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Abstract

:

In the paper, we study the oscillation of fourth-order delay differential equations, the present authors used a Riccati transformation and the comparison technique for the fourth order delay differential equation, and that was compared with the oscillation of the certain second order differential equation. Our results extend and improve many well-known results for oscillation of solutions to a class of fourth-order delay differential equations. Some examples are also presented to test the strength and applicability of the results obtained.
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1. Introduction


In this work, we consider a fourth-order delay differential equation


Lz+qyfzσy=0,



(1)




where


Lz:=m3ym2ym1yz′y′′′.











We assume mi,q,σ∈C[y0,∞),R,miy>0,i=1,2,3,limy→∞m3ym1y>0,q>0,σy≤y and limy→∞σy=∞,f∈CR,R,fu/u≥k>0 for u≠0.



By a solution of (1) we mean a function z ∈Cσyz,∞, which has the property m1yz′y,m2ym1yz′y′,m3ym2ym1yz′y′′∈C1[yz,∞), and satisfies (1) on [yz,∞). We consider only those solutions z of (1) which satisfy sup{zy:y≥yz}>0, for all y>yz. Such a solution is said to be oscillatory if it has arbitrarily large zeros and nonoscillatory otherwise.



The study of differential equations with deviating argument was initiated in 1918, appearing in the first quarter of the twentieth century as an area of mathematics that has since received a lot of attention. It has been created in order to unify the study of differential and functional differential equations. Since then, there has been much research activity concerning the oscillation of solutions of various classes of differential and functional differential equations. Many authors have contributed on various aspects of this theory, see ( [1,2,3,4,5,6,7,8,9]).



The problem of the oscillation of higher and fourth order differential equations have been widely studied by many authors, who have provided many techniques used for obtaining oscillatory criteria for higher and fourth order differential equations. We refer the reader to the related books (see [4,10,11,12,13]) and to the papers (see [11,14,15,16,17,18]). Because of the above motivating factors for the study of fourth-order differential equations, as well as because of the theoretical interest in generalizing and extending some known results from those given for lower-order equations, the study of oscillation of such equations has received a considerable amount of attention. For a systematic summary of the most significant efforts made as regards this theory, the reader is referred to the monographs of [19,20,21,22].



Especially, second and fourth order delay differential equations are of great interest in biology in explaining self-balancing of the human body and in robotics in constructing biped robots.



One of the traditional tools in the study of oscillation of equations which are special cases of (1) has been based on a reduction of order and the comparison with oscillation of first-order delay differential equations. Another widely used technique, applicable also in the above-mentioned case, involves the Riccati type transformation which has been used to reduce Equation (1) to a first-order Riccati inequality see (see [2]).



Moaaz et al. [11] improved and extended the Riccati transformation to obtain new oscillatory criteria for the fourth order delay differential equations


πyz‴yα′+∫amqy,ξfzΦy,ξdσξ=0,y≥y0.











Elabbasy et al. [7] studied the equation


myzn−1yγ′+∑i=1mqiyfzσiy=0,y≥y0.











Agarwal et al. [1] and the present authors in [18] used the comparison technique for the fourth order delay differential equation


myzn−1yγ′+qyzγσy=0,y≥y0,








that was compared with the oscillation of certain first order differential equation and under the conditions


∫y0∞1m1γydy=∞,








and


∫y0∞1m1γydy<∞.











However, the authors of this paper used the comparison technique for the fourth order delay differential equation and that was compared with the oscillation of certain second order differential equation.



To the best of our knowledge, there is nothing known about the oscillation of (1) to be oscillatory under the


∫y0∞1miydy=∞.



(2)







Our primary goal is to fill this gap by presenting simple criteria for the oscillation of all solutions of (1). So the main advantage of studying (1) essentially lies in the direct application of the well-known Kiguradze lemma [23] (Lemma 1), which allows one to classify the set of possible nonoscillatory solutions.



In what follows, all occurring functional inequalities are assumed to hold eventually, that is, they are satisfied for all t large enough. As usual and without loss of generality, we can deal only with eventually positive solutions of (1).




2. Main Results


In this section, we state some oscillation criteria for (1). For convenience, we denote


πiy=∫y1y1misds,i=1,2,3,I2y=∫y1y1m1sπ2sds.A2y=∫y1y1m2sπ3sds,A3y=∫y1y1m1sA2sds.E¯0zy=zy,E¯izy=miE¯i−1zy′,i=1,2,3,E¯4zy=E¯3zy′.








where y1 is sufficiently large.



The main step to study Equation (1) is to determine the derivatives sign E¯izy according to Kiguradze’s lemma [23]


E¯4zy+qyfzσy=0,








the set Φ of nonoscillatory solutions can be divided into two parts


Φ=Φ1∪Φ3,








say positive solution zy satisfies


zy∈Φ1⟺E¯1zy>0,E¯2zy<0,E¯3zy>0,E¯4zy<0,








or


zy∈Φ3⟺E¯1zy>0,E¯2zy>0,E¯3zy>0,E¯4zy<0.











Theorem 1.

Let (2) hold. Assume that z(y) be a positive solution of Equation (1). If




	(i) 

	
zy∈Φ1, then zyπ1(y) is decreasing.




	(ii) 

	
zy∈Φ3, then zyA3(y) is decreasing and E¯1zy≥A2yE¯3zy.











Proof. 

Let zy be a positive solution of (1) and zy∈Φ1. It follows from the monotonicity of E¯1zythat


zy>zy−zy1=∫y1y1m1sE¯1zsds,≥E¯1zy∫y1y1m1sds,≥E¯1zyπ1(y)>m1yz′yπ1(y).











Therefore,


zyπ1(y)′=z′yπ1(y)−zy1m1yπ1(y)2<0,



(3)




case (i) is proved. Now let zy∈Φ3. Since


E¯2zy=E¯2zy1+∫y1y1m3sE¯3zsds>E¯3zyπ3y








then


E¯2zyπ3(y)′=E¯2′zyπ3(y)−E¯2zy1m3yπ3(y)2<0.



(4)







Thus E¯2zyπ3(y) is decreasing. Moreover,


E¯1zy=E¯1zy1+∫y1yπ3(s)m2sE¯2zsπ3(s)ds,>E¯2zyπ3(y)A2(y).








we obtain E¯1zy≥A2(y)E¯3zy and


E¯1zyA2(y)′=E¯1′zyA2(y)−1m2yπ3(y)E¯1zyA2(y)2<0.



(5)







Thus E¯1zyA2(y) is decreasing. On the other hand,


zy=zy1+∫y1yA2(s)m1sE¯1zsA2(s)ds,>E¯1zyA2(y)A3(y),








which implies


zyA3(y)′=z′yA3(y)−1m1yA2(y)zyA3(y)2<0.



(6)







So that zyA3(y) is decreasing. Theorem is proved. □





Let


δy=1m1y∫yσ−1y1m2s∫sσ−1y1m3νdνds∫σ−1y∞kqsds.











Theorem 2.

Let (2) hold. Let z(y) be a positive solution of Equation (1). If




	(i) 

	
zy∈Φ1, then z′y≥δyzy.




	(ii) 

	
zy∈Φ3, then z′y≥1m1yπ1yzy.











Proof. 

Assume that zy is a positive solution of (1) and zy∈Φ1. For any u>y, we have E¯1zy that


−E¯2zy=E¯2zu−E¯2zy,=∫yu1m3sE¯3zsds,>E¯3zu∫yu1m3sds.



(7)







Multiplying by 1m2s and then integrating from y to u, one gets


E¯1zy≥∫yuE¯3zym2s∫su1m3νdνds,>E¯3zu∫yu1m2s∫su1m3νdνds.



(8)







An integration of (1) from u to ∞, yields


E¯3zu≥∫u∞kqszσsds,≥zσs∫u∞kqsds.











Combining (7) together with (8) and setting u=σ−1y, we get


z′y≥1m1y∫yσ−1y1m2s∫sσ−1y1m3νdνds∫σ−1y∞kqsdszy.≥δyzy.



(9)




and case (i) is proved. Now let zy∈Φ3. Employing (H2), the monotonicity of E¯1zy and the fact that E¯1zy→∞ as y→∞, we get


zy=zy1+∫y1y1m1sE¯1zsds,≤zy1+E¯1zy∫y1y1m1sds,=zy1−E¯1zy∫0y11m1sds+E¯1zy∫0y1m1sds,≤E¯1zs∫0y1m1sds.



(10)







The proof is complete now. □





Now, we apply the results of the previous cases to obtain the oscillation conditions of Equation (1). We denote


δ1y=qyπ1σyπ1y,δ2y=kqyA3σyA3y.











Theorem 3.

Let (2) hold. Assume there exists a positive continuously differentiable functions ρ,ϑ∈Cy0,∞ such that


limsupy→∞∫y1∞ρνm2ν∫ν∞1m3u∫u∞δ1sdsdu−m1νρ′ν24ρνdν=∞,



(11)




and


limsupy→∞∫y1∞δ2νϑs−m1sϑ′ν24ρνA2sds=∞.



(12)







Then every solution of Equation (1) is oscillatory.





Proof. 

Assume that (1) has a nonoscillatory solution z(y). Without loss of generality, we can assume that zy is a positive solution of (1). Then either zy∈Φ1 or zy∈Φ3. Now assume that zy∈Φ1. Theorem 1 implies that


zσy≥π1σyπ1yzy











On the other hand, it follows from Theorem 2 that


z′y≥δyzy.











Setting both estimates into (1), we get


E¯4zy+δ1y≤0.











Integrating from y to ∞ one gets


−E¯3zy≥∫y∞δ1szsds,≥zy∫y∞δ1sds.



(13)







Integrating once more, we have


E¯2zy+∫y∞1m3u∫u∞δ1sdsduzy≤0.



(14)







Define the function ωy by


ωy:=ρyE¯1zyzy,



(15)




then ωy>0 and


ω′y=ρ′yE¯1zyzy+ρyE¯2zym2yzy−ρyE¯1zyz′yz2y≤−ρym2yzy∫y∞1m3u∫u∞δ1sdsdu+ρ′yρyωy−ω2ym1yρy≤−ρym2yzy∫y∞1m3u∫u∞δ1sdsdu+m1yρ′y24ρy.



(16)







Integration of the previous inequality yields


∫y1yρνm1ν∫ν∞1m3u∫u∞δ1sdsdu−m1νρ′ν24ρνdν≤ωy1,








this contradicts with (11) as y→∞. Now assume that zy∈Φ3. Theorems 1 and 2 guarantee that


zσy≥A3σyA3yzy,z′y≥1m1yπ1yzy,E¯1zy≥A2yE¯3zy,








what in view of (1) provides


E¯4zy+δ2y≤0.











Now define ψyby


ψy:=ϑyE¯3zyzy,



(17)




then ψy>0and


ψ′y=ϑ′yE¯3zyzy+ϑyE¯4zyzy−ϑyE¯3zyz′yz2y≤−ϑyδ2y+ϑ′yϑyψy−A2yψ2ym1yϑy≤−ϑyδ2y+m1yϑ′y24ϑyA2.



(18)







Integrating from y1 to y and letting y→∞, we get


∫y1∞δ2νϑs−m1sϑ′ν24ρνA2sds≤ψy1,








which contradicts with (12) and the proof is complete. □





Corollary 1.

Let (2) hold and


limsupy→∞∫y1∞π1νm2ν∫ν∞1m3u∫u∞δ1sdsdu−14m1νπ1νdν=∞,



(19)






limsupy→∞∫y1∞kqsA3σs−A2s4m1sA3sds=∞.



(20)







Then every solution of Equation (1) is oscillatory.





Now, we use the comparison method to obtain other oscillation results. It is well known (see [10]) that the differential equation


ayz′y′+qyzσy=0y≥y0,



(21)




where a,q∈C[y0,∞),ay,qy>0, is nonoscillatory if and only if there exists a number y≥y0, and a function υ∈C1[y,∞), satisfying the inequality


υ′y+αa−1yυ2y+qy≤0on[y∞).











Lemma 1

(see [10]). Let


∫y0∞1asds=∞








holds, then the condition


liminfy→∞∫y0∞1asds∫y∞qsds>14.













Theorem 4.

Let (2) hold. Assume that the equation


m1yz′y′+1m2y∫y∞1m3u∫u∞δ1sdsduzy=0,



(22)




and


m1yπ3yz′y′+δ2yzy=0,



(23)




are oscillatory, then every solution of (1) is oscillatory.





Proof. 

Proceeding as in proof of the Theorem 3. We get (16). If we set ρy=1 in (16), then we obtain


ω′y+1m1yω2y−1m2y∫y∞1m3u∫u∞δ1sdsdu≤0.











Thus, we can see that Equation (22) is nonoscillatory for every constant λ1∈0,1, which is a contradiction. If we now set ϑy=1 in (18), then we find


ψ′y+A2ym1yψ2y+δ2y≤0.











Hence, Equation (23) is nonoscillatory, which is a contradiction.



Theorem 4 is proved. □





In view of Lemma 1, oscillation criteria for (1) of Hille–Nehari-type are easily acquired. Please note that



Corollary 2.

Assume that


liminfy→∞π1y∫y∞1m2ν∫ν∞1m3u∫u∞δ1sdsdu>14,










liminfy→∞∫y0yA2sm1sds∫y∞δ2sds>14.











Then every solution of (1) is oscillatory.






3. Example


In this section, we give the following example to illustrate our main results.



Example 1.

Let us consider the fourth-order differential equation of type


y1\2y1\2z′y″′+1y3zβy=0,y≥1,



(24)




where 0<β<1 is a constant. Let


m3y=y1\2,m2y=y1\2,m1y=1>0,qy=1y3,σy=βy,








and


πis:=∫y∘∞1misds=∞.













If we now set k=1, It is easy to see that all conditions of Corollary 1 are satisfied.


A3σs=∫σ1sσs1m1σsA2σsds=∫σ1sσs∫σ1sσs1m2σsπ3σsdsds=∫σ1sσs∫σ1sσs1βs1/2∫σ1s∞1βs1/2dsdsds










A2s=∫s1s1m2sπ3sds=∫s1s1s1/2∫s1∞1s1/2dsds








now


limsupy→∞∫y1∞kqsA3σs−A2s4m1sA3sdslimsupy→∞∫y1∞1s3∫σ1sσs∫σ1sσs1βs1/2∫σ1s∞1βs1/2dsdsdsds=∞








and


limsupy→∞∫y1∞π1νm2ν∫ν∞1m3u∫u∞δ1sdsdu−14m1νπ1νdν=∞.











Hence, by Corollary 1, every solution of Equation (25) is oscillatory.



Example 2.

Consider a differential equation


yyyz′y′′′+yzy=0,y≥1,



(25)









We see


m3y=m2y=m1y=y>0,qy=y,σy=y,








and


πis:=∫y∘∞1misds=∞.











If we now set k=1, It is easy to see that all conditions of Corollary 1 are satisfied.


limsupy→∞∫y1∞π1νm2ν∫ν∞1m3u∫u∞δ1sdsdu−14m1νπ1νdν=∞,










limsupy→∞∫y1∞kqsA3σs−A2s4m1sA3sds=∞.











Hence, by Corollary 1, every solution of Equation (25) is oscillatory.




4. Conclusions


The results of this paper are presented in a form which is essentially new and of high degree of generality. To the best of our knowledge, there is nothing known about the oscillation of (1) under the assumption (2), our primary goal is to fill this gap by presenting simple criteria for the oscillation of all solutions of (1) by using the generalized Riccati transformations and comparison technique, so the main advantage of studying (1) essentially lies in the direct application of the well-known Kiguradze lemma [23] (Lemma 1). Further, we can consider the case of σy≥y in the future work.
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