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Abstract

:

In this paper, we explore the algebra structure based on neutrosophic quadruple numbers. Moreover, two kinds of degradation algebra systems of neutrosophic quadruple numbers are introduced. In particular, the following results are strictly proved: (1) the set of neutrosophic quadruple numbers with a multiplication operation is a neutrosophic extended triplet group; (2) the neutral element of each neutrosophic quadruple number is unique and there are only sixteen different neutral elements in all of neutrosophic quadruple numbers; (3) the set which has same neutral element is closed with respect to the multiplication operator; (4) the union of the set which has same neutral element is a partition of four-dimensional space.
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1. Introduction


The notion of a neutrosophic set is proposed by F. Smarandache [1] in order to solve real-world problems and some in-depth analysis and research have been carried out [2,3,4,5]. Recently, Smarandache and Ali in [6] proposed a new algebraic system, neutrosophic triplet group (NTG), which different from classical groups. From the original definition of NTG, the neutral element is different from the classical algebraic unit element. By removing this restriction, the neutrosophic extended triplet group (NETG) is proposed in [7,8] and the classical group is regarded as a special case of NETG.



As a new algebraic structure, NTG (NETG) immediately attracted the attention of scholars and conducted in-depth research. These studies are mainly carried out by the following three aspects. Firstly, the structure properties of NTG (NETG) have been studied deeply. For examples, paper [8] has conducted an in-depth analysis of the nature of NTG, and the properties and structural features of NTG are studied by using theoretical analysis and software calculations. In paper [9], the notion of the neutrosophic triplet coset and its relation with the classical coset are proposed and the properties of the neutrosophic triplet cosets are given. The neutrosophic duplet sets, neutrosophic duplet semi-groups, and cancellable neutrosophic triplet groups are proposed and the characterizations of cancellable weak neutrosophic duplet semi-groups are established in paper [10]. In order to explore the structure of the algebraic system (Zn,⊗), where ⊗ is the classical mod multiplication, paper [11] reveals that for each n∈Z+,n≥2,(Zn,⊗) is a commutative NETG if and only if the factorization of n is a product of single factors. Moreover, the generalized neutrosophic extended triplet group (GNETG) is proposed in [11] and verify that for each n∈Z+,n≥2,(Zn,⊗) is a commutative GNETG. Secondly, it is the application research on the algebraic system NET. For example, In paper [12], the distinguishing features between an NTG and other algebraic structures are investigated and the first isomorphism theorem was established for NTGs, furthermore, applications of the results on NTG to management and sports are discussed. In paper [13], NTGs and their applications to mathematical models, such as fuzzy cognitive maps model, neutrosophic cognitive maps model and fuzzy relational maps model, are discussed. Thirdly, extend the idea of NTG(NETG) to another algebraic system. For example, in paper [14,15], the extend to Abel–Grassmann groupoid (AG-groupoid) is studied. The neutrosophic triplet ring and a neutrosophic triplet field are discussed in paper [16,17]. A notion of neutrosophic triplet metric space is given and properties of neutrosophic triplet metric spaces are studied in [18]. The notion of neutrosophic triplet v-generalized metric space are introduced in [19]. Paper [20] applies the neutrosophic set theory to pseudo-BCI algebras. The idea of a neutrosophic triplet set to non-associative semihypergroups is given in paper [21]. The above results enrich the research content of the algebraic system NTG (NETG).



In neutrosophic logic, each proposition is approximated to represent respectively the truth (T), the falsehood (F), and the indeterminacy (I), where T,I,F are standard or non-standard subsets of the non-standard unit interval ]0−,1+[=0−∪[0,1]∪1+. The notion of neutrosophic quadruple number, which is represented by a known part and an unknown part to describe a neutrosophic logic proposition, was introduced by Florentin Smarandache in [22]. The algebra system (NQ,∗) based on neutrosophic quadruple numbers are introduced and the properties have discussed [22,23]. In this paper, we will reveal that (NQ,∗) is a NETG and some properties are discussed.



The paper is organized as follows. Section 2 gives the basic concepts. In Section 3, (NQ,∗) be a NETG is proved and some properties are discussed. In Section 4, two kinds of degradation algebra systems of (NQ,∗) are introduced and studied. Finally, the summary and future work are presented in Section 5.




2. Basic Concepts


In this section, we will provide the related basic definitions and properties of NETG and neutrosophic quadruple numbers, the details can be seen in [7,8,22,23].



Definition 1

([7,8]). Let N be a non-empty set together with a binary operation ∗. Then, N is called a neutrosophic extended triplet set if for any a∈N, there exists a neutral of “a” (denote by neut(a)), and an opposite of “a”(denote by anti(a)), such that neut(a)∈N, anti(a)∈N and:


a∗neut(a)=neut(a)∗a=a,a∗anti(a)=anti(a)∗a=neut(a).











The triplet (a,neut(a),anti(a)) is called a neutrosophic extended triplet.





Definition 2

([7,8]). Let (N,∗) be a neutrosophic extended triplet set. Then, N is called a neutrosophic extended triplet group (NETG), if the following conditions are satisfied:




	(1) 

	
(N,∗)is well-defined, i.e., for anya,b∈N, one hasa∗b∈N.




	(2) 

	
(N,∗)is associative, i.e.,(a∗b)∗c=a∗(b∗c)for alla,b,c∈N.









A NETG N is called a commutative NETG if for all a,b∈N,a∗b=b∗a.





Proposition 1

([8]). Let (N,∗) be a NETG. We have:




	(1) 

	
neut(a)is unique for anya∈N.




	(2) 

	
neut(a)∗neut(a)=neut(a)for anya∈N.




	(3) 

	
neut(neut(a))=neut(a)for anya∈N.











Definition 3

([22,23]). A neutrosophic quadruple number is a number of the form (a,bT,cI,dF), where T,I,F have their usual neutrosophic logic meanings and a,b,c,d∈R or C. The set NQ, defined by


NQ={(a,bT,cI,dF):a,b,c,d∈RorC}.



(1)




is called a neutrosophic set of quadruple numbers. For a neutrosophic quadruple number (a,bT,cI,dF), a is called the known part and (bT,cI,dF) is called the unknown part.





Definition 4

([22,23]). Let N be a set, endowed with a total order a≺b, named “a prevailed by b” or “a less stronger than b” or “a less preferred than b”. We consider a⪯b as “a prevailed by or equal to b” “a less stronger than or equal to b”, or “a less preferred than or equal to b”.



For any elements a,b∈N, with a⪯b, one has the absorbance law:


a·b=b·a=absorb(a,b)=max(a,b)=b,



(2)




which means that the bigger element absorbs the smaller element. Clearly,


a·a=a2=absorb(a,a)=max(a,a)=a.



(3)




and


a1·a2⋯an=max(a1,a2,⋯,an).



(4)







Analogously, we say that “a≻b” and we read: “a prevails to b” or “a is stronger than b” or “a is preferred to b”. Also, a⪰b, and we read: “a prevails or is equal to b” “a is stronger than or equal to b”, or “a is preferred or equal to b”.





Definition 5

([22,23]). Consider the set {T,I,F}. Suppose in an optimistic way we consider the prevalence order T≻I≻F. Then we have: TI=IT=max(T,I)=T,TF=FT=max(T,F)=T,IF=FI=max(I,F)=I,TT=T2=T,II=I2=I,FF=F2=F.



Analogously, suppose in a pessimistic way we consider the prevalence order T≺I≺F. Then we have: TI=IT=max(T,I)=I,TF=FT=max(T,F)=F,IF=FI=max(I,F)=F,TT=T2=T,II=I2=I,FF=F2=F.





Definition 6

([22,23]). Let a=(a1,a2T,a3I,a4F),b=(b1,b2T,b3I,b4F)∈NQ, Suppose in an pessimistic way, the neutrosophic expert considers the prevalence order T≺I≺F. Then the multiplication operation is defined as following:


a∗b=(a1,a2T,a3I,a4F)∗(b1,b2T,b3I,b4F)=(a1b1,(a1b2+a2b1+a2b2)T,(a1b3+a2b3+a3b1+a3b2+a3b3)I,(a1b4+a2b4+a3b4+a4b1+a4b2+a4b3+a4b4)F).



(5)







Suppose in an optimistic way the neutrosophic expert considers the prevalence order T≻I≻F. Then:


a⭑b=(a1,a2T,a3I,a4F)∗(b1,b2T,b3I,b4F)=(a1b1,(a1b2+a2b1+a2b2+a3b2+a4b2+a2b3+a2b4)T,(a1b3+a3b1+a3b3+a3b4+a4b3)I,(a1b4+a4b1+a4b4)F).



(6)









Proposition 2

([22,23]). Let NQ={(a,bT,cI,dF):a,b,c,d∈RorC}. We have:




	(1) 

	
(NQ,∗)is a commutative monoid.




	(2) 

	
(NQ,⭑)is a commutative monoid.












3. Main Results


From Proposition 2, we can see that (NQ,∗) (or (NQ,⭑)) be a commutative monoid. In these section, we will show that the algebra system (NQ,∗)(or (NQ,⭑)) is a NETG.



Theorem 1.

For the algebra system (NQ,∗), for every element a∈NQ, there exists the neutral element neut(a) and opposite element anti(a).





Proof analysis: the proof of this theorem contains two aspects. Firstly, given an element a∈NQ,a=(a1,a2T,a3I,a4F), ai∈R,i∈{1,2,3,4}. Being ai can select every element in R, we should discuss from different cases and in each case netu(a) and anti(a) should given. Secondly, we should prove that all the cases discussed above include all the elements in NQ.



Proof. 

Let a=(a1,a2T,a3I,a4F), we consider ai∈R,i∈{1,2,3,4} and the same results can be gotten when ai∈C.



Set neut(a)=(b1,b2T,b3I,b4F),bi∈R,i∈{1,2,3,4} and anti(a)=(c1,c2T,c3I,c4F),ci∈R,i∈{1,2,3,4}. From Definition 1 we can get a∗neut(a)=a, that is a1b1=a1 should hold. So we discuss from two cases, a1=0 or a1≠0.



Case A: when a1=0.



In this case, we have a=(0,a2T,a3I,a4F). From Definition 1, a∗anti(a)=neut(a), that is 0·c1=b1, so we have b1=0, i.e., neut(a)=(0,b2T,b3I,b4F). Moreover, from a∗neut(a)=a, we have (0,a2T,a3I,a4F)∗(0,b2T,b3I,b4F)=(0,a2T,a3I,a4F), so we have a2b2=a2. So we discuss from a2=0 or a2≠0.



Case A1: a1=0,a2=0. That is, a=(0,0,a3I,a4F),netu(a)=(0,b2T,b3I,b4F),anti(a)=(c1,c2T,c3I,c4F). From a∗anti(a)=neut(a), we have 0c1+0(c1+c2)=b2, so b2=0, i.e., netu(a)=(0,0,b3I,b4F). From (0,0,a3I,a4F)∗(0,0,b3I,b4F)=(0,0,a3I,a4F), we have a3b3=a3. So we discuss from a3=0 or a3≠0.



Case A11: a1=a2=a3=0, that is, a=(0,0,0,a4F),netu(a)=(0,0,b3I,b4F),anti(a)=(c1,c2T,c3I,c4F). In the same way, from a∗anti(a)=neut(a), we have b3=0, i.e., netu(a)=(0,0,0,b4F). From (0,0,0,a4F)∗(0,0,0,b4F)=(0,0,0,a4F), we have a4b4=a4. So we discuss from a4=0 or a4≠0.



Case A111: a1=a2=a3=a4=0, that is, a=(0,0,0,0), in this case, we can easily get neut(a)=(0,0,0,0) and anti(a)=(c1,c2T,c3I,c4F), ci can be chosen arbitrarily in R.



Case A112: a1=a2=a3=0,a4≠0, being that a4b4=a4 and a4≠0, we have b4=1, that is, a=(0,0,0,a4F),netu(a)=(0,0,0,F),anti(a)=(c1,c2T,c3I,c4F). From (0,0,0,a4F)∗(c1,c2T,c3I,c4F)=(0,0,0,F), we have a4(c1+c2+c3+c4)=1, so the opposite element of a should satisfy c1+c2+c3+c4=1a4,ci∈R.



Case A12: a1=a2=0,a3≠0. From a3b3=a3 and a3≠0, we have b3=1. That is a=(0,0,a3I,a4F),netu(a)=(0,0,I,b4F),anti(a)=(c1,c2T,c3I,c4F). From (0,0,a3I,a4F)∗(0,0,I,b4F)=(0,0,a3I,a4F), we have 0b4+0b4+a3b4+a4(0+0+1+b4)=a4, so (a3+a4)b4=0. We discuss from a3+a4=0 or a3+a4≠0.



Case A121: a1=a2=0, a3≠0,a3+a4=0, that is a=(0,0,a3I,−a3F),neut(a)=(0,0,I,b4F),anti(a)=(c1,c2T,c3I,c4F). From a∗anti(a)=neut(a), that is (0,0,a3I,−a3F)∗(c1,c2T,c3I,c4F)=(0,0,I,b4F). So we have a3(c1+c2+c3)=1 and a3c4−a3(c1+c2+c3+c4)=b4 i.e., c1+c2+c3=1a3 and b4=1. Thus neut(a)=(0,0,I,−F), anti(a)=(c1,c2T,c3I,c4F), where c1+c2+c3=1a3, c4 can be chosen arbitrarily in R.



Case A122: a1=a2=0,a3≠0,a3+a4≠0. From (a3+a4)b4=0, we have b4=0. that is a=(0,0,a3I,a4F),neut(a)=(0,0,I,0),anti(a)=(c1,c2T,c3I,c4F). From a∗anti(a)=neut(a), that is (0,0,a3I,a4F)∗(c1,c2T,c3I,c4F)=(0,0,I,0). So we have a3(c1+c2+c3)=1 and a3c4−a3(c1+c2+c3+c4)=0 i.e., c1+c2+c3=1a3 and c4=−a4a3(a3+a−4). Thus neut(a)=(0,0,I,0), anti(a)=(c1,c2T,c3I,c4F), where c1+c2+c3=1a3, c4=−a4a3(a3+a4).



Case A2: when a1=0,a2≠0. From a2b2=a2, we have b2=1, that is, a=(0,0,a3I,a4F),netu(a)=(0,T,b3I,b4F),anti(a)=(c1,c2T,c3I,c4F). In the same way, from a∗neut(a)=a, we have (a2+a3)b3=0, so we discuss from a2+a3=0 or a2+a3≠0.



Case A21: when a1=0,a2≠0,a2+a3=0. that is, a=(0,a2T,−a2I,a4F),netu(a)=(0,T,b3I,b4F),anti(a)=(c1,c2T,c3I,c4F). In the same way, from a∗neut(a)=a, we have a4+a4(b3+b4)=a4, that is a4(b3+b4)=0, so we discuss from a4=0 or a4≠0.



Case A211: when a1=0,a2≠0,a2+a3=0,a4=0. that is, a=(0,a2T,−a2I,0),netu(a)=(0,T,b3I,b4F),anti(a)=(c1,c2T,c3I,c4F). From (0,a2T,−a2I,0)∗(c1,c2T,c3I,c4F)=(0,T,b3I,b4F), so we have a2(c1+c2)=1 and −a2(c1+c2)=b3, that is b3=−1. In the same way, we can get b4=0. Thus neut(a)=(0,T,−I,0), anti(a)=(c1,c2T,c3I,c4F), where c1+c2=1a2, c3,c4 can be chosen arbitrarily in R.



Case A212: when a1=0,a2≠0,a2+a3=0,a4≠0, From a4(b3+b4)=0, we have b3+b4=0, that is, a=(0,a2T,−a2I,a4F), netu(a)=(0,T,b3I,−b3F), anti(a)=(c1,c2T,c3I,c4F). From (0,a2T,−a2I,a4)∗(c1,c2T,c3I,c4F)=(0,T,b3I,−b3F), so we have a2(c1+c2)=1 and −a2(c1+c2)=b3, i.e., b3=−1. Thus neut(a)=(0,T,−I,F), anti(a)=(c1,c2T,c3I,c4F), where c1+c2=1a2, c3+c4=1a4−1a2.



Case A22: when a1=0,a2≠0,a2+a3≠0. From (a2+a3)b3=0, we have b3=0. that is, a=(0,a2T,−a2I,a4F),netu(a)=(0,T,0,b4F),anti(a)=(c1,c2T,c3I,c4F). From a∗neut(a)=a, we have (a2+a3+a4)b4=0, so we discuss from a2+a3+a4=0 or a2+a3+a4≠0.



Case A221: when a1=0,a2≠0,a2+a3≠0,a2+a3+a4=0. In this case a=(0,a2T,a3I,a4F),netu(a)=(0,T,0,b4F),anti(a)=(c1,c2T,c3I,c4F). From (0,a2T,a3I,a4F)∗(c1,c2T,c3I,c4F)=(0,T,0,b4F), so we have a2(c1+c2)=1, c3=−a3a2(2+a3), (a2+a3+a4)b4+a4(c1+c2+c3)=b4, so we have b4=−1. Thus neut(a)=(0,T,0,−F), anti(a)=(c1,c2T,c3I,c4F), where c1+c2=1a2, c3=−a3a2(2+a3), c4 can be chosen arbitrarily in R.



Case A222: when a1=0,a2≠0,a2+a3≠0,a2+a3+a4≠0. From (a2+a3+a4)b4=0, we have b4=0. that is, a=(0,a2T,a3I,a4F),netu(a)=(0,T,0,0),anti(a)=(c1,c2T,c3I,c4F). From (0,a2T,a3I,0)∗(c1,c2T,c3I,c4F)=(0,T,0,0), so we have a2(c1+c2)=1, c3=−a3a2(2+a3), (a2+a3+a4)b4+a4(c1+c2+c3)=0, Thus neut(a)=(0,T,0,0), anti(a)=(c1,c2T,c3I,c4F), where c1+c2=1a2, c3=−a3a2(2+a3), c4=−a4(a2+a3)(a2+a3+a4).



Case B: when a1≠0.



In this case, from a1b1=a1 and a1≠0, we have b1=1. That is a=(a1,a2T,a3I,a4F),neut(a)=(1,b2T,b3I,b4F),anti(a)=(c1,c2T,c3I,c4F). From Definition 1, a∗neut(a)=a, that is a1b2+a2+a2b2=a2, so (a1+a2)b2=0. So we discuss from a1+a2=0 or a1+a2≠0.



Case B1: when a1≠0,a1+a2=0. That is a=(a1,−a1T,a3I,a4F),neut(a)=(1,b2T,b3I,b4F),anti(a)=(c1,c2T,c3I,c4F). From a∗anti(a)=neut(a), we have c1=1a1, a1c2−a1c1−a1c2=b2, so b2=−1. From a∗neut(a)=a, so we have a3+a3b2+a3b3=a3, i.e., a3(b2+b3)=0. So we discuss from a3=0 or a3≠0.



Case B11: when a1≠0,a1+a2=0,a3=0. That is a=(a1,−a1T,0,a4F),neut(a)=(1,−T,b3I,b4F),anti(a)=(c1,c2T,c3I,c4F). From a∗neut(a)=a, we have a1b4−a1b4−0b4+a4(1−1+b3+b4)=a4, i.e., a4(b3+b4)=a4. So we discuss from a4=0 or a4≠0.



Case B111: when a1≠0,a1+a2=0,a3=0,a4=0. That is a=(a1,−a1T,0,0),neut(a)=(1,−T,b3I,b4F),anti(a)=(c1,c2T,c3I,c4F). From a∗anti(a)=neut(a), i.e., (a1,−a1T,0,0)∗(c1,c2T,c3I,c4F)=(1,−T,b3I,b4F), we have c1=1a1, b3=b4=0. Thus neut(a)=(1,−T,0,0), anti(a)=(c1,c2T,c3I,c4F), which satisfies c1=1a1 and c2,c3,c4 can be chosen arbitrarily in R.



Case B112: when a1≠0,a1+a2=0,a3=0,a4≠0. From a4(b3+b4)=a4, we have b3+b4=1. That is a=(a1,−a1T,0,a4F),neut(a)=(1,−T,b3I,b4F),anti(a)=(c1,c2T,c3I,c4F). From a∗anti(a)=neut(a), i.e., (a1,−a1T,0,a4F)∗(c1,c2T,c3I,c4F)=(1,−T,b3I,b4F), we have c1=1a1, b3=0,b4=1. Thus neut(a)=(1,−T,0,F), anti(a)=(c1,c2T,c3I,c4F), where c1=1a1 and c2+c3+c4=1a4−1a1.



Case B12: when a1≠0,a1+a2=0,a3≠0. From a3(b2+b3)=0 and a3≠0, we have b2+b3=0, i.e., b3=1. That is a=(a1,−a1T,a3I,a4F),neut(a)=(1,−T,I,b4F),anti(a)=(c1,c2T,c3I,c4F). From a∗neut(a)=a, we have a3b4+a4+a4b4=a4, i.e., (a3+a4)b4=0. So we discuss from a3+a4=0 or a3+a4≠0.



Case B121: when a1≠0,a1+a2=0,a3≠0,a3+a4=0. That is a=(a1,−a1T,a3I,−a3F), neut(a)=(1,−T,I,b4F), anti(a)=(c1,c2T,c3I,c4F). From a∗anti(a)=neut(a), i.e., (a1,−a1T,a3I,−a3F)∗(c1,c2T,c3I,c4F)=(1,−T,I,b4F), we have c1=1a1, c2+c3=1a3−1a1, −a3(c1+c2+c3)=b4, i.e., b4=−1. Thus neut(a)=(1,−T,I,−F), anti(a)=(c1,c2T,c3I,c4F), where c1=1a1, c2+c3=1a3−1a2, c4 can be chosen arbitrarily in R.



Case B122: when a1≠0,a1+a2=0,a3≠0,a3+a4≠0, from (a3+a4)b4=0, we have b4=0. That is a=(a1,−a1T,a3I,a4F),neut(a)=(1,−T,I,0),anti(a)=(c1,c2T,c3I,c4F). From a∗anti(a)=neut(a), i.e., (a1,−a1T,a3I,a4F)∗(c1,c2T,c3I,c4F)=(1,−T,I,0), we have c1=1a1, c2+c3=1a3−1a1, c4=−a4a3(a3+a4). Thus neut(a)=(1,−T,I,−F), anti(a)=(c1,c2T,c3I,c4F), where c1=1a1, c2+c3=1a3−1a1, c4=−a4a3(a3+a4).



Case B2: when a1≠0,a1+a2≠0, from (a1+a2)b2=0, we have b2=0. That is a=(a1,−a1T,a3I,a4F),neut(a)=(1,0,b3I,b4F),anti(a)=(c1,c2T,c3I,c4F). From a∗neut(a)=a, so we have a1b3+a2b3+a3+a3b3=a3, i.e., (a1+a2+a3)b3=0. So we discuss from a1+a2+a3=0 or a1+a2+a3≠0.



Case B21: when a1≠0,a1+a2≠0,a1+a2+a3=0. That is a=(a1,a2T,a3I,a4F),neut(a)=(1,0,b3I,b4F),anti(a)=(c1,c2T,c3I,c4F). From a∗neut(a)=a, so we have (a1+a2+a3)b4+a4+a4b3+a4b4=a4, i.e., (b3+b4)a4=0. So we discuss from a4=0 or a4≠0.



Case B211: when a1≠0,a1+a2≠0,a1+a2+a3=0,a4=0. That is a=(a1,a2T,a3I,0),neut(a)=(1,0,b3I,b4F),anti(a)=(c1,c2T,c3I,c4F). From a∗anti(a)=neut(a), i.e., (a1,a2T,a3I,0)∗(c1,c2T,c3I,c4F)=(1,0,b3I,b4F), we have c1=1a1, c2=−a2a1(a1+a2). a3(c1+c2)=b3, (a1+a2+a3)c4+0(c1+c2+c3+c4)=0, which means b3=−1,b4=0. Thus neut(a)=(1,0,−I,0), anti(a)=(c1,c2T,c3I,c4F), where c1=1a1, c2=−a2a1(a1+a2), c3,c4 can be chosen arbitrarily in R.



Case B212: when a1≠0,a1+a2≠0,a1+a2+a3=0,a4≠0. From (b3+b4)a4=0, we have b3+b4=0. That is a=(a1,a2T,a3I,a4F),neut(a)=(1,0,b3I,−b3F),anti(a)=(c1,c2T,c3I,c4F). From a∗anti(a)=neut(a), i.e., (a1,a2T,a3I,a4F)∗(c1,c2T,c3I,c4F)=(1,0,b3I,−b3F), we have c1=1a1, c2=−a2a1(a1+a2). a3(c1+c2)=b3, i.e., b3=−1,b4=1. Thus neut(a)=(1,0,−I,F), anti(a)=(c1,c2T,c3I,c4F), where c1=1a1, c2=−a2a1(a1+a2), c3+c4=1a4−1a1+a2.



Case B22: when a1≠0,a1+a2≠0,a1+a2+a3≠0, from (a1+a2+a3)b3=0, we have b3=0. That is a=(a1,a2T,a3I,a4F),neut(a)=(1,0,0,b4F),anti(a)=(c1,c2T,c3I,c4F). From a∗neut(a)=a, so we have (a1+a2+a3+a4)b4+a4=a4, i.e., (a1+a2+a3+a4)b4=0. So we discuss from a1+a2+a3+a4=0 or a1+a2+a3+a4≠0.



Case B221: when a1≠0,a1+a2≠0,a1+a2+a3≠0,a1+a2+a3+a4=0, That is a=(a1,a2T,a3I,a4F),neut(a)=(1,0,0,b4F),anti(a)=(c1,c2T,c3I,c4F). From a∗anti(a)=neut(a), i.e., (a1,a2T,a3I,a4F)∗(c1,c2T,c3I,c4F)=(1,0,0,b4F), we have c1=1a1, c2=−a2a1(a1+a2). c3=−a3(a1+a2)(a1+a2+a3), a4(c1+c2+c3)=b4, so b4=−1. Thus neut(a)=(1,0,0,−F), anti(a)=(c1,c2T,c3I,c4F), where c1=1a1, c2=−a2a1(a1+a2),c3=−a3(a1+a2)(a1+a2+a3), c4 can be chosen arbitrarily in R.



Case B222: when a1≠0,a1+a2≠0,a1+a2+a3≠0,a1+a2+a3+a4≠0. From (a1+a2+a3+a4)b4+a4=a4, we have b4=0. That is a=(a1,a2T,a3I,a4F),neut(a)=(1,0,0,0),anti(a)=(c1,c2T,c3I,c4F). From a∗anti(a)=neut(a), i.e., (a1,a2T,a3I,a4F)∗(c1,c2T,c3I,c4F)=(1,0,0,0), we have c1=1a1, c2=−a2a1(a1+a2), c3=−a3(a1+a2)(a1+a2+a3). (a1+a2+a3+a4)c4+a4(c1+c2+c3)=0, i.e., c4=−a4(a1+a2+a3)(a1+a2+a3+a4). Thus neut(a)=(1,0,0,0), anti(a)=(c1,c2T,c3I,c4F), where c1=1a1, c2=−a2a1(a1+a2),c3=−a3(a1+a2)(a1+a2+a3),c4=−a4(a1+a2+a3)(a1+a2+a3+a4).



Finally, we should show that all the above cases include each element a∈NQ, i.e., ai,i=1,2,3,4 can take all the values on R. It is obvious that a1 can take all the values on R because a1=0 according to case A and that a1≠0 according to case B. Moreover, for case A, a2 can take all the values on R because case A1 according to a2=0 and case A2 according to a2≠0. For case B, a2 can take all the values on R because case B1 according to a1+a2=0 and case B2 according to a1+a2≠0. That is for each element a=(a1,a2,a3,a4)∈NQ, a1,a2 can select all of value in R. We will verify that a3 and a4 can take all the values on R when case A1 or A2 or B1 or B2 respectively.



For case A1, a3 can take all the value in R because case A11 according to a3=0 and case A12 according to a3≠0. Similarly, for case A11, a4 can take all the value in R because case A111 according to a4=0 and case A112 according to a4≠0. For case A12, a4 can take all the value in R because case A121 according to a3+a4=0 and case A122 according to a3+a4=0. The top left subgraph of Figure 1 shows that the four cases A111, A112, A211 and A222. The unique □ point represents the case A111, the + points represent the case A112, the ∗ points represent the case A121 and the • points represent the case A122. This explain the that for case A1, a3 and a4 can take all the points on the plane. For case A2, B1 or B2, we can get that a3 and a4 can take all the points on the plane respectively. The top right subgraph of Figure 1 represents the case A2 if we select a1=0,a2=1, the bottom left subgraph of Figure 1 represents the case B1 if we select a1=1,a2=−1 and bottom right subgraph of Figure 1 represents the case B2 if we select a1=1,a2=0. The figure intuitively illustrates that all the points (a1,a2,a3,a4),ai∈R are included.



Through the above analysis, we can get that for each element a∈NQ, there exists the neutral element neut(a) and opposite element anti(a).□





For algebra system (NQ,∗), Table 1 gives all the subset, which has the same neutral element, and the corresponding neutral element and opposite elements.



Example 1.

For the algebra system (NQ,∗), if a=(a1,a2,a3,a4)=(1,−T,3I,−F), i.e., a1≠0,a1+a2=0,a3≠0,a3+a4≠0, then from Table 1, we can get neut(a)=(1,−T,I,0). Let anti(a)=(c1,c2T,c3I,c4F), so c1=1a1=1,c2+c3=1a3−1a1=−23,c4=−a4a3(a3+a4)=16, so anti(a)=(1,c2T,c3I,16F), where c2+c3=−23. Thus we can easily get the neutral element and opposite elements of each neutrosophic quadruple number. For more examples, see the following:




	1. 

	
Let b=(0,0,I,−F), then neut(b)=(0,0,I,−F) and anti(b)=(c1,c2T,c3I,c4F), where c1+c2+c3=1, c4 can be can be chosen arbitrarily in R.




	2. 

	
Let c=(1,T,I,−F), then neut(c)=(1,0,0,0) and anti(c)=(1,−12T,−16I,16F).




	3. 

	
Let d=(0,T,I,F), then neut(d)=(0,T,0,0) and anti(d)=(c1,c2T,−12I,−16F), where c1+c2=1.











In the following, we will discuss the algebra structure properties of (NQ,∗).



Proposition 3.

For algebra system (NQ,∗), let NS={neut(a)|a∈NQ}, we have:



(1) NS={(1,0,0,0),(0,0,0,F),(0,0,I,−F),(0,0,I,0),(0,T,−I,0),(0,T,−I,F),(0,T,0,−F),(0,T,0,0), (1,−T,0,0),(1,−T,0,F),(1,−T,I,−F),(1,−T,I,0),(1,0,−I,0),(1,0,−I,F),(1,0,0,−F),(1,0,0,0)}.



(2) NS is closed with respect to operation ∗.



(3) Set IS={a|a2=a,a∈NQ}, which is all the set of idempotent elements of (NQ,∗), then NS=IS.





Proof. 

(1) Obviously.



(2) If c,d∈NS, that is neut(a)=c,neut(b)=d,a,b∈NQ. From Proposition 1, neut(a)∗neut(b)=neut(a∗b), i.e., c∗d=neut(a∗b), then form Theorem 1, every element in NQ has neutral element, so a∗b also has neutral element, that is neut(a∗b)∈NS, i.e., c∗d∈NS, thus NS is closed with respect to operation ∗.



(3) From Proposition 1, neut(a)∗neut(a)=neut(a), so neut(a) is a idempotent element and NS⊆IS. On the other hand if a is a idempotent element, so a∗a=a, that is a exists the neutral element a and the opposite element a, so a is a neutral element, that is IS⊆NS. Thus NS=IS.□





Proposition 4.

For algebra system (NQ,∗), let Vc={a|a∈NQ∧neut(a)=c}, Vc∗d={a∗b|a,b∈NQ∧neut(a)=c∧neut(b)=d}, we have:



(1) Vc is closed with respect to operation ∗.



(2) Vc∗d is closed with respect to operation ∗.





Proof. 

(1) If a,b∈Vc, that is neut(a)=neut(b)=c. From Proposition 1, neut(a)∗neut(b)=neut(a∗b), we can see that neut(a∗b)=neut(a)=c, i.e., the neutral element of a∗b is the neutral element of a, so a∗b∈Vc, that is Vc is closed with respect to operation ∗.



(2) If a1∗b1,a2∗b2∈Vc∗d, i.e., neut(a1)=neut(a2)=c,neut(b1)=neut(b2)=d. From Proposition 3(2), a1∗a2=a3∈Vc, b1∗b2=b3∈Vd, so neut(a3)=c,neut(b3)=d, from (a1∗b1)∗(a2∗b2)=a3∗b3, so neut(a1∗a2∗b1∗b2)=neut(a3∗a4), that is a3∗a4∈Vc∗d, that means a1∗a2∗b1∗b2∈Vc∗d. Thus Vc∗d is closed with respect to operation ∗.□





Definition 7.

Assume that (N,∗) is a neutrosophic triplet group and H be a nonempty subset of N. Then H is called a neutrosophic triplet subgroup of N if;



(1) a∗b∈H for all a,b∈H;



(2) there exists anti(a)∈{anti(a)} such that anti(a)∈H for all a∈H, where {anti(a)} is the set of opposite element of a in (N,∗).





Theorem 2.

For algebra system (NQ,∗), let Vc={a|a∈NQ∧neut(a)=c}, Vc∗d={a∗b|a,b∈NQ∧neut(a)=c,neut(b)=d}, we have:



(1) Vc is a neutrosophic triplet subgroup of NQ.



(2) Vc∗d is a neutrosophic triplet subgroup of NQ.





Proof. 

(1) From Proposition 3, we can see that Vc is closed with respect to operation ∗. In the following, we will prove there exists anti(a)∈{anti(a)} such that anti(a)∈Vc for all a∈Vc.



Proof by contradiction.



Assume that {anti(a)}∩Vc=∅. From Proposition 1 we can see that a∗anti(a)=c. On the other hand, anti(a)∈NQ, so anti(a) exists neutral element, denoted by neut(anti(a)). Being anti(a)∉Vc, so neut(anti(a))≠c.



From a∗anti(a)=c, we have a∗anti(a)∗neut(anti(a))=c∗neut(anti(a)), being anti(a)∗neut(anti(a))=anti(a) and a∗anti(a)=c, we have c∗neut(anti(a))=c, and then we have a∗c∗neut(anti(a))=a∗c=a, that means a∗neut(anti(a))=a, so neut(anti(a)) is also a neutral element of a. This leads to the contradiction being the uniqueness of neutral element for each element. Therefore {anti(a)}∩Vc≠∅. Thus from Definition 7, Vc is a neutrosophic triplet subgroup of NQ.



(2) The same way we can get Vc∗d is a neutrosophic triplet subgroup of NQ.□





Theorem 3.

For algebra system (NQ,∗), let Vc={a|a∈NQ∧neut(a)=c}, we have:



(1) Vc∩Vd=∅ if c≠d.



(2) NQ=∪c∈NSVc. So ∪c∈NSVc is a partition of NQ, where NS is a set, which contains all the neutral elements of (NQ,∗).





Proof. 

(1) Proof by contradiction.



Assume Vc∩Vd≠∅ when c≠d, so exist a∈Vc∩Vd, such that a has two neutral elements c and d. This leads to the contradiction being the uniqueness of neutral element. So Vc∩Vd=∅ if c≠d.



(2) From the proof of Theorem 1, we can get NQ=∪c∈NSVc. So ∪c∈NSVc is a partition of NQ.□





For the algebra system (NQ,⭑), we have the similar results. We describe as following and omit the proof.



Theorem 4.

For the algebra system (NQ,⭑), for every element a∈NQ, there exists the neutral element neut(a) and opposite element anti(a).





For algebra system (NQ,⭑), Table 2 gives all the subset, which has the same neutral element, and the corresponding neutral element and opposite elements.



Theorem 5.

For an algebra system (NQ,⭑), let Vc={a|a∈NQ∧neut(a)=c}, Vc⭑d={a⭑b|a,b∈NQ∧neut(a)=c,neut(b)=d}, we have:



(1) Vc is a neutrosophic triplet subgroup of NQ.



(2) Vc⭑d is a neutrosophic triplet subgroup of NQ.





Theorem 6.

For algebra system (NQ,⭑), Let Vc={a|a∈NQ∧neut(a)=c}, we have:



(1) Vc∩Vd=∅ if c≠d.



(2) NQ=∪c∈NSVc. So ∪c∈NSVc is a partition of NQ, where NS is a set, which contains all the neutral elements of (NQ,⭑).






4. Two Kinds of Degenerate Systems of Neutrosophic Quadruple Numbers


The neutrosophic quadruple numbers consider (T,I,F) to solve real problems. In this section, we will explore two kinds of degenerate systems about neutrosophic quadruple numbers. The first system is only consider logical true, and the second system is only consider logical true and logical indeterminacy.



4.1. The Neutrosophic Binary Numbers


Definition 8.

A neutrosophic binary number is a number of the form (a,bT), where T have their usual neutrosophic logic true and a,b∈R or C. The set NB defined by


NB={(a,bT):a,b∈RorC}.



(7)




is called a neutrosophic set of binary numbers. For a neutrosophic binary number (a,bT), a is called the known part and (bT) is called the unknown part.





Definition 9.

Let a=(a1,a2T),b=(b1,b2T)∈NB, the multiplication operation is defined as following:


a∗b=(a1,a2T)∗(b1,b2T)=(a1b1,(a1b2+a2b1+a2b2)T).



(8)









We have the following results similar to (NQ,∗).



Theorem 7.

For the algebra system (NB,∗), for every element a∈NB, there exists the neutral element neut(a) and opposite element anti(a).





For algebra system (NB,∗), Table 3 gives all the subset, which has the same neutral element, and the corresponding neutral element and opposite elements.



Theorem 8.

For algebra system (NB,∗), let Vc={a|a∈NB∧neut(a)=c}, Vc∗d={a∗b|a,b∈NB∧neut(a)=c,neut(b)=d}, we have:



(1) Vc is a neutrosophic triplet subgroup of NB.



(2) Vc∗d is a neutrosophic triplet subgroup of NB.





Theorem 9.

For an algebra system (NB,∗), let Vc={a|a∈NB∧neut(a)=c}, we have:



(1) Vc∩Vd=∅ if c≠d.



(2) NB=∪c∈NSVc. So ∪c∈NSVc is a partition of NB, where NS is a set, which contains all the neutral elements of (NB,∗).






4.2. The Neutrosophic Triple Numbers


Definition 10.

A neutrosophic triple number is a number of the form (a,bT,cI), where T,I have their usual neutrosophic logic meanings and a,b,c∈R or C. The set NT defined by


NT={(a,bT,cI):a,b,c∈RorC}



(9)




is called a neutrosophic set of triple numbers. For a neutrosophic triple number (a,bT,cI), a is called the known part and (bT,cI) is called the unknown part.





Definition 11.

Let a=(a1,a2T,a3I),b=(b1,b2T,b3I)∈NT, suppose in an pessimistic way, the neutrosophic expert considers the prevalence order T≺I. Then the multiplication operation is defined as following:


a∗b=(a1,a2T,a3I)∗(b1,b2T,b3I)=(a1b1,(a1b2+a2b1+a2b2)T,(a1b3+a2b3+a3b1+a3b2+a3b3)I.



(10)







Suppose in an optimistic way the neutrosophic expert considers the prevalence order T≻I. Then:


a⭑b=(a1,a2T,a3I)∗(b1,b2T,b3I)=(a1b1,(a1b2+a2b1+a2b2+a2b2+a3b2)T,(a1b3+a3b1+a3b3)I).



(11)









Theorem 10.

For the algebra system (NT,∗), for every element a∈NT, there exists the neutral element neut(a) and opposite element anti(a).





For algebra system (NT,∗), Table 4 gives all the subset, which has the same neutral element, and the corresponding neutral element and opposite elements.



Theorem 11.

For an algebra system (NT,∗), let Vc={a|a∈NT∧neut(a)=c}, Vc∗d={a∗b|a,b∈NT∧neut(a)=c,neut(b)=d}, we have:



(1) Vc is a neutrosophic triplet subgroup of NT.



(2) Vc∗d is a neutrosophic triplet subgroup of NT.





Theorem 12.

For an algebra system (NT,∗), let Vc={a|a∈NT∧neut(a)=c}, we have:



(1) Vc∩Vd=∅ if c≠d.



(2) NT=∪c∈NSVc. So ∪c∈NSVc is a partition of NT, where NS is a set, which contains all the neutral elements of (NT,∗).





Theorem 13.

For the algebra system (NT,⭑), for every element a∈NT, there exists the neutral element neut(a) and opposite element anti(a).





For an algebra system (NT,⭑), Table 5 gives all the subset, which has the same neutral element, and the corresponding neutral element and opposite elements.



Theorem 14.

For algebra system (NT,⭑), let Vc={a|a∈NT∧neut(a)=c}, Vc⭑d={a⭑b|a,b∈NT∧neut(a)=c,neut(b)=d}, we have:



(1) Vc is a neutrosophic triplet subgroup of NT.



(2) Vc⭑d is a neutrosophic triplet subgroup of NT.





Theorem 15.

For an algebra system (NT,⭑), let Vc={a|a∈NT∧neut(a)=c}, we have:



(1) Vc∩Vd=∅ if c≠d.



(2) NT=∪c∈NSVc. So ∪c∈NSVc is a partition of NT, where NS is a set, which contains all the neutral elements of (NT,⭑).







5. Conclusions


In the paper, we prove that (NQ,∗)(or NQ,⭑) is a neutrosophic extended triplet group, and provide new examples of a neutrosophic extended triplet group. We also explore the algebra structure properties of neutrosophic quadruple numbers. Moreover, we discuss two kinds of degenerate systems of neutrosophic quadruple numbers. For neutrosophic quadruple numbers, the results in the paper can be extended to general fields. In the following, we will explore the relation of neutrosophic quadruple numbers and other algebra systems [24,25,26]. Moreover, on the one hand, we will discuss the neutrosophic quadruple numbers based on some particular ring which can form a neutrosophic extended triplet group, on the other hand, we will introduce a new operation ∘ in order to guarantee (NQ,∗,∘) is a neutrosophic triplet ring.
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Figure 1. The demonstration figure shows that case A1 (a1=a2=0, the top left subgraph) or A2 (select a1=0,0≠a2=1, the top right subgraph) or B1 (Select a1≠0,a2=−1 which means a1+a2=0, the bottom left subgraph) or B2 (select a1=1,a2=0, which means a1+a2≠0, the bottom right subgraph) can take all the values on the plane. 
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Table 1. The corresponding neutral element and opposite elements for (NQ,∗).






Table 1. The corresponding neutral element and opposite elements for (NQ,∗).





	The Subset of NQ
	Neutral Elements
	Opposite Element (c1,c2T,c3I,c4F)





	{(0,0,0,0)}
	(0,0,0,0)
	ci∈R



	{(0,0,0,a4F)|a4≠0}
	(0,0,0,F)
	c1+c2+c3+c4=1a4



	{(0,0,a3I,−a3F)|a3≠0}
	(0,0,I,−F)
	c1+c2+c3=1a3,c4∈R



	{(0,0,a3I,a4F)|a3≠0,a3+a4≠0}
	(0,0,I,0)
	c1+c2+c3=1a3,c4=−a4a3(a3+a4)



	{(0,a2T,−a2I,0)|a2≠0 }
	(0,T,−I,0)}
	c1+c2=1a2,c3,c4∈R



	{(0,a2T,−a2I,a4F)|a2≠0,a4≠0}
	(0,T,−I,F)
	c1+c2=1a2,c3+c4=1a4−1a2



	{(0,a2T,a3I,a4F)|a2≠0,a2+a3≠0,a2+a3+a4=0}
	(0,T,0,−F)
	c1+c2=1a2,c3=−a3a2(a2+a3),c4∈R



	{(0,a2T,a3I,a4F)|a2≠0,a2+a3≠0,a2+a3+a4≠0}
	(0,T,0,0)
	c1+c2=1a2,c3=−a3a2(a2+a3),c4=−a3(a2+a3)(a2+a3+a4)



	{(a1,−a1T,0,0)|a1≠0}
	(1,−T,0,0)}
	c1=1a1,c2,c3,c4∈R



	{(a1,−a1T,0,a4F)|a1≠0,a4≠0}
	(1,−T,0,F)
	c1=1a1,c2+c3+c4=1a4−1a1



	{(a1,−a1T,a3I,−a3F)|a1≠0,a3≠0}
	(1,−T,I,−F)
	c1=1a1,c2+c3=1a3−1a1,c4∈R



	{(a1,−a1T,a3I,a4F)|a1≠0,a3≠0,a3+a4≠0}
	(1,−T,I,0)
	c1=1a1,c2+c3=1a3−1a1,c4=−a4a3(a3+a4)



	{(a1,a2T,a3I,0)|a1≠0,a1+a2≠0,a1+a2+a3=0}
	(1,0,−I,0)
	c1=1a1,c2=−a2a1(a1+a2),c3,c4∈R



	{(a1,a2T,a3I,a4F)|a1≠0,a1+a2≠0,a1+a2+a3=0,a4≠0}
	(1,0,−I,F)
	c1=1a1,c2=−a2a1(a1+a2),c3+c4=1a4−1a1+a2



	{(a1,a2T,a3I,a4F)|a1≠0,a1+a2≠0,a1+a2+a3≠0,a1+a2+a3+a4=0}
	(1,0,0,−F)
	c1=1a1,c2=−a2a1(a1+a2),c3=−a3(a1+a2)(a1+a2+a3),c4∈R



	{(a1,a2T,a3I,a4F)|a1≠0,a1+a2≠0,a1+a2+a3≠0,a1+a2+a3+a4≠0}
	(1,0,0,0)
	c1=1a1,c2=−a2a1(a1+a2),c3=−a3(a1+a2)(a1+a2+a3),c4=−a4(a1+a2+a3)(a1+a2+a3+a4)
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Table 2. The corresponding neutral element and opposite elements for (NQ,⭑).
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	The Subset of NQ
	Neutral Elements
	Opposite Element (c1,c2T,c3I,c4F)





	{(0,0,0,0)}
	(0,0,0,0)
	ci∈R



	{(0,a2T,0,0)|a2≠0}
	(0,T,0,0)
	c1+c2+c3+c4=1a2



	{(0,−a3T,a3I,0)|a3≠0}
	(0,−T,I,0)
	c1+c3+c4=1a3,c2∈R



	{(0,a2T,a3I,a4F)|a3≠0,a2+a3≠0}
	(0,0,I,0)
	c1+c3+c4=1a3,c2=−a2a3(a2+a3)



	{(0,0,−a4I,a4F)|a4≠0}
	(0,0,−I,F)}
	c1+c4=1a4,c2,c3∈R



	{(0,a2T,−a4I,a4F)|a2≠0,a4≠0}
	(0,T,−I,F)
	c1+c4=1a4,c2+c3=1a2−1a4



	{(0,a2T,a3I,a4F)|a4≠0,a3+a4≠0,a2+a3+a4=0}
	(0,−T,0,F)
	c1+c4=1a4,c3=−a3a4(a3+a4),c2∈R



	{(0,a2T,a3I,a4F)|a4≠0,a3+a4≠0,a2+a3+a4≠0}
	(0,0,0,F)
	c1+c4=1a4,c3=−a3a4(a3+a4),c2=−a2(a3+a4)(a2+a3+a4)



	{(a1,0,0,−a1F)|a1≠0}
	(1,0,0,−F)}
	c1=−1a1,c2,c3,c4∈R



	{(a1,a2T,0,−a1F)|a1≠0,a2≠0}
	(1,T,0,−F)
	c1=1a1,c2+c3+c4=1a2−1a1



	{(a1,−a3T,a3I,−a1F)|a1≠0,a3≠0}
	(1,−T,I,−F)
	c1=1a1,c3+c4=1a3−1a1,c4∈R



	{(a1,a2T,a3I,−a1F)|a1≠0,a3≠0,a2+a3≠0}
	(1,0,I,−F)
	c1=1a1,c3+c4=1a3−1a1,c2=−a2a3(a2+a3)



	{(a1,0,a3I,a4F)|a1≠0,a1+a4≠0,a1+a3+a4=0}
	(1,0,−I,0)
	c1=1a1,c4=−a4a1(a1+a4),c2,c3∈R



	{(a1,a2T,a3I,a4F)|a1≠0,a1+a4≠0,a1+a3+a4=0,a2≠0}
	(1,T,−I,0)
	c1=1a1,c4=−a4a1(a1+a4),c2+c3=1a2−1a1+a4



	{(a1,a2T,a3I,a4F)|a1≠0,a1+a4≠0,a1+a3+a4≠0,a1+a2+a3+a4=0}
	(1,−T,0,0)
	c1=1a1,c4=−a4a1(a1+a4),c3=−a3(a1+a4)(a1+a3+a4),c2∈R



	{(a1,a2T,a3I,a4F)|a1≠0,a1+a4≠0,a1+a3+a4≠0,a1+a2+a3+a4≠0}
	(1,0,0,0)
	c1=1a1,c4=−a4a1(a1+a4),c3=−a3(a1+a4)(a1+a3+a4),c2=−a2(a1+a3+a4)(a1+a2+a3+a4)
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Table 3. The corresponding neutral element and opposite elements for (NB,∗).






Table 3. The corresponding neutral element and opposite elements for (NB,∗).





	The Subset
	Neutral Elements
	Opposite Element (c1,c2T)





	{(0,0)}
	(0,0)
	ci∈R



	{(0,a2T)|a2≠0}
	(0,T)
	c1+c2=1a2



	{(a1,−a1T)|a1≠0}
	(1,0)
	c1=1a1,c2∈R



	{(a1,a2T)|a1≠0
	(1,−T)
	c1=1a1,c2=−a2a1(a1+a2)
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Table 4. The corresponding neutral element and opposite elements for (NT,∗).






Table 4. The corresponding neutral element and opposite elements for (NT,∗).





	The Subset
	Neutral Elements
	Opposite Element (c1,c2T,c3I)





	{(0,0,0)}
	(0,0,0)
	ci∈R



	{(0,0,a3I)|a3≠0}
	(0,0,I)
	c1+c2+c3=1a3



	{(0,a2T,−a2I)|a2≠0,a2+a3=0}
	(0,T,−I)
	c1+c2=1a2,c3∈R



	{(0,a2T,a3I)|a2≠0,a2+a3≠0}
	(0,T,0)
	c1+c2=1a2,c3=−a3a2(a2+a3)



	{(a1,−a1T,0)|a1≠0}
	(1,−T,0)}
	c1=1a1,c2,c3∈R



	{(a1,−a1T,a3I)|a1≠0,a3≠0}
	(1,−T,I)
	c1=1a1,c2+c3=1a3−1a1



	{(a1,a2T,a3I)|a1≠0,a1+a2≠0,a1+a2+a3=0}
	(1,0,−I)
	c1=1a1,c2=−a2a1(a1+a2),c3∈R



	{(a1,a2T,a3I)|a1≠0,a1+a2≠0,a1+a2+a3≠0}
	(1,0,0)
	c1=1a1,c2=−a2a1(a1+a2),c3=−a3(a1+a2)(a1+a2+a3)
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Table 5. The corresponding neutral element and opposite elements for (NT,⭑).






Table 5. The corresponding neutral element and opposite elements for (NT,⭑).





	The Subset
	Neutral Elements
	Opposite Element (c1,c2T,c3I)





	{(0,0,0)}
	(0,0,0)
	ci∈R



	{(0,a2T,0)|a2≠0}
	(0,T,0)
	c1+c2+c3=1a2



	{(0,a3T,−a3I)|a3≠0,a2+a3=0}
	(0,−T,I)
	c1+c3=1a3,c2∈R



	{(0,a2T,a3I)|a3≠0,a2+a3≠0}
	(0,0,I)
	c1+c3=1a3,c2=−a2a3(a2+a3)



	{(a1,0,−a1I)|a1≠0}
	(1,0,−I)}
	c1=1a1,c2,c3∈R



	{(a1,a2T,−a1I)|a1≠0,a2≠0}
	(1,T,−I)
	c1=1a1,c2+c3=1a2−1a1



	{(a1,a2T,a3I)|a1≠0,a1+a3≠0,a1+a2+a3=0}
	(1,−T,0)
	c1=1a1,c3=−a3a1(a1+a3),c2∈R



	{(a1,a2T,a3I)|a1≠0,a1+a3≠0,a1+a2+a3≠0}
	(1,0,0)
	c1=1a1,c3=−a3a1(a1+a3),c2=−a2(a1+a3)(a1+a2+a3)
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