k ≤ δ) such that G∗ −
{v1, v2, · · · , vk} is a bipartite graph, let (X, Y) be its vertex sets, and |X| = s and |Y| = t. Thus,
s + t = n− k. If G∗ − {v1, v2, · · · , vk} 6= Ks,t, then there exists two vertices u, v that are not adjacent
and u ∈ X, v ∈ Y. We get another graph G∗ + e ∈ Gn,δ by getting a new edge e = uv, then RH(G∗ +
e) > RH(G∗), and we get the contradiction, so G∗ − {v1, v2, · · · , vk} = Ks,t. In addition, if there
are two vertices that are not adjacent to each other and u, v ∈ {v1, v2, · · · , vk}, then we get a new
graph G∗ + uv ∈ Gn,δ, by adding a new edge uv into G∗, then RH(G∗ + uv) > RH(G∗), again,
a contradiction. This suggests that the subgraph induced by {v1, v2, · · · , vk} is Kk, so G∗ ∼= Kk ∨ Ks,t.
At last, we prove that k = δ. To the contrary, assume that |X| = s ≥ 2 or |Y| = t ≥ 2. Naturally,
we set t ≥ 2. Pick a vertex v from Y, and add the edges vvi to Kk ∨ Ks,t, where vi ∈ {v1, v2, · · · , vk},
the resulting graph is Kk+1 ∨ Ks,t−1 ∈ Gn,δ, and it has t− 1 ≥ 1 edges more than graph G∗, implying
that RH(Kk+1 ∨ Ks,t−1) > RH(Kk ∨ Ks,t) = RH(G∗), which is a contradiction. Therefore, k = δ and
G∗ ∼= Kδ ∨ Ks,t. Complete the proof of the theorem.

Lemma 6. Let G ∼= Kδ ∨ Ks,t and G
′ ∼= Kδ ∨ Ks+1,t−1. If s ≤ t− 2, then RH(G

′
) > RH(G).
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Proof. By the definition of the RH index and by Lemma 1, we have

RH(G) = RH(Kδ ∨ Ks,t)

= RH(Ks,t) + RH(Kδ) + ∑
x∈V(Ks,t)
y∈V(Kδ)

1
rG(x, y)

,

= RH(Ks,t) + RH(Kδ)

+ sδ(1 +
t(δ− 1))

2
+

(s− 1)t
3

) + tδ(1 +
s(δ− 1)

2
+

(t− 1)s
3

),

=
st(4st + (s + t)2 − 3(s + t) + 2)

4(s + t− 1)
+

δ2(δ− 1)
8

,

+
δ(6s + 6t + 6st(δ− 1) + 2st(s + t− 2))

6
,

where M = (s + t)2 − 3(s + t) + 2. We have

RH(G
′
) = RH(Kδ ∨ Ks+1,t−1)

= RH(Ks+1,t−1) + RH(Kδ) + ∑
x∈V(Ks+1,t−1)

y∈V(Kδ)

1
rG(x, y)

,

=
4(s + 1)2(t− 1)2 + M(st + t− s− 1)

4(s + t− 1)
+

δ2(δ− 1)
8

,

+
δ(6s + 6t + 6(s + 1)(t− 1)(δ− 1) + 2(s + 1)(t− 1)(s + t− 2))

6
.

where M = (s + t)2 − 3(s + t) + 2. So

RH(G
′
)− RH(G) =

4(t− s− 1)(2st + t− s− 1) + M(t− s− 1)
4(s + t− 1)

,

+
δ(t− s− 1)(6(δ− 1) + 2(s + t− 2))

6
,

> 0.

where M = (s + t)2 − 3(s + t) + 2. Then RH(G
′
) > RH(G). This completes the proof.

Next, we describe the graphs with extremal Resistance–Harary index values in the graph with
given vertex bipartiteness. The following conclusion is easy to deduce by applying Lemmas 2, 5, and 6.

Theorem 4. Let G be the graph of Gn,δ. Where 1 ≤ δ ≤ n− 2, then
(a) If n−m is even, then RH(G∗) ≥ RH(G) holds, where G∗ ∼= Kδ ∨ K n−δ

2 , n−δ
2

.
(b) If n−m is odd, then RH(G∗) ≥ RH(G) holds, where G∗ ∼= Kδ ∨ Kb n−δ

2 c,d
n−δ+1

2 e.

5. Bipartite Graph with a Given Cut Edges

In this section, we determine bipartite graph given cut edges with maximum Resistance–Harary index.

Lemma 7. G1 and G2 are connected graphs whose vertices do not intersect, assume that u ∈ G1 and v ∈ G2.
We connect u and v to get G, and if we identified two vertices u with v in G, we get graph G

′
. Let the new vertex

be w, which is adjacent to a pendant vertex w0 (see Figure 2). Then RH(G
′
) > RH(G).
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Proof. By Lemma 1 and the definition of RH index, we have

RH(G) =
2

∑
i=1

RH(Gi) + ∑
x∈V(G1)

1
rG1(x, u) + 1

+ 1

+ ∑
y∈V(G2)

1
rG2(v, y) + 1

+ ∑
x∈V(G1),
y∈V(G2)

1
rG1(x, u) + rG2(y, v) + 1

.

RH(G
′
) =

2

∑
i=1

RH(Gi) + ∑
x∈V(G1)

1
rG1(x, u) + 1

+ 1

+ ∑
y∈V(G2)

1
rG2(v, y) + 1

+ ∑
x∈V(G1),
y∈V(G2)

1
rG1(x, u) + rG2(y, v)

.

RH(G
′
)− RH(G) = ∑

x∈V(G1),
y∈V(G2)

(
1

rG1(x, u) + rG2(y, v)
− 1

rG1(x, u) + rG2(y, v) + 1
)

> 0.

Then RH(G
′
) > RH(G). This completes the proof.

s s ss-u vG1 G2

G

w
G1

w0

G2

G
′

Figure 2. Graphs G and G
′

in Lemma 7.

Lemma 8 ([13]). Let G be a graph from a connect graph G0 by attaching some pendant vertices. If u and v are
two vertices in graph G0, pendant vertices u1, u2, · · · , ua are attached to the vertex u and b pendant vertices
v1, v2, · · · , vb are attached to the vertex v. Let G

′
= G − {vv1, vv2, · · · , vvb}+ {uv1, uv2, · · · , uvb} and

G
′′
= G− {uu1, uu2, · · · , uua}+ {vu1, vu2, · · · , vua}. Then RH(G

′
) > RH(G) or RH(G

′′
) > RH(G).

Lemma 9. For bipartite graph Kk
r,s with r > s + 2 and k, s ≥ 1 (see Figure 3). One has RH(Kk

r,s) <

RH(Kk
r−1,s+1).
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Proof. By Lemmas 1 and direct calculations, we can get the value of RH of Kk
r,s.

RH(Kk
r,s) = RH(Sk) + RH(Kr,s) + ∑

x∈V(Sk)
y∈V(Kr,s)

1
rG(x, y)

=
k2 + 3k

4
+

rs(4rs + (r + s)2 − 3(r + s) + 2)
4(r + s− 1)

+ k[
rs + 2
r + 2

+
sr2

rs + r + s− 1
].

Let f (r, s) = rs(4rs+(r+s)2−3(r+s)+2)
4(r+s−1) . Then we know from the proof of Theorem 1, f (r − 1, s + 1) >

f (r, s). Similarly, let g(r, s) = rs+2
r+2 + sr2

rs+r+s−1 , by comparison, we have g(r− 1, s + 1)− g(r, s) > 0.
Thus, we have RH(Kk

r,s) < RH(Kk
r−1,s+1). This completes the proof.

By Lemma 9, it is straightforward to see that

Corollary 2. Let Gk
n be the bipartite graphs of order n with k cut edges obtained by identifying the center

of Kk+1 order star graph and one vertex of a complete graph with n − k vertices. For G ∈ Gk
n, we have

RH(G) ≤ RH(Kk
[ n−k

2 ]d n−k
2 e

), and equality is attained if and only if G ∼= Kk
[ n−k

2 ]d n−k
2 e

.

Let Bk
n be the set of connected bipartite graphs with n order and k cut edges. For k = 0,

from Theorem 1, then the graph with maximum RH index is isomorphic to graph Kb n
2 cd

n
2 e.

For k = n− 1, the bipartite graph is a tree, so the Resistance distance and distance between the
vertices in the tree are equal, that is, the Resistance–Harary index in the tree was the same as the
Harary index. So the maximum Resistance–Harary index is obtained uniquely at Sn.

Next, we focus on the case 1 ≤ k ≤ n− 4.

Theorem 5. In all connected bipartite graphs with n order and k cut edges, where 1 ≤ k ≤ n− 4, the maximum
Resistance–Harary index is founded at Kk

b n−k
2 cd

n−k
2 e

.

Proof. Let G0 be the graph having the maximum RH index value in Bk
n and E1 be the set of cut

edges of G0. Where G0 and G0 − E1 are bipartite graphs, then by Lemma 2, we can know that each
component of G0− E1 is a complete bipartite graph. In addition, by Lemma 7, every edge of E1 must be
pendant edges. Hence, G0 must be the graph constructed from Km,n−m−k by hanging k pendant edges.
Finally, by Lemma 8, all these pendant edges in G0 must be attached to one common vertex. That is
to say, G0 must be one of the graph Gk

n, furthermore, by Corollary 2, we get that G0 ∼= Kk
b n−k

2 cd
n−k

2 e
.

This completes the proof.

6. Discussion

Chemical graph theory is the topology branch of mathematical chemistry which applies graph
theory to mathematical modelling of chemical phenomena. In chemical graph theory, vertices represent
atoms and edges represent the connections between atoms. The topological exponent of a graph is a
function defined on a (molecular) graph regardless of the labeling of its vertices. The Resistance–Harary
index is a topological descriptor that has been correlated with the relationship between structure and
performance and between structure and activity molecular descriptors. To correlate with electrical
network theory and real analysis, the Resistance–Harary index has much better predictive power than
that of the global cyclicity index.

7. Conclusions

In this paper, we first present a structural of the extremal graphs for Resistance–Harary index over
all bipartite graphs with n vertices, then characterize the extremal graphs given vertex bipartiteness on
the RH index. Moreover, we optimize the extremal structure of bipartite graphs with given cut edges
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and bipartite graphs with given matching numbers. Along this line, some other interesting extremal
problems on bipartite graphs with given parameters are valuable to be considered. In the future we
can also characterize extremal bipartite graphs with fixed diameter on the Resistance–Harary index.
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