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Abstract: In this article, we present a new accurate iterative and asymptotic method to construct
analytical periodic solutions for a strongly nonlinear system, even if it is not Z2-symmetric. This method
is applicable not only to a conservative system but also to a non-conservative system with a limit
cycle response. Distinct from the general harmonic balance method, it depends on balancing a few
trigonometric terms (at most five terms) in the energy equation of the nonlinear system. According to
this iterative approach, the dynamic frequency is a trigonometric function that varies with time t,
which represents the influence of derivatives of the higher harmonic terms in a compact form and
leads to a significant reduction of calculation workload. Two examples were solved and numerical
solutions are presented to illustrate the effectiveness and convenience of the method. Based on the
present method, we also outline a modified energy balance method to further simplify the procedure
of higher order computation. Finally, a nonlinear strength index is introduced to automatically
identify the strength of nonlinearity and classify the suitable strategies.

Keywords: analytical approximation; energy equation; harmonic balance; nonlinear dynamic system

1. Introduction

Nonlinear differential equations describing dynamic behaviors play a major role in mechanics and
mathematics. The analysis of the literature devoted to the theory of nonlinear differential equations
show that various so-called analytical, functional-analytic, numerical and numerical-analytic methods
based upon successive approximations are now extensively studied [1]. The group of numerical
methods under the assumption of the existence of periodic solutions gives numerical algorithms for
approximate solutions [2]. Compared with the numerical means, the analytical methods are more
interesting because such solution allows direct discussion of the effects of related parameters in the
qualitative investigation (stability, branching, uniqueness). And the so called numerical-analytic
methods [3,4] have been widely used to investigate nonlinear boundary value problems (BVPs).

Among the analytical methods, there are many papers dealing with classical solution methods
for nonlinear differential equations which describe the one-degree-of-freedom system. Most of the
procedures are of the perturbation type [5,6]: the Krylov–Bogolubov–Mitropolsky (KBM) method [7,8],
the averaging solution method [9], the multiple scales method [10], the Lindstedt–Poincare (L–P)
perturbation method [11], etc. However, these theories mentioned are based on the presence of a small
parameter in the nonlinear governing equation. The requirement of a small parameter assumption
greatly restricts the applications of perturbation methods, and it is particularly influential for strongly
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nonlinear oscillators for which a small parameter is absent [12]. Based on a truncated Fourier series,
the harmonic balance (HB) method [13–16] is often used to determine approximate periodic solutions
to a nonlinear oscillatory system. This method is applicable to nonlinear systems with non-small
parameters or even with no perturbation parameter needed to exist. Recall that the Nth order HB
method consists in approximating the periodic solutions of differential equations by truncated Fourier
series with N harmonics and an unknown frequency. It is difficult to determine higher-order analytical
approximations because of the complicated nonlinear algebraic systems involved in the explicit
analytical results.

Recently, researchers have made numerous improvements to extend the classical perturbation
techniques to deal with the strongly nonlinear oscillators. Alam [17] improved the KBM method
and applied it into a solution of the nth order nonlinear differential equation. By introducing linear
and constant terms with an undetermined parameter, Sun [18] established analytical approximate
frequencies and solutions for the strongly mixed-parity nonlinear oscillators. Chung et al. [19] developed
the Perturbation-Incremental method with many degrees of freedom. Li and Liao [20] presented the
homotopy analysis method to solve multiple solutions of the strongly nonlinear problems. Based on the
modified Lindstedt–Poincare (MLP) method, Chen and Tang [21] transformed the strongly nonlinear
system into a small parameter system and determined the periodic response. Their method, however,
requires the linear component of restoring force to be nonzero and the coefficient of its cubic nonlinear term
to be positive. Senator and Bapat [22], Amore and Aranda [23] presented an improved L–P perturbation
method by introducing a linear spring. There were subsequently various proposals on choosing linear
springs but an optimal way remains unavailable. Belhaq and Lakrad [24] applied the averaging method
combined formally with Jacobian elliptic functions to determine the homoclinic approximate solution.
Wang et al. [25] used the undetermined fundamental frequency method to construct the periodic orbit.
By balancing the kinetic and potential energy and introducing a collocation point, the energy balance
method (EBM) was introduced by He [26] and improved by other scientists [27–30]. Chen [31] developed
the hyperbolic perturbation method to derive asymptotic solutions. The iterative method [32] is another
analytic approximation method, and Mickens [33] used the iterative method to construct analytic
approximation solutions only applicable to weakly nonlinear conservative systems, which was later
improved by Wu [34] and his collaborators.

For the HB method, Garcia–Saldana [35] showed how resultants can be used when N = 3, and
the author in [36] asked for techniques to deal analytically with the Nth order HB method, for N > 3.
Lau et al. [37] established a semi-analytical and numerical incremental harmonic balance (IHB) method
in an effort to improve the HB method. However, the method is not self-initiating because an initial
solution was unavailable. Wu and Li [38,39] first introduced a linearized governing equation using a
displacement increment only and subsequently the HB method was applied. Because the solution of a
complex nonlinear algebraic equation for frequency is needed, higher-order analytical approximate
solutions cannot be easily obtained.

For most of the modified approaches, the procedure of nonlinear analysis is still a main challenge,
especially for those mixed-party nonlinear systems without Z2 symmetry [40]. Taking the HB as an
example, to obtain an explicit solution with high accuracy, one needs to solve a set of complicated
nonlinear algebraic equations.

In respect to the issues above, we present a new dynamic frequency method to obtain the periodic
solutions. It allows one to carry limited terms and check to balance at most five trigonometric function
terms on both sides of the energy equation to find the kth order solutions (k = 1, 2, · · · , N). Herein,
the effect of nonlinearities in the system boil down to a time-periodic frequency. Besides, a nonlinear
strength index classifies the nonlinearities into weakly and strongly nonlinear intervals, which decides
the suitable strategies for the following discussion.

The rest of this article is organized as follows. In Section 2, we outline the basic idea of the new
method. In Section 3, based on two examples, we investigate the effectiveness and applicability of this
approach. In Section 4, a modified energy balance method is employed to simplify the procedure of
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high-order computation and lead to an improved collocation point. The obtained nonlinear strength
index efficiently classify the asymptotic computation.

2. The Basic Idea of the Dynamic Frequency Method

Consider the following autonomous nonlinear system

..
u +ω2

0u = f1(u) + f2(u,
.
u), f1(u) =

M∑
i=2

αi,0ui, f2(u,
.
u) =

K∑
i=0

K−i∑
j=1

βi, jui .
u j, (1)

where αi,0, βi, j are the polynomial coefficients; M and K are the integers, M > 1, K ≥ 0 and an overdot
represents differentiation with respect to time t.

We assume there exists some equilibrium of positions in Equation (1), around which the system
can perform periodic motions. According to the harmonic balance method, the solution to Equation (1)
can be expressed in the form

u = b0 + a0 cosω1,0t +
N∑

n=2
an cos nω1,0t,

.
u = −a0ω1,0 sinω1,0t−

N∑
n=2

annω1,0 sin nω1,0t.
(2)

Based on the expansion formula of trigonometric function, sin nω1,0t can be transformed into
Γn(t) sinω1,0t in the case of n ≥ 2, where Γn(t) is a function of sinω1,0t and cosω1,0t, i.e.,

sin nω1,0t =
(n−1)/2∑

i=0
(−1)iC2i+1

n cosn−2i−1 ω1,0t sin2i+1 ω1,0t = [
(n−1)/2∑

i=0
(−1)iC2i+1

n cosn−2i−1 ω1,0t sin2i ω1,0t] sinω1,0t. (3)

Hence Equation (2) can be rewritten as
u = b0 + a0 cos(ω1,0t) +

N∑
n=2

an cos nω1,0t,

.
u = −ω1,0a0 sin(ω1,0t) −

N∑
n=2

PnΓn(t) sinω1,0t,
(4)

where Pn is the coefficient of the nth-order harmonic term.
Since the harmonic balance method is based on the assumption that the fundamental frequency

term is dominant in a Fourier representation of the solution, an is a relatively small quantity compared
to a0. Thus, by neglecting the higher-order harmonic terms in u, Equation (4) can be represented as

u = b0 + a0 cosω1,0t,
.
u = −a0ω(t) sinω1,0t, ω(t) = (ω1,0 +

k∑
i=1

piω1,i(t)),
(5)

where a small nondimensional parameter p has been introduced as a bookkeeping parameter and
set equal to unity in the final result, ω1,0 is the undetermined fundamental frequency and ω1,i(t) can
be assumed as a dynamic frequency which is a function of Γn(t) in Equation (4). It is worth noting
that the high-order harmonic terms are not neglected in the expression of

.
u for the reason that the

amplitude is a slow variable while frequency is a fast variable.
Different from the processure of the harmonic balance method, the unknown variables can be

solved in the energy equation of the system. The integral of Equation (1) is

1
2

.
u2

= E∗ −
1
2
ω2

0u2 +

∫
f1(u)

.
udt +

∫
f2(u,

.
u)

.
udt, (6)
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where E∗ is an average mechanical energy over a whole period. According to Li [41], if the Equation (1)
has a stable limit cycle, there should exist E∗ > 0 such that dE∗

dt = 0.
Substituting Equation (5) into equation (6), performing the integration and collecting the power

series of p lower than k for each order, we can obtain the following set of equations

• order 1:
1
2 (a0 sinω1,0t)2(ω2

1,0 + 2ω1,0pω1,1(t)) = E∗ − 1
2ω

2
0(a0 cosω1,0t + b0)

2

+
M∑

i=2

αi,0
i+1 (a0 cosω1,0t + b0)

i+1

+
∫ K∑

i=0

K−i∑
j=1

βi, j(a0 cosω1,0t + b0)
i(−a0ω1,0 sinω1,0t) j+1dt + O(p2),

(7)

• order 2:

1
2 (a0 sinω1,0t)2(

2∑
i=0

2−i∑
j=0

pi+ jω1,i(t)ω1, j(t)) = E∗ − 1
2ω

2
0(a0 cosω1,0t + b0)

2

+
M∑

i=2

αi,0
i+1 (a0 cosω1,0t + b0)

i+1

+
∫ K∑

i=0

K−i∑
j=1

βi, j(a0 cosω1,0t + b0)
i(−a0ω1,0 sinω1,0t) j[−a0(ω1,0 + pω1,1(t)) sinω1,0t]dt + O(p3),

(8)

• order k:

1
2 (a0 sinω1,0t)2(

k∑
i=0

k−i∑
j=0

pi+ jω1,i(t)ω1, j(t)) = E∗ − 1
2ω

2
0(a0 cosω1,0t + b0)

2

+
M∑

i=2

αi,0
i+1 (a0 cosω1,0t + b0)

i+1

+
∫ K∑

i=0

K−i∑
j=1

βi, j(a0 cosω1,0t + b0)
i(−a0ω1,0 sinω1,0t) j[−a0(ω1,0 +

k−1∑
i=1

piω1,i(t)) sinω1,0t]dt + O(pk+1).

(9)

It is necessary to balance some trigonometric function terms on both sides of Equation (9) to obtain
those unknown variables (E0, a0, b0,ω1,0,ω1,k(t)). Herein, to be distinguished from the general Fourier
expansion in HB, the new dynamic frequency approach does not terminate the balancing procedure at
any order harmonics

{
cos kω1,0t, sin kω1,0t

}
but uses ω1,k(t) as a compact variable to represent all those

remaining harmonics to obtain the algebraic equations.
During that course, one needs to balance at most five terms in each order to find those unknown

variables for the periodic solutions, no matter what the specific m and n are. That greatly reduces
workload and difficulty for quantitative analysis in HB. The basic algorithm is

Step 1 : balance the constant term,
Step 2 : balance the term of t or sinω1,0t cosω1,0t,
Step 3 : balance the term of cosω1,0t,
Step 4 : balance the term of sin2 ω1,0t,
Step 5 : balance the term of remaining terms.

(10)

The derivative relationship between (u,
.
u) can be permitted through an integration

θ(t) =
∫
ω(t)dt =

∫
(ω1,0 + pω1,1(t) + p2ω1,2(t) + · · ·+ pkω1,k(t) + O(pk+1))dt, (11)

which gives θ(t) as a periodic phase component in the following approximate solution

u = b0 + a0 cosθ(t). (12)
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Besides, it is important to note that the integration of ω1,k(t) in Equation (11) will produce a
linear term ∆1,kt where the ∆1,k can be regarded as the new static frequency component. Then we can
introduce the following transformation

ωk = ω1,0 +
k∑

n=1

∆1,n, (13)

where ωk is the kth approximate frequency and ∆1,k depends on the choice of the order k in ω1,i(t).
Since the present method is based on the assumption that the fundamental frequency term is

dominant in the solution, the assumption must be checked a posteriori, i.e.,
∣∣∣∆1,k

∣∣∣ < ∣∣∣∆1,k−1

∣∣∣. Replacing
the ω1,0 in all the nonlinear terms of Equation (12) with the frequency ωk, the kth-order approximate
solution to the system is determined. To this end, the whole procedure is implemented in an
algebraic manipulator, such as MATHEMATICA. In general, the procedure would become increasingly
cumbersome as the order goes up. More importantly, the computation results show that the solution
up to the second order is fairly accurate, even for strongly nonlinear oscillators. In the following
sections, two examples will be presented to demonstrate the effectiveness and applicability of this new
method. We also introduce the modified energy balance method to simplify that procedure of higher
order computation.

3. Examples

3.1. Duffing Oscillators

Duffing equation can be written in the form

..
u + u + γu3 = 0, u(0) = A,

.
u(0) = 0. (14)

For this oscillator, the expansion of the energy equation is given in Equation (7), where α2,0 =

0,α3,0 = −γ, M = 3, K = 0,ω0 = 1. The period and periodic solution to this oscillator depend on the
oscillation amplitude A.

Based on Equation (7), the first order approximate solution to Equation (14) can be obtained from
the following algebraic equations according to the algorithm in Equation (10). Since there is no term
about time t or sinω1,0t cosω1,0t after the expansion of Equation (7), Step 2 is ignored.

Step 1: constant term

E∗ =
1
4
(2b2

0 + γb4
0 + 2a2

0 + 6γa2
0b2

0 + γa4
0), (15)

Step 3: the term of cosω1,0t

b0(1 + γa2
0 + γb2

0) = 0, (16)

Step 4: the term of sin2 ω1,0t

ω2
1,0 = 1 + γa2

0 + 3γb2
0, (17)

Step 5: remaining terms → ω1,1(t)

ω1,1(t) =
γa0b0

ω1,0
cosω1,0t−

γa2
0

4ω1,0
sin2 ω1,0t. (18)
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Given u = 0 is an equilibrium point and the system oscillates within the interval [−A, A], we have{
b0 = 0,
a0 = A.

(19)

Solving Equations (16) and (17) with the conditions Equation (19) yields

ω1,0 =
√

1 + γA2. (20)

After the integration of the dynamic frequency ω(t), we obtain

θ(t) =
∫
ω(t)dt =

∫
(ω1,0 +ω1,1(t))dt =

∫
(ω1,0 +

γa0b0
ω1,0

cosω1,0t−
γa2

0
4ω1,0

sin2 ω1,0t)dt

= (ω1,0 −
γA2

8ω1,0
)t + γA2

8ω2
1,0

sinω1,0t cosω1,0t.
(21)

According to Equation (13), the frequency of the first order approximate solution is

ω1 = ω1,0 + ∆1,1 = ω1,0 −
γA2

8ω1,0
. (22)

By replacing ω1,0 with ω1 in all the nonlinear terms of Equation (21), the first order approximate
solution can be expressed as

u1 = A cosθ(t) = A cos(ω1t +
γA2 cosω1t sinω1t

8ω1
2 ). (23)

If we stop at the second order dynamic frequency, substituting Equation (18) into Equation (8), we
can get the expression of ω1,2(t) through a five step balancing process. After the integration of the
dynamic frequency ω(t), we obtain

θ(t) =
∫
ω(t)dt =

∫
(ω1,0 +ω1,1(t) +ω1,2(t))dt. (24)

By simple calculation, as is illustrated in the process of the first order approximate solution, we
can easily get the second order approximate solution which reads

ω2 = ω1,0 + ∆1,1 + ∆1,2 = ω1,0 −
γA2

8ω1,0
−

3γ2A4

256ω3
1,0

, ω1,0 =
√

1 + γA2, (25)

u2 = A cos(ω2t + (
γA2

8ω22 +
γ2A4

64ω22 ) cosω2t sinω2t− γ2A4

256ω24 cos3 ω2t sinω2t

+
γ2A4

256ω24 cosω2t sin3 ω2t).
(26)

The first order approximate period T1 and the second order approximate period T2 can be obtained
from following relation:

T1 = 2π/ω1, T2 = 2π/ω2. (27)

According to [5], the exact period of the oscillator is

Tex =
4√

1 + γA2

∫ π
2

0

dt√
1− κ sin2 t

, κ =
γA2

2(1 + γA2)
. (28)

In order to verify the accuracy of the present method, Table 1 shows the comparison of approximate
periods T1, T2, respectively, and the exact period Tex. As illustrated in Table 1, the proposed method
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provides excellent approximations to periods for both small as well as large values of γA2 in the case
of γ > 0. For γ > 0, we have

lim
γA2→+∞

T1

Tex
= 0.9683, (29)

lim
γA2→+∞

T2

Tex
= 0.9814. (30)

Table 1. Comparison of the approximate periods and the exact one of Equation (14).

γA2 T1/Tex T2/Tex

−0.8 0.8939 1.0216
−0.7 0.9481 0.9973
−0.5 0.9862 0.9966
−0.1 0.9997 0.9999
0.1 0.9998 0.9999
0.5 0.9975 0.9988
0.7 0.9960 0.9981
0.8 0.9953 0.9977
1 0.9939 0.9970

10 0.9751 0.9859

Therefore, in the entire range of parameter for a hard spring with γ > 0, the maximal relative
error of the period is less than 3.2%. For soft nonlinear oscillators (γ < 0), the approximate period of
the present method is still of high accuracy except in a small range of γA2 near γA2 = −1, where the
heteroclinic orbit with an infinite period appears.

For γA2 = −0.8(i.e., γ = −1, A =
√

0.8), the exact periodic solution uex solved by numerical
integration of Equation (14), the analytical approximate solutions of different orders u1, u2 calculated
by the present method and the approximate solutions of the first two orders u1′ , u2′ obtained by HBM,
respectively, as well as their absolute errors, are presented in Figures 1 and 2. These figures show that,
the present method provides excellent approximations as compared to the results by the harmonic
balance method.
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3.2. Oscillator with Coordinate-Dependent Mass

Lev et al. proposed a nonlinear oscillator with coordinate-dependent mass recently [42]. The oscillator
is governed by

(1 + αu2)
..
u + au

.
u2
− u(1− u2) = 0, (31)

where an overdot represents differentiation with respect to time t and the initial conditions are
prescribed as

u(0) = A,
.
u(0) = 0. (32)

For the above oscillator, it can describe phase transitions in physics, and plays an important role
in cosmos-logical model, quark confinement and spinodal. This nonlinear oscillator with a negative
coefficient of linear term is difficult to be solved by the perturbation method. In order to apply the
dynamic frequency method, Equation (31) can be simplified into the following equivalent form

..
u− u + αu2 ..

u + αu
.
u2

+ u3 = 0. (33)

We construct the energy equation of the above equation

1
2

.
u2

= E∗ +
1
2

u2
−

1
4

u4
−

1
2
αu2 .

u2. (34)

Submitting Equation (5) into Equation (34), and according to the first order approximation of the
present method, we obtain the following equation

1
2 (a0 sinω1,0t)2(ω2

1,0 + 2ω1,0pω1,1(t)) = E∗ + 1
2 (a0 cosω1,0t + b0)

2

−
1
2α(a0 cosω1,0t + b0)

2(−a0ω1,0 sinω1,0t)2

−
1
4 (a0 cosω1,0t + b0)

4.
(35)

Here, u = 0 is an equilibrium point and the system oscillates within the interval [−A, A] in the
case of α = 0. Thus, we have a0 = A, b0 = 0.

Based on the five-step balancing algorithm of the dynamic frequency method, we can get the
following algebraic equations according to the algorithm in Equation (10). Since there are no terms
about time t and cosω1,0t after the expansion of Equation (35), Step 2 and Step 3 are ignored

Step 1: constant term

E∗ = −
1
2

A2 +
1
4

A4, (36)

Step 4: the term of sin2 ω1,0t
(1 + αA2)ω2

1,0 = (A2
− 1), (37)
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Step 5: remaining terms

ω1,1(t) = (
1
2
αω1,0A2

−
A2

4ω1,0
) sin2 ω1,0t. (38)

After the integration of ω(t), the first order approximate solution can be obtained

ω1= (
1
4
αA2 + 1)ω1,0 −

A2

8ω1,0
, T1 = 2π/ω1, (39)

u1 = A cos(ω1t− (
1
4
αA2
−

1
8ω2

1

A2) cosω1t sinω1t). (40)

Judging from Equation (37), Equations (39) and (40) are valid for the case when

A > 1 (41)

It means, when A < 1, there is no periodic solution to Equation (31). In fact, the real number of A
could be more or less, but Equation (41) gives an idea of the small amplitude for non-periodic solutions.

According to Yue Wu [43], the homotopy perturbation method (HPM) is an effective technique for
such kinds of nonlinear oscillator. In order to compare these two methods, the first approximate period
T1 acquired by using the present method and the first approximate period T calculated by using the
homotopy perturbation method are respectively presented in Table 2. The table shows that they have a
similar level of accuracy at the range of α near α = 0.1. As the value of α becomes larger, the error
between T1 and T gradually increases. For different values of α, the numerical solution acquired by the
Runge-Kutta method and the analytical approximate solutions calculated by the HPM and the present
method are respectively presented in Figure 3. The figure shows that the present method provides a
superior approximations as compared to numerical solutions.Symmetry 2018, 10, x FOR PEER REVIEW  10 of 15 
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Table 2. Comparison of the approximate periods for A = 1.5 in Equation (31).

α T1 T

0.1 0.7885 0.7861
0.2 0.7300 0.7491
0.3 0.6841 0.7169
0.4 0.6468 0.6886
0.5 0.6160 0.6633
0.6 0.5898 0.6406
0.7 0.5674 0.6201
0.8 0.5479 0.6015

4. Strategy to Improve the Accuracy of Computation

4.1. Modified Energy Balance Method

According to He and other researchers, the solution to nonlinear oscillators can be written as

u = cosω1,0t. (42)

Assuming Equation (42) as the exact solution, the energy equation of the system should be valid
for all values of t. However, as Equation (42) is only a type of approximation, the trial Hamilton can
only be held at the special collocation point, θ0 = ω1,0t = π/4. That point comes from the balance of
kinetic and potential energy at the linear case

1
2

a2
0ω

2
0 sin2 θ0 =

1
2

a2
0ω

2
0 cos2 θ0, (43)

The so called energy balance method (EBM), is broadly used to simplify the procedure of nonlinear
analysis and improve the accuracy of computation. Moreover, some researchers [44,45] have successfully
extended this method to non-conservative (damped) oscillatory system, such as Van der Por oscillator.

As shown in Equation (43), the initial collocation point θ0 includes only the linear term. Herein,
we use the dynamic frequency to find the more accurate collocation point. Balancing the kinetic and
nonlinear potential energy of the Hamilton equation of Equation (1), we can obtain

1
2

a2
0ω

2(t) sin2 ω1,0t =
1
2

a2
0ω

2
0(a0 cosω1,0t + b0)

2
−

M∑
i=2

αi,0

i + 1
(a0 cosω1,0t + b0)

i+1, (44)

which clearly degenerates to Equation (43) in case M = 1.
Substituting the obtained variables (a0, b0,ω1,0) with ω1,1(t) into Equation (44), based on the

first order dynamic frequency component ω(t) = ω1,0 + pω1,1(t), it can be numerically solved for the
first order collocation point, supposed as θ1. That is, obviously superior than the initial point θ0 by
considering the effect of nonlinearities.

Finish the integration in Equation (7), then consider the collocation point θ1, and introduce a1 as a
new amplitude variable to replace a0. Solving the obtained polynomial for a1, and substituting the
result into step4 and step5 in Equation (10), we can obtain the modified expressions about ω1,0 and
ω1,1(t). Clearly, it avoids the higher order dynamic frequency manipulation in the energy equation
so that the computation procedure can be reduced and we can seek a balance between accuracy
and workload.

Taking the following Van der Pol equation as an example

..
u +ω2

0u = (α2u2 + α3u3 + α4u4 + α5u5) + (β0,1 + β2,1u2)
.
u (45)
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Four different sets of parameters for Equation (45) are listed in Table 3. The new collection point
θ1 is calculated for the purpose of comparison. In Figure 4, we compare the phase diagrams of G1 to
G4 between the first order dynamic frequency and the modified EBM which transfers the analysis from
an isolated linear collocation point to globally effect of nonlinearity.

Table 3. Parameter values of the Equation (45).

Groups ω0 α2 α3 α4 α5 β0,1 β2,1 θ1

G1 2 −2 −4 2 −2 1 −3 π/4.22
G2 2 −2 −4 2 −2 2 −3 π/4.28
G3 2 −2 −6 2 −2 2 −3 π/4.43
G4 2 −2 −6 2 −2 4 −3 π/4.62
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4.2. The Nonlinear Strength Index

In Table 3, a slight difference in the parameter choice will lead to a dramatic change in the nonlinear
behavior. Such a change is obviously due to the relationship between the linear and nonlinear parts,
which in turn decide the strategies of further computation. Accordingly, one needs an index to classify
the strength of nonlinearity so that we can decide to choose the suitable algorithms of computation.

From Equations (43) and (44), the collocation points for the linear and nonlinear Hamilton
equations are θ0 and θ1. Suppose θ1 = π/λ, the absolute value |λ− 4| accordingly represents the effect
of nonlinearity, forθ0 = π/4. In Table 4, we outline a new nonlinear strength index δ = |λ− 4| according
to different parameter groups. From G1 to G4, the enlargement of δ synchronizes the intensification of
the nonlinearity, as well as the loosing accuracy of the first order analytical approximate solutions.
Then, two major nonlinear intervals are logically classified, where the boundary values δ = 0.3 are
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a coarse estimate, only for the choice of the following analytical strategies. The nonlinear strength
indexes and belonging intervals from G1 to G4 are presented in Table 4.{

I : 0 < δ < 0.3 weakly nonlinear interval,
II : δ > 0.3 strongly nonlinear interval,

(46)

Table 4. Nonlinear strength indexes and nonlinear interval.

Groups G1 G2 G3 G4

Index δ 0.22 0.28 0.43 0.62

Interval weakly nonlinear strongly nonlinear

In Figure 5, we present the flow chart of approximation computation regarding δ. For example,
in interval I, it just requires the first order dynamic frequency for the weakly nonlinear feature;
in interval II, it demands the second order or other possible kth order dynamic frequency, k ≥ 2, and
the modified EBM results improve the accuracy of computation, for its strongly nonlinear character.Symmetry 2018, 10, x FOR PEER REVIEW  13 of 15 
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5. Conclusions

In this paper, we present a new dynamic frequency method to solve the periodic solutions
for strongly nonlinear oscillators. Based on the analysis of the energy equation, the analytical
approximate solutions with high accuracy are obtained through a limited trigonometric balancing
progress. Moreover, we set up the strategies to find the higher-order dynamic frequency approximation
as well as the modified EBM. Two examples have been solved and the analytical approximate solutions
are presented to illustrate the effectiveness and applicability of the present method.

The principal merits of our approach can be summarized as follows: 1. Unlike the harmonic
balance method, the influence of the higher harmonic terms is directly embodied in the expression
of dynamic frequency which reduces the cumbersome steps of multiple balancing in HB; 2. the new
approach is not only valid for strongly nonlinear conservative oscillators but also for non-conservative
systems with limit cycles; 3. the lowest order approximations obtained by the present method are
actually of high accuracy; 4. the modified energy balance method is introduced to simplify the
procredure of high-order analytical computation; and 5. the nonlinear strength index provides possible
choices of the avaliable analytical strategies to the general nonlinear systems.

The entire procedure can be regarded as a foundation for further nonlinear analysis, such as for
fractional-order nonlinear systems or fluid-structure interaction [46,47]. These will be the topics for
further research.
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