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1. Introduction

This paper is concerned with the variational problem

min
u∈W1,1

0 (BR)

∫
BR

[g(|x|, |∇u|) + h(|x|, u)] dx ,

where BR ⊆ RN is the open ball centered at the origin and with radius R > 0.
Under the sole assumptions of increasing monotonicity of the Lagrangian with respect to the

gradient variable, one can prove, by means of a symmetrization procedure proposed in Reference [1],
that the problem admits a one–dimensional reduction, obtained by evaluating the functional only on
the set of radially symmetric functions (see Section 3).

This reduction step leads to consideration of the minimum problem

min
u∈W1

rad

∫ R

0
rN−1[g(r, |u′(r)|) + h(r, u(r))] dr

on the space

W1
rad :=

{
u ∈ ACloc(]0, R]) : u(R) = 0, rN−1 |u′(r)| ∈ L1(]0, R[)

}
.

The qualitative features of the Lagrangian are that g(r, ·) is convex (in fact this assumption can
be dropped in the autonomous case, see Corollary 2) and with, at least, linear growth, while h(r, t) is
Lipschitz continuous in the t variable. These assumptions do not assure that every minimizing sequence
of the functional is precompact in L1, and hence the direct methods of Calculus of Variations fail.

For this reason, indirect methods, based on the solvability of the associated Euler–Lagrange
equations, have often been adopted in the literature (see References [2–13]). Specifically, if the
Lagrangian is convex with respect to both variables u and |u′|, then any solution of the Euler–Lagrange
conditions provides a minimizer, and vice-versa.
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The main feature of the present work is that we do not require convexity of the Lagrangian in the
u variable, so that the above mentioned indirect methods cannot be implemented, and a brand-new
approach is needed.

Our starting points are an existence result and the validity of the Euler–Lagrange necessary
conditions under the additional requirement that g(r, ·) has superlinear growth. These properties can
be easily obtained by applying well-known results (see Step 1 of the proof of Theorem 2). Exploiting
the necessary conditions, we obtain explicit a-priori estimates on the derivative of minimizers of
superlinear functionals, that depend on the Lipschitz constant of h(r, ·).

When g(r, ·) satisfies only a linear growth condition, say g(r, s) ≥ M s − C for some positive
constants M and C, and the Lipschitz constant of h(r, ·) is not too large compared with M (see the
compatibility relation (hgr) between g and h in the statement of Theorem 2), then we proceed as
follows. As a first step, we construct an ad-hoc superlinear perturbation of the slow growth functional,
for which we have a Lipschitz minimizer satisfying some a-priori estimates. Then, relying on these
estimates, we show that this function is in fact a minimizer of the original slow-growth problem.

In some sense, our technique is reminiscent of the semiclassical approach, based on the
construction of barrier functions, for the minimization of functionals of the type

∫
Ω L(∇u) dx on

functions u ∈ W1,1(Ω) satisfying some prescribed boundary condition (see, e.g., Reference [14],
Chapter 1).

As an application of our results, in Section 5 we prove existence of convex Lipschitz continuous
minimizers for variational problems with a constraint on the gradient. For related convexity results,
obtained by means of convex rearrangements, see Reference [15,16].

Finally, we believe that our techniques can also be successfully implemented for minimization
problems related to slow-growth integral functionals

∫
Ω[g(|∇u|) + h(u)] dx in a space of functions

depending only on the distance from the boundary of Ω (see, e.g., References [17–28]).

2. Notation and Preliminaries

In what follows | · | will denote the Euclidean norm in RN , N ≥ 1, and BR ⊂ RN is the open ball
centered at the origin and with radius R > 0.

We shall denote by A and int A respectively the closure and the interior of a set A, and by Dom ϕ

the essential domain of an extended real–valued function ϕ : A→]−∞,+∞], that is, Dom ϕ = {x ∈
A : ϕ(x) < +∞}. We shall always consider proper functions, that is Dom ϕ 6= ∅.

Given a locally Lipschitz function ϕ : A ⊂ R → R, for every x ∈ A we denote by ∂ϕ(x)
its generalized gradient at x in the sense of Clarke (see Reference [29], Chapter 2). We recall that,
if x is an interior point of A, then ∂ϕ(x) is a non-empty, convex, compact set (see Reference [29],
Proposition 2.1.2(a)). Moreover, if D ⊂ A denotes the set of points where ϕ is differentiable, then

∂ϕ(x) = conv
{

lim
j

ϕ′(xj) : (xj) ⊂ D, xj → x
}

(see Reference [29], Theorem 2.5.1). Hence, if ϕ : R → R is a monotone non-decreasing K-Lipschitz
function, then ∅ 6= ∂ϕ(x) ⊆ [0, K] for every x ∈ R.

For notational convenience, if ϕ also depends on an additional variable r ∈ R, we denote by
∂ϕ(r, x) the generalized gradient of the function x 7→ ϕ(r, x).

If ϕ : R→]−∞,+∞] is a lower semicontinuous convex function, the generalized gradient ∂ϕ(x)
coincides with the subgradient (in the sense of convex analysis) at every point x ∈ int Dom ϕ,
and hence ∂ϕ(x) = [ϕ′−(x), ϕ′+(x)], where ϕ′−(x) and ϕ′+(x) are the left and right derivative of ϕ

at x (see Reference [29], Proposition 2.2.7). We shall often use the following implication, due to the
monotonicity of the subgradient:

p ∈ ∂ϕ(x), q ∈ ∂ϕ(y), and p < q =⇒ x ≤ y.
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If ϕ : R →]−∞,+∞], we denote by ϕ∗ its Fenchel–Legendre transform, or conjugate function
(see Reference [30], Section I.4). With some abuse of notation, if ϕ : [0,+∞[→]−∞,+∞], we use ϕ∗ to
denote the Fenchel–Legendre transform of the even function R 3 z 7→ ϕ(|z|), so that

ϕ∗(p) = sup
x∈R
{p x− ϕ(|x|)}.

We remark that, in this case, ϕ∗ is a lower semicontinuous convex even function.
If ϕ is a lower semicontinuous convex function, its subgradient and the subgradient of the

conjugate function are related in the following way:

p ∈ ∂ϕ(x)⇐⇒ x ∈ ∂ϕ∗(p)

(see Reference [30], Corollary I.5.2).
We say that f : [0, R] × R × [0,+∞[→]−∞,+∞] is a normal integrand if f (r, ·, ·) is lower

semicontinuous for almost every (a.e.) r ∈ [0, R], and there exists a Borel function f̂ : [0, R]× [0,+∞[→
]−∞,+∞] such that f̂ (r, ·, ·) = f (r, ·, ·) for a.e. r ∈ [0, R] (see Reference [30], Definition VIII.1.1).

3. Symmetry of Minimizers

In this section we deal with the symmetry properties of minimizers in W1,1
0 (BR) of functionals of

the form
F(u) :=

∫
BR

f (|x|, u, |∇u|) dx

under very mild assumptions on the Lagrangian f .
Our aim is to prove that the minimization problem for F in W1,1

0 (BR) is, in fact, equivalent to the
minimization problem for the one–dimensional functional

Frad(u) :=
∫ R

0
rN−1 f (r, u(r), |u′(r)|) dr, (1)

in the functional space

W1
rad :=

{
u ∈ ACloc(]0, R]) : u(R) = 0, rN−1 |u′(r)| ∈ L1(]0, R[)

}
. (2)

Remark 1. Notice that the functional Frad is, up to a constant factor, the functional F evaluated on the radially
symmetric functions belonging to W1,1

0 (BR). In particular, we underline that every function u ∈ W1
rad satisfies

rN−1|u(r)| ≤
∫ R

r
ρN−1|u′(ρ)| dρ ≤ ‖ρN−1u′(ρ)‖L1 ∀r ∈]0, R],

so that rN−1|u(r)| ∈ L∞([0, R]).

We adopt a symmetrization procedure introduced in Reference [1]. Given a representative of
u ∈W1,1

0 (BR), and θ ∈ ∂B1, let
uθ(x) := u(θ|x|), x ∈ BR , (3)

be the radial symmetric function obtained from the profile of u along the straight line through 0 and
with direction θ.

In Reference [1], Lemma 3.1, it is proved that uθ ∈W1,1
0 (BR) for a.e. θ ∈ ∂B1, and

|∇uθ(x)| =
∣∣∣∣θ · ∇u(θ|x|) x

|x|

∣∣∣∣ ≤ |∇u(θ|x|)| . (4)
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Following the lines of the proof of Reference [1], Theorem 3.4, we show that, for some θ, uθ is
a better competitor than u in the minimization problem for F.

Theorem 1. Let f : [0, R] × R × [0,+∞[→]−∞,+∞] be a normal integrand such that for almost every
(r, t) ∈ [0, R]×R, the map s 7→ f (r, t, s) is monotone non-decreasing. Then for every u ∈ W1,1

0 (BR) there
exists a radially symmetric function v ∈W1,1

0 (BR) such that F(v) ≤ F(u). In particular, if F admits minimizers
in W1,1

0 (BR), then it admits a radially symmetric minimizer.
If, in addition, for almost every (r, t) ∈ [0, R]×R, the map s 7→ f (r, t, s) is strictly monotone increasing,

then every minimizer of F in W1,1
0 (BR) is a radially symmetric function.

Proof. Let u be a function in W1,1
0 (BR) such that F(u) < +∞, and let uθ be the radially symmetric

function defined in (3). We claim that,

1
HN−1(∂B1)

∫
∂B1

F(uθ) dθ ≤ F(u) , (5)

whereHN−1 is the (N − 1)-dimensional Hausdorff measure. Namely, observing that

uθ(rω) = uθ(rθ) = u(rθ) , ∀ω, θ ∈ ∂B1,

using (4) and the monotonicity property of the Lagrangian f , we obtain that

1
HN−1(∂B1)

∫
∂B1

F(uθ) dθ =
∫

∂B1

∫
∂B1

∫ R

0
f (r, uθ(rω), |∇uθ(rω)|) rN−1 dr dω dθ

=
∫

∂B1

∫
∂B1

∫ R

0
f (r, uθ(rθ), |∇uθ(rθ)|) rN−1 dr dω dθ

≤
∫

∂B1

∫
∂B1

∫ R

0
f (r, u(rθ), |∇u(rθ)|) rN−1 dr dω dθ = F(u).

From (5) follows that there exists a set Θ ⊆ ∂B1, with HN−1(Θ) > 0, such that F(uθ) ≤ F(u)
for every θ ∈ Θ. Moreover, if u is a minimizer for F, then F(uθ) ≥ F(u) for a.e. θ ∈ ∂B1, and (5)
implies that

F(uθ) = F(u) forHN−1–a.e. θ ∈ ∂B1, (6)

hence almost every uθ is a (radially symmetric) minimizer of F.
Assume now that for almost every (r, t) ∈ [0, R]×R, the map s 7→ f (r, t, s) is strictly monotone

increasing, and let u be a minimizer for F. From the computation above, we deduce that (6) holds if
and only if

f (r, uθ(rθ), |∇uθ(rθ)|) = f (r, u(rθ), |∇u(rθ)|) for L×HN−1–a.e. (r, θ) ∈ [0, R]× ∂B1.

Since uθ(rθ) = u(rθ) for a.e. (r, θ), from the strict monotonicity assumption on f we deduce that
|∇uθ(rθ)| = |∇u(rθ)| for L×HN−1–a.e. (r, θ), hence, from (4), we obtain that ∇u(rθ) is parallel to θ

and then u is radially symmetric (see Reference [1], Lemma 3.3).

As a consequence of Theorem 1, we obtain the following 1–dimensional reduction of the
minimum problem.

Corollary 1. Let f be as in Theorem 1. Then the minimization problem

min{F(u) : u ∈W1,1
0 (BR)} (7)
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admits a solution if and only if the one-dimensional minimization problem

min{Frad(u) : u ∈ W1
rad} (8)

admits a solution, where Frad andW1
rad are defined in (1) and (2) respectively.

Proof. If problem (7) admits a solution u ∈ W1,1
0 (BR), then by Theorem 1 there exists a radially

symmetric function v ∈ W1,1
0 (BR) such that F(v) ≤ F(u), hence v(r) := v(|x|) is a solution to

problem (8).
Assume now that problem (8) admits a solution u ∈ W p

rad, and let us prove that u(x) := u(|x|) is
a solution to (7). Namely, if we assume by contradiction that there exists a function v ∈ W1,1

0 (BR) such
that F(v) < F(u), then by Theorem 1 there exists a radially symmetric function w ∈ W1,1

0 (BR) such
that F(w) ≤ F(v), so that the function w(r) := w(|x|) satisfies Frad(w) < Frad(u), a contradiction.

4. Existence of Minimizers and Euler–Lagrange Inclusions

In this section, we focus our attention on functionals of the form

F(u) :=
∫

BR
[g(|x|, |∇u|) + h(|x|, u)] dx, u ∈W1,1

0 (BR),

whose corresponding one-dimensional functional is

Frad(u) :=
∫ R

0
rN−1[g(r, |u′(r)|) + h(r, u(r))] dr, u ∈ W1

rad.

We prove the existence of radially symmetric Lipschitz continuous minimizers, and the validity
of necessary optimality conditions of Euler–Lagrange type, when g is a convex function with possibly
linear growth in the gradient variable, and h is a Lipschitz continuous function with respect to u.

As usual, the Euler–Lagrange conditions involve a pair (u, p), where u is a minimizer inW1
rad,

while the function p belongs to the space

W1,∗
rad :=

{
p ∈ AC([0, R]) : p(0) = 0, r1−N p′(r) ∈ L1(]0, R[)

}
.

We call p a momentum associated with u.

Theorem 2. Let g : [0, R]× [0,+∞[→ [0,+∞], and h : [0, R]×R→ R satisfy:

(g1r) g is a normal integrand, the function z 7→ g(r, |z|) is convex for a.e. r ∈ [0, R], and rN−1g(r, 0) ∈
L1(]0, R[).

(g2r) There exists a function ψ : [0,+∞[→ [0,+∞[ such that

for a.e. r ∈ [0, R] : g(r, s)− g(r, 0) ≥ ψ(s) ∀s ≥ 0,

and M := lim infs→+∞ ψ(s)/s > 0.
(h1r) h is a Borel function, rN−1h(r, 0) ∈ L1(]0, R[), and there exists H0 ∈ L1(]0, R[) such that

for a.e. r ∈ [0, R] : |h(r, t)− h(r, τ)| ≤ H0(r) |t− τ| ∀t, τ ∈ R.

(hgr) The functions g and h are related by the condition

M0 := sup
r∈]0,R]

r1−N
∫ r

0
ρN−1H0(ρ) dρ < M.
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Then the following holds true.

(i) F admits a radially symmetric minimizer in W1,1
0 (BR), and Frad admits a minimizer inW1

rad.
(ii) Every minimizer of Frad is Lipschitz continuous.

(iii) For every minimizer u ∈ W1
rad of Frad there exists p ∈ W1,∗

rad such that the following Euler–Lagrange
inclusions hold:

p′(r) ∈ rN−1∂h(r, u(r)), for a.e. r ∈ [0, R], (9)

p(r) ∈ rN−1∂g(r, |u′(r)|), for a.e. r ∈ [0, R]. (10)

Remark 2. In (g2r) it is not restrictive to assume that ψ is a non-decreasing function, with ψ(0) = 0, and
that R 3 z 7→ ψ(|z|) is convex and smooth (possibly replacing ψ with a suitable regularization of its convex
envelope). As a consequence of these assumptions, the function s 7→ ψ(s)/s turns out to be strictly increasing
in ]s0,+∞[, where s0 := max{ψ = 0}, and hence, for every m ∈]0, M[, there exists (a unique) σ > s0 such
that ψ(σ)/σ = m. In the following we shall always assume that the function ψ in (g2r) satisfies these additional
properties. We recall that, if M = +∞, such a function is called a Nagumo function (see, e.g., Reference [31],
Section 10.3).

Remark 3. If g satisfies (g1r) and (g2r), then

]−M, M[⊂ Dom g∗(r, ·), for a.e. r ∈ [0, R], (11)

rN−1g∗(r, m) ∈ L1(]0, R[), ∀m ∈]−M, M[. (12)

Specifically, by symmetry it is enough to show that, for every m ∈]0, M[, m ∈ Dom g∗(r, ·) for a.e.
r ∈ [0, R] and (12) holds. Let m ∈]0, M[ and let σ > 0 satisfy ψ(σ)/σ = m. Then

g(r, s)− g(r, 0)
s

≥ ψ(s)
s
≥ ψ(σ)

σ
= m, ∀s ≥ σ,

so that −g(r, 0) ≤ g∗(r, m) = sups≥0[m s− g(r, s)] ≤ m σ− g(r, 0). Hence, (11) and (12) follow from the
assumption rN−1g(r, 0) ∈ L1(]0, R[).

Remark 4. If h satisfies (h1r), then the quantity M0 defined in (hgr) is always finite, since

r1−N
∫ r

0
ρN−1H0(ρ) dρ ≤

∫ r

0
H0(ρ) dρ ≤ ‖H0‖L1 , ∀r ∈]0, R].

We start by proving some a-priori estimates for the solutions of the Euler–Lagrange inclusions.

Lemma 1. Let (u, p) ∈ W1
rad ×W

1,∗
rad. Then the following hold:

(i) If h satisfies (h1r) and (u, p) satisfies (9), then r1−N |p(r)| ≤ M0 for every r ∈]0, R], where M0 is the
(finite) quantity defined in (hgr).

(ii) If g and h satisfy (g1r)-(g2r)-(h1r)-(hgr), and the pair (u, p) satisfies the Euler–Lagrange inclusions (9)
and (10), then

|u′(r)| ≤ σ(r) := (g∗)′+(r, M0), for a.e. r ∈ [0, R]. (13)

Moreover, if σ0 > 0 is defined by
ψ(σ0)

σ0
= M0, (14)

then σ(r) ≤ σ0 for a.e. r ∈ [0, R], i.e., u is Lipschitz continuous and

|u′(r)| ≤ σ0, for a.e. r ∈ [0, R]. (15)
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Proof. (i) From Remark 4, the quantity M0 defined in (hgr) is finite. By (h1r) we have that ∂h(r, t) ⊆
[−H0(r), H0(r)] for a.e. r ∈ [0, R], so that (9) gives the estimate

|p′(r)| ≤ rN−1H0(r) for a.e. r ∈ [0, R],

and hence
sup

r∈]0,R]
r1−N |p(r)| ≤ sup

r∈]0,R]
r1−N

∫ r

0
ρN−1H0(ρ) dρ = M0. (16)

(ii) From (10) we have that |u′(r)| ∈ ∂g∗(r, r1−N p(r)), and, from (16), we deduce that

|u′(r)| ≤ (g∗)′+(r, r1−N p(r)) ≤ (g∗)′+(r, M0) for a.e. r ∈ [0, R],

so that (13) holds. Moreover, if σ0 is defined by (14), then, by the convexity assumption on g(r, ·),
we obtain the estimate

g′−(r, σ0) ≥ M0 for a.e. r ∈ [0, R]

(with the convention g′−(r, σ0) = +∞ if σ0 6∈ Dom g(r, ·)). On the other hand, by the very definition of
σ(r), we have that M0 ∈ ∂g(r, σ(r)), hence

g′−(r, σ0) ≥ M0 ≥ g′−(r, σ(r)) for a.e. r ∈ [0, R] ,

which in turn implies that σ(r) ≤ σ0 for a.e. r ∈ [0, R], and (15) follows.

The proof of Theorem 2 is divided into two steps: first we show that the result is valid in the
superlinear case, that is, when M = +∞, and then we obtain the result when M < +∞ by constructing,
with the help of the a-priori estimates obtained by the Euler–Lagrange conditions, a family of superlinear
functionals whose radially symmetric minimizers also minimize the functional F.

Proof of Theorem 2.
Step 1: superlinear Lagrangians.

(i) In order to use a standard existence result for coercive functionals (see, e.g., Reference [30],
Theorem 2.2), we need to rewrite the functional F in a suitable form.

Let us define

P(r) :=
∫ r

0
ρN−1H0(ρ) dρ, G(r, s) := g(r, s) + r1−N P(r) s ,

H(r, t) := h(r, t)− h(r, 0) + H0(r)|t| = h(r, t)− h(r, 0) + r1−N P′(r)|t|.

Since, by (h1r), it holds that

h(r, t) ≥ h(r, 0)− H0(r)|t|, ∀r ∈ [0, R], t ∈ R,

then H(r, t) ≥ 0 for all r ∈ [0, R] and t ∈ R. Moreover, we have that

Frad(u) =
∫ R

0
rN−1 [g(r, |u′|) + h(r, u)− h(r, 0) + H0(r)|u|

]
dr

−
∫ R

0
P′(r) |u| dr +

∫ R

0
rN−1h(r, 0) dr.

Since (|u|, P) ∈ W1
rad ×W

1,∗
rad, it holds that

∫ R

0
P′(r) |u| dr = −

∫ R

0
P(r)|u|′ dr = −

∫ R

0
P(r)|u′| dr
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(see, e.g., the derivation of formula (13) in Reference [9]). Setting C :=
∫ R

0 rN−1h(r, 0) dr, we get

Frad(u) =
∫ R

0
rN−1 [G(r, |u′|) + H(r, u)

]
dr + C.

Observe that, by (g2r), it holds

G(r, s) + H(r, t) ≥ G(r, s) ≥ ψ(s)−M0 s + g(r, 0).

Since ψ is a Nagumo function, then by Theorem 2.2 in Reference [30] the functional

F̂(u) :=
∫

BR

[G(|x|, |∇u|) + H(|x|, u)] dx

admits a minimizer in W1,1
0 (BR). Hence, by Corollary 1, the functional Frad admits a minimizer inW1

rad.

(ii)–(iii) Let us prove that, for every minimizer u of F in W1
rad, there exists a momemtum

p ∈ W1,∗
rad associated with u. (Hence, the Lipschitz continuity of u will follow from Lemma 1).

Specifically, the conclusion follows from Reference [29], Theorem 4.2.2, once we show that all the
assumptions are satisfied. The Lagrangian L(r, t, s) := rN−1[g(r, |s|) + h(r, t)] is convex with respect to
s, and satisfies the Basic Hypotheses 4.1.2 in Reference [29]. Moreover, the Hamiltonian of the problem,
that is, the Fenchel–Legendre transform of L with respect to the last variable:

H(r, t, p) := sup
s∈R

[p s− L(r, t, s)] = rN−1[g∗(r, r1−N p)− h(r, t)], ∀(r, t, p) ∈]0, R]×R×R,

satisfies the strong Lipschitz condition near every arc, since, by (h1r),

|H(r, t, p)− H(r, τ, p)| = rN−1|h(r, t)− h(r, τ)| ≤ rN−1H0(r) |t− τ|.

Finally, the minimization problem is calm, since it is a free-endpoint problem, hence all
assumptions of Theorem 4.2.2 in Reference [29] are satisfied.

Step 2: slow growth Lagrangians.

(i) Let σ0 > 0 be defined by (14), and, for a > σ0 given, let Φa be the class of all convex superlinear
non-decreasing functions ϕ : [0,+∞[→ [0,+∞[, such that ϕ(s) = 0 for every s ∈ [0, a].

Given λ > 0 and ϕ ∈ Φa, let us define the superlinear Lagrangian

gϕ,λ(r, s) := g(r, |s|) + λ ϕ(|s|)

and the corresponding functional

Fϕ,λ(u) :=
∫ R

0
rN−1[gϕ,λ(r, |u′|) + h(r, u)] dr

= Frad(u) + λ
∫ R

0
rN−1 ϕ(|u′(r)|) dr , u ∈ W1

rad .
(17)

For every λ > 0 and ϕ ∈ Φa the functional Fϕ,λ satisfies the assumptions of Step 1, hence there
exist a minimizer uϕ,λ of Fϕ,λ inW1

rad and an associated momentum pϕ,λ ∈ W1,∗
rad, such that

p′ϕ,λ(r) ∈ rN−1∂h(r, uϕ,λ(r)), for a.e. r ∈ [0, R],

pϕ,λ(r) ∈ rN−1∂gϕ,λ(r, |u′ϕ,λ(r)|), for a.e. r ∈ [0, R].

By Lemma 1(i), we obtain that r1−N |pϕ,λ(r)| ≤ M0 for every r ∈]0, R]. On the other hand, since
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r1−N pϕ,λ(r) ∈
[
(gϕ,λ)

′
−(r, |u′ϕ,λ(r)|), (gϕ,λ)

′
+(r, |u′ϕ,λ(r)|)

]
and, by Lemma 1(ii), M0 ∈ ∂g(r, σ(r)) with σ(r) ≤ σ0 < a, we obtain that

g′−(r, |u′ϕ,λ(r)|) ≤ (gϕ,λ)
′
−(r, |u′ϕ,λ(r)|) ≤ M0 ≤ g′+(r, σ(r)) ≤ g′−(r, a).

Hence, |u′ϕ,λ| ≤ a a.e. in [0, R], so that ϕ(|u′ϕ,λ|) = 0, and Fϕ,λ(uϕ,λ) = Frad(uϕ,λ).
By the discussion above, for every ϕ ∈ Φa and every µ ≥ λ > 0, we have that

Fϕ,λ(uϕ,µ) ≥ Fϕ,λ(uϕ,λ) = Fϕ,µ(uϕ,λ) ≥ Fϕ,µ(uϕ,µ) ≥ Fϕ,λ(uϕ,µ),

hence we conclude that m := Frad(uϕ,λ) is independent of λ > 0 and ϕ ∈ Φa.
We claim that m = minW1

rad
Frad. Specifically, assume by contradiction that there exists v ∈ W1

rad

such that Frad(v) < m. Since |∇v(|x|)| ∈ L1(BR), by the de La Vallée Poussin criterion (see, e.g.,
Reference [31], Theorem 10.3.i), there exists a function ϕ ∈ Φa such that

∫
BR

ϕ(|∇v(|x|)|) dx < +∞, i.e.,

∫ R

0
rN−1 ϕ(|v′(r)|) dr < +∞.

By (17), for λ > 0 small enough we have that Fϕ,λ(v) < m = min Fϕ,λ, a contradiction.

(ii) Let u be a minimizer of F inW1
rad, and let us prove that u is Lipschitz continuous.

Assume by contradiction that u is not Lipschitz continuous, that is, L({|u′| > a}) > 0 for every
a > 0 (here L denotes the Lebesgue measure on R).

Let us define δ, σ̂ and σ1 by:

δ :=
M−M0

3
, σ̂(r) := (g∗)′−(r, M0 + δ),

ψ(σ1)

σ1
= M0 + 2δ.

Observe that, by (g2r),

g′−(r, σ1) ≥
ψ(σ1)

σ1
= M0 + 2δ > M0 + δ ≥ g′−(r, σ̂(r)),

so that σ1 ≥ σ̂(r) for every r ∈ [0, R]. (The inequality is trivially satisfied for those values of r such that
σ1 6∈ Dom g(r, ·).) Let us define the function

`(r, s) := g(r, σ̂(r)) + (M0 + δ)(s− σ̂(r)), r ∈ [0, R], s ≥ 0.

Since M0 + δ ∈ ∂g(r, σ̂(r)), we have that g(r, s) ≥ l(r, s) for every r ∈ [0, R] and s ≥ 0.
Let ϕ be a Nagumo function such that

∫ R
0 rN−1 ϕ(|u′|) dr < +∞. Given a > 0, let us define

ϕa := [(ϕ− ϕ(a)) ∨ 0] ∈ Φa. Since 0 ≤ ϕa ≤ ϕ, we have that

0 ≤ lim
a→+∞

∫
{|u′ |>a}

rN−1 ϕa(|u′|) dr ≤ lim
a→+∞

∫
{|u′ |>a}

rN−1 ϕ(|u′|) dr = 0,

whereas
lim

a→+∞

∫
{σ1≤|u′ |≤a}

rN−1(|u′| − σ1) dr =
∫
{σ1≤|u′ |}

rN−1(|u′| − σ1) dr > 0 ,

hence there exists ζ > σ1 such that

δ
∫
{σ1≤|u′ |≤ζ}

rN−1(|u′| − σ1) dr >
∫
{|u′ |>ζ}

rN−1 ϕζ(|u′|) dr . (18)
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For every r ∈ [0, R], let us define the function (see Figure 1)

g̃(r, s) :=

{
g(r, s), if 0 ≤ s ≤ σ̂(r),

`(r, s) + ϕζ(s), if s ≥ σ̂(r),

and let

F̃(v) :=
∫ R

0
rN−1[g̃(r, |v′|) + h(r, v)] dr , v ∈ W1

rad.

Since g′−(r, σ1) ≥ M0 + 2δ, for every s ∈ [σ1, ζ] we have that

g(r, s) ≥ g(r, σ1) + (M0 + 2δ)(s− σ1)

≥ g̃(r, σ1) + (M0 + δ)(s− σ1) + δ(s− σ1)

= g̃(r, s) + δ(s− σ1).

(19)

Observe that, by the definition of g̃ and (19),

g̃(r, |u′|) ≤ g(r, |u′|), a.e. in {|u′| < σ1},
g̃(r, |u′|) ≤ g(r, |u′|)− δ(|u′| − σ1), a.e. in {σ1 ≤ |u′| ≤ ζ},
g̃(r, |u′|) ≤ g(r, |u′|) + ϕζ(|u′|), a.e. in {|u′| > ζ},

hence, by (18),

F̃(u) ≤ Frad(u)− δ
∫
{σ1≤|u′ |≤ζ}

rN−1(|u′| − σ1) dr +
∫
{|u′ |>ζ}

rN−1 ϕζ(|u′|) dr < Frad(u) .

On the other hand, if ũ is a minimizer of F̃, then by Step 1 there exists p ∈ W1,∗
rad such that

(ũ, p) satisfies the Euler–Lagrange inclusions (9) and (10) with g replaced by g̃. From Lemma 1(i) we
deduce that

|ũ′(r)| ≤ (g̃∗)′+(r, r1−N p(r)) ≤ (g̃∗)′−(r, M0 + δ) ≤ σ̂(r), for a.e. r ∈ [0, R],

(where the last inequality follows from g̃′(r, σ̂(r)) = M0 + δ), hence

g̃(r, |ũ′|) = g(r, |ũ′|), for a.e. r ∈ [0, R],

and, in conclusion,
Frad(ũ) = F̃(ũ) ≤ F̃(u) < Frad(u),

in contradiction with the assumption that u is a minimizer of F.

(iii) Finally, let us prove that u satisfies the Euler–Lagrange inclusions. Let σ > 0 be such that
|u′| ≤ σ a.e. in [0, R]. Reasoning as in the existence proof, u is a minimizer of Fϕ,λ for every λ > 0
and ϕ ∈ Φa, with a > σ ∨ σ0. Hence, u satisfies the Euler–Lagrange inclusions with gϕ,λ instead of g.
Since ∂gϕ,λ(r, |u′|) = ∂g(r, |u′|) for a.e. r ∈ [0, R], the conclusion follows.
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σ̂(r) σ1 ζ
s

g(r, ·)
g̃(r, ·)
`(r, ·)

slope M0 +2δ

Figure 1. Construction of g̃.

5. Convex Solutions of Variational Problems with Gradient Constraints

As an application of the previous results, we obtain the existence of convex radially symmetric
minimizers for autonomous functionals of the form

F(u) :=
∫

BR
[g(|∇u|) + h(u)] dx, (20)

in the space
W1

µ :=
{

u ∈W1,1
0 (Ω) : |∇u(x)| ≤ µ(|x|) for a.e. x ∈ BR

}
of Sobolev functions with gradient constraint given by a monotone non-decreasing function µ : [0, R]→
]0,+∞].

Theorem 3. Let us consider the integral functional (20), where g : [0,+∞[→ R and h : R → R satisfy the
following assumptions:

(g1) R 3 z 7→ g(|z|) is a convex function;
(g2) M := lims→+∞ g(s)/s > 0;
(h1) h is a convex function;
(hg) min{|h′−(0)|, |h′+(0)|} < NM

R .

Then the following hold.

(i) F admits a radially symmetric minimizer u(x) = u(|x|) inW1
µ.

(ii) There exists a momentum p ∈ W1,∗
rad such that the following Euler–Lagrange inclusions hold:

p′(r) ∈ rN−1∂h(u(r)), for a.e. r ∈ [0, R], (21)

p(r) ∈ rN−1Γ(r, |u′(r)|) for a.e. r ∈ [0, R], (22)

where

Γ(r, s) :=


∂g(s), if 0 ≤ s < µ(r),

[µ(r),+∞[, if s = µ(r),

∅, if s > µ(r).

(iii) If h′+(0) ≥ 0 [resp. h′−(0) ≤ 0], then u is a convex [resp. concave] function.
(iv) If, in addition, g has a strict minimum point at 0, or h is a strictly monotone function, then every minimizer

of F inW1
µ is radially symmetric.
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Proof. The constraint |∇u(x)| ≤ µ(|x|) in the definition of the functional spaceW1
µ can be incorporated

into the Lagrangian. Specifically, let us define

g̃(r, s) := g(s) + I[0,µ(r)](s), F̃(u) :=
∫

BR

[g̃(|x|, |∇u(x)|) + h(u(x))] dx,

where IB is the indicator function of a set B, defined by IB(s) = 0 if s ∈ B and +∞ otherwise.
Then minimizing F inW1

µ is equivalent to minimizing F̃ in W1,1
0 (BR).

We remark that, if g satisfies (g1)–(g2), then g̃ satisfies (g1r)–(g2r) and

∂g̃(r, s) = Γ(r, |s|), ∀(r, s) ∈ [0, R]×R. (23)

We shall prove the theorem only in the case h′+(0) ≥ 0 (since the case h′−(0) ≤ 0 can be
handled similarly).

If 0 is a minimum point of h, then clearly parts (i)–(ii)–(iii) are satisfied choosing u ≡ 0 and p ≡ 0.
Hence, it is not restrictive to prove (i)–(ii)–(iii) under the additional assumption that 0 is not a minimum
point of h. Since h′+(0) ≥ 0, and h is a convex function, we have that h′+(0) ≥ h′−(0) > 0.

Since h′−(0) > 0, the (possibly empty) convex and closed set argmin h is contained in the open
half-line ]−∞, 0[. If argmin h 6= ∅, let m := max argmin h, otherwise let m = −∞. Let us define

h̃(t) :=


h(m), if t ≤ m,

h(t), if m < t ≤ 0,

h(0) + h′−(0) t, if t > 0,

(the first condition is empty if m = −∞) and

F̂(u) :=
∫

BR

[g̃(|x|, |∇u|) + h̃(u)] dx, u ∈W1,1
0 (BR).

Given v ∈W1,1
0 (BR), let vm := (v ∧ 0) ∨m, and observe that F̂(vm) ≤ F̂(v). If u is a minimizer of

F̂, then also um is a minimizer of F̂; moreover, we have that

F̃(um) = F̂(um) ≤ F̂(vm) = F̃(vm) ≤ F̃(v), ∀v ∈W1,1
0 (BR),

so that um is a minimizer of F̃.
Hence, we have proved the following

Claim 1: If u is a minimizer of F̂, then um is a minimizer of both F̂ and F̃.

After this preliminary reduction, let us prove (i)–(iv).
(i) Thanks to Claim 1 and Theorem 1, assertion (i) is a consequence of the following

Claim 2: There exists a Lipschitz continuous, monotone non-decreasing minimizer u of F̂rad in W1
rad

satisfying m ≤ u ≤ 0.

Specifically, from (hg) we have that

0 ≤ h̃′−(t) ≤ h̃′+(t) ≤ h̃′−(0) =: K <
N M

R
, ∀t ∈ R.

Hence, from Theorem 2 the functional F̂rad admits a Lipschitz continuous minimizer û ∈ W1
rad.

Let us define

S :=
{

r ∈]0, R[: ûm(r) > inf
[r,R]

ûm

}
.
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By Riesz’s Rising Sun Lemma, we have that S is the union of a finite or countable family ]ak, bk[,
k ∈ J, of pairwise disjoint open intervals, with ûm(ak) = ûm(bk) for every k (unless ak = 0, in which
case ûm(0) ≤ ûm(bk)). Hence, the function

u(r) :=

{
ûm(bk), if r ∈]ak, bk[ for some k ∈ J,

ûm(r), otherwise,

is a Lipschitz continuous, monotone non-decreasing function and F̂rad(u) ≤ F̂rad(û), i.e., u is
a minimizer of F̂rad with the required properties, and Claim 2 is proved.

(ii) Here and in the following, u will denote the minimizer of F̂rad constructed in Claim 2.
By Theorem 2, there exists a momentum p ∈ W1,∗

rad such that the Euler–Lagrange inclusions (21)
and (22) are satisfied with h replaced by h̃. Observing that m ≤ u ≤ 0, and that

∂h̃(0) = {h′−(0)} ⊆ ∂h(0), ∂h̃(m) ⊆ ∂h(m), ∂h̃(t) = ∂h(t), ∀t ∈]m, 0[,

we conclude that the same pair satisfies also the Euler–Lagrange inclusions (21) and (22) (with the
original h).

(iii) Let us first prove the claim under the additional assumption that h̃ ∈ C2. In this case,
the inclusion (21) is, in fact, the equation

p′(r) = rN−1h′(u(r)), for a.e. r ∈ [0, R],

p is monotone non-decreasing, and p′ is Lipschitz continuous.
Since u is monotone non-decreasing, there exists r0 ∈ [0, R[ such that u(r) = m for every r ∈ [0, r0[,

and u(r) > m for every r ∈]r0, R]. Hence, to prove that x 7→ u(|x|) is convex in BR, it is enough to
prove that u′ is (equivalent to) a non-decreasing function in [r0, R].

Moreover, by (22), the explicit form (23) of ∂g̃, and the monotonicity of µ, this property will follow
once we prove that r1−N p(r) is strictly increasing in ]r0, R].

For r ∈]r0, R], we have that h′−(u(r)) > 0, hence p′(r) > 0. As a consequence, p is strictly positive
and strictly monotone increasing in ]r0, R].

Let us fix δ ∈]0, 1]. We have that

[r1−N−δ p(r)]′ = r−N−δ[r p′(r)− (N − 1 + δ)p(r)] =: r−N−δλ(r). (24)

Since 0 ≤ p′(r) ≤ K rN−1, the function λ(r) := r p′(r)− (N − 1 + δ)p(r) is absolutely continuous
in [0, R] and λ(0) = 0. Moreover, since the function r 7→ h′(u(r)) is monotone non-decreasing,

λ′(r) = [rNh′(u(r))− (N − 1 + δ)p(r)]′

= NrN−1h′(u(r)) + rN [h′(u(r))]′ − (N − 1 + δ)p′(r) ≥ (1− δ)p′(r) ≥ 0.

Hence, λ(r) ≥ 0 for every r, so that from (24) we deduce that the function r1−N−δ p(r) is monotone
non-decreasing. As a consequence, the function r1−N p(r) = rδ[r1−N−δ p(r)] is strictly increasing
in [r0, R].

Finally, the assumption h ∈ C2 can be dropped as in Reference [8] (§4, Step 3) (see also
References [11,12]).

(iv) If 0 is a strict minimum point of g, then g is strictly monotone increasing in [0,+∞[, and the
result follows from Theorem 1. If h is a strictly monotone function, the proof can be found in
Reference [32] (step (c) in the proof of Theorem 1).

Example 1 (The case N = 1). Let N = 1, let µ : [0, R]→]0,+∞] be a non-decreasing function, let g satisfy
(g1)–(g2), and let h : R→ R be a C1 function satisfying 0 < h′(t) ≤ K < M/R for every t ∈ R. Then every
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minimizer u of F inW1
µ is convex. Specifically, let u(x) = u(|x|) and let p ∈ W1,∗

rad be an associated momentum.
From (9) we deduce that p′(r) = h′(u(r)) > 0 for every r ∈]0, R], hence p is a strictly increasing function.
Since u′ ≥ 0 and p(r) ∈ ∂g̃(r, u′(r)), we conclude that u′ is non-decreasing, hence u is a convex function.

Example 2. We show that, if N > 1 and h is not convex, then a minimizer of F need not be convex. Let N = 2,
R = 2, g(s) = s2/2, µ ≡ +∞, ε ∈]0,

√
log 2], and consider the function

h(u) :=

{
4(u + ε), if u ≤ −ε,

0, if u > ε.

We claim that the non-convex function

u(r) :=

r2 − 1− ε, if r ∈ [0, 1],

ε
log(r/2)

log 2 , if r ∈ [1, 2],

is a minimizer of Frad. Specifically, the family of all solution of the Euler–Lagrange inclusions (9) and (10) is
given by the trivial pair (0, 0) and by the pairs of the form (uk, pk), with k ∈ R, pk(r) = r u′k(r), and

uk(r) :=

r2 − 1− ε + k log r, if r ∈]0, 1],

ε
log(r/2)

log 2 , if r ∈ [1, 2] ,

so that u = u0. A direct computation shows that Frad(0) = 0, Frad(uk) = +∞ for every k 6= 0, and Frad(u) =
(ε2 − log 2)/(2 log 2) < 0, hence the claim follows.

From the analysis above we can prove the following result without requiring the convexity of g.
In the following, g∗∗ denotes the bi-conjugate function of z 7→ g(|z|).

Corollary 2. Let us consider the integral functional (20), where g : [0,+∞[→ [0,+∞[ satisfies the
following assumptions:

(g0) g is a lower semicontinuous proper function, such that g(0) = g∗∗(0);
(g2) M := lim infs→+∞ g(s)/s > 0.

Moreover, assume that h : R→ R satisfies (h1) and (hg). Then F admits a radially symmetric minimizer
inW1

µ.

Proof. The relaxed functional

F(u) :=
∫

BR
[g∗∗(|∇u|) + h(u)] dx, u ∈W1,1

0 (BR),

satisfies all the assumptions of Theorem 3, hence there exist a radial minimizer u(x) = u(|x|) of F in
W1

µ and a momentum p ∈ W1,∗
rad such that (21) and (22) hold.

As in the proof of Theorem 3(iii), considering without loss of generality h ∈ C2 and h′−(0) > 0,
we have already proved that u is convex and there exists r0 ∈ [0, R[ such that u(r) = m for every
r ∈ [0, r0[, and u(r) > m for every r ∈]r0, R]. Moreover, the function r1−N p(r) is strictly increasing
in ]r0, R].

Let P be the set of all z ∈ R such that (z, g∗∗(z)) belongs to the set of the extremal points of
the epigraph of g∗∗. We recall that g(z) = g∗∗(x) for every z ∈ P (see Reference [9], Remark 5.3).
Reasoning as in Reference [32] (see the proof of Theorem 2), from the strict monotonicity of r1−N p(r)
in ]r0, R] follows that |u′(r)| ∈ P for a.e. r ∈ [r0, R]. Since u′(r) = 0 for every r ∈ [0, r0[, we conclude
that Frad(u) = Frad(u), hence u is a minimizer of Frad.
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