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Abstract: In this article, we define Lorentzian cross product in a three-dimensional almost contact
Lorentzian manifold. Using a Lorentzian cross product, we prove that the ratio of κ and τ − 1 is constant
along a Frenet slant curve in a Sasakian Lorentzian three-manifold. Moreover, we prove that γ is a slant
curve if and only if M is Sasakian for a contact magnetic curve γ in contact Lorentzian three-manifold M.
As an example, we find contact magnetic curves in Lorentzian Heisenberg three-space.
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1. Introduction

As a generalization of Legendre curve, we defined the notion of slant curves in [1,2]. A curve in
a contact three-manifold is said to be slant if its tangent vector field has constant angle with the Reeb vector
field. For a contact Riemannian manifold, we proved that a slant curve in a Sasakian three-manifold is
that its ratio of κ and τ − 1 is constant. Baikoussis and Blair proved that, on a three-dimensional Sasakian
manifold, the torsion of the Legendre curve is +1 ([3]).

A magnetic curve represents a trajectory of a charged particle moving on the manifold under the action
of a magnetic field in [4]. A magnetic field on a semi-Riemannian manifold (M, g) is a closed two-form F.
The Lorentz force of the magnetic field F is a (1, 1)-type tensor field Φ given by

g(Φ(X), Y) = F(X, Y), ∀X, Y ∈ Γ(TM). (1)

The magnetic trajectories of F are curves γ on M that satisfy the Lorentz equation

∇γ′γ
′ = Φ(γ′), (2)

where ∇ is the Levi–Civita connection of g. The Lorentz equation generalizes the equation satisfied by the
geodesics of M, namely ∇γ′γ

′ = 0. Since the Lorentz force Φ is skew-symmetric, we have

d
dt

g(γ′, γ′) = 2g(Φ(γ′), γ′) = 0,

that is, magnetic curve have constant speed | γ′ |= v0. When the magnetic curve γ(t) is arc-length
parameterized, it is called a normal magnetic curve. Cabreizo et al. studied a contact magnetic field in
three-dimensional Sasakian manifold ([5]).

In this article, we define the magnetic curve γ with contact magnetic field Fξ,q of the length q in
three-dimensional Sasakian Lorentzian manifold M3. We call it the contact magnetic curve or trajectories of Fξ,q.
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In Section 3, we define a Lorentzian cross product in a three-dimensional almost contact Lorentzian
manifold. Using the Lorentzian cross product, we prove that the ratio of κ and τ − 1 is constant along a
Frenet slant curve in a Sasakian Lorentzian three-manifold.

In Section 4, we prove that γ is a slant curve if and only if M is Sasakian for a contact magnetic curve
γ in contact Lorentzian three-manifolds M. For example, we find contact magnetic curves in Lorentzian
Heisenberg three-space.

2. Preliminaries

Contact Lorentzian Manifold

Let M be a (2n + 1)-dimensional differentiable manifold. M has an almost contact structure (ϕ, ξ, η)

if it admits a tensor field ϕ of (1, 1), a vector field ξ and a 1-form η satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1. (3)

Suppose M has an almost contact structure (ϕ, ξ, η). Then, ϕξ = 0 and η ◦ ϕ = 0. Moreover,
the endomorphism ϕ has rank 2n.

If a (2n + 1)-dimensional smooth manifold M with almost contact structure (ϕ, ξ, η) admits
a compatible Lorentzian metric such that

g(ϕX, ϕY) = g(X, Y) + η(X)η(Y), (4)

then we say M has an almost contact Lorentzian structure (η, ξ, ϕ, g). Setting Y = ξ, we have

η(X) = −g(X, ξ). (5)

Next, if the compatible Lorentzian metric g satisfies

dη(X, Y) = g(X, ϕY), (6)

then η is a contact form on M, ξ is the associated Reeb vector field, g is an associated metric and
(M, ϕ, ξ, η, g) is called a contact Lorentzian manifold.

For a contact Lorentzian manifold M, one may define naturally an almost complex structure J on
M×R by

J(X, f
d
dt

) = (ϕX− f ξ, η(X)
d
dt

),

where X is a vector field tangent to M, t is the coordinate of R and f is a function on M×R. When the
almost complex structure J is integrable, the contact Lorentzian manifold M is said to be normal or Sasakian.
A contact Lorentzian manifold M is normal if and only if M satisfies

[ϕ, ϕ] + 2dη ⊗ ξ = 0,

where [ϕ, ϕ] is the Nijenhuis torsion of ϕ.

Proposition 1 ([6,7]). An almost contact Lorentzian manifold (M2n+1, η, ξ, ϕ, g) is Sasakian if and only if

(∇X ϕ)Y = g(X, Y)ξ + η(Y)X. (7)

Using the similar arguments and computations in [8], we obtain
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Proposition 2 ([6,7]). Let (M2n+1, η, ξ, ϕ, g) be a contact Lorentzian manifold. Then,

∇Xξ = ϕX− ϕhX. (8)

If ξ is a killing vector field with respect to the Lorentzian metric g. Then, we have

∇Xξ = ϕX. (9)

3. Slant Curves in Contact Lorentzian Three-Manifolds

Let γ : I → M3 be a unit speed curve in Lorentzian three-manifolds M3 such that γ′ satisfies
g(γ′, γ′) = ε1 = ±1. The constant ε1 is called the causal character of γ. A unit speed curve γ is said to be a
spacelike or timelike if its causal character is 1 or −1, respectively.

A unit speed curve γ is said to be a Frenet curve if g(γ′′, γ′′) 6= 0. A Frenet curve γ admits an
orthonormal frame field {E1 = γ̇, E2, E3} along γ. The constants ε2 and ε3 are defined by

g(Ei, Ei) = εi, i = 2, 3

and called second causal character and third causal character of γ, respectively. Thus, ε1ε2 = −ε3 is satisfied.
Then, the Frenet–Serret equations are the following ([9,10]):

∇γ̇E1 = ε2κE2,
∇γ̇E2 = −ε1κE1 − ε3τE3,
∇γ̇E3 = ε2τE2,

(10)

where κ = |∇γ̇γ̇| is the geodesic curvature of γ and τ its geodesic torsion. The vector fields E1, E2 and E3 are
called tangent vector field, principal normal vector field, and binormal vector field of γ, respectively.

A Frenet curve γ is a geodesic if and only if κ = 0. A Frenet curve γ with constant geodesic curvature
and zero geodesic torsion is called a pseudo-circle. A pseudo-helix is a Frenet curve γ whose geodesic
curvature and torsion are constant.

3.1. Lorentzian Cross Product

C. Camci ([11]) defined a cross product in three-dimensional almost contact Riemannian manifolds
(M̃, η, ξ, ϕ, g̃) as following:

X ∧Y = −g̃(X, ϕY)ξ − η(Y)ϕX + η(X)ϕY. (11)

If we define the cross product ∧ as Equation (11) in three-dimensional almost contact Lorentzian
manifold (M, η, ξ, ϕ, g), then

g(X ∧Y, X) = 2η(X)g(X, ϕY) 6= 0.

In fact, we see already the cross product for a Lorentzian three-manifold as following:

Proposition 3. Let {E1, E2, E3} be an orthonomal frame field in a Lorentzian three-manifold. Then,

E1 ∧L E2 = ε3E3, E2 ∧L E3 = ε1E1, E3 ∧L E1 = ε2E2. (12)

Now, in three-dimensional almost contact Lorentzian manifold M3, we define Lorentzian cross
product as the following:
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Definition 1. Let (M3, ϕ, ξ, η, g) be a three-dimensional almost contact Lorentzian manifold. We define
a Lorentzian cross product ∧L by

X ∧L Y = g(X, ϕY)ξ − η(Y)ϕX + η(X)ϕY, (13)

where X, Y ∈ TM.

The Lorentzian cross product ∧L has the following properties:

Proposition 4. Let (M3, ϕ, ξ, η, g) be a three-dimensional almost contact Lorentzian manifold. Then, for all
X, Y, Z ∈ TM the Lorentzian cross product has the following properties:

(1) The Lorentzian cross product is bilinear and anti-symmetric.
(2) X ∧L Y is perpendicular both of X and Y.
(3) X ∧L ϕY = −g(X, Y)ξ − η(X)Y.
(4) ϕX = ξ ∧L X.
(5) Define a mixed product by det(X, Y, Z) = g(X ∧L Y, Z) Then,

det(X, Y, Z) = −g(X, ϕY)η(Z)− g(Y, ϕZ)η(X)− g(Z, ϕX)η(Y)

and det(X, Y, Z) = det(Y, Z, X) = det(Z, X, Y).
(6) g(X, ϕY)Z + g(Y, ϕZ)X + g(Z, ϕX)Y = −(X, Y, Z)ξ.

Proof. (We can prove by a similar way as in [11])
(1) and (2) are trivial.
(3) using Equations (3), (5) and (13),

X ∧L ϕY = g(X,−Y + η(Y)ξ)ξ + η(X)(−Y + η(Y)ξ)

= −g(X, Y)ξ − η(X)Y.

(4) by Equation (13),
ξ ∧L X = g(ξ, ϕX)ξ − η(X)ϕξ + η(ξ)ϕX = ϕX.

(5) from Equations (5) and (13),

g(X ∧L Y, Z) = g(g(X, ϕY)ξ − η(Y)ϕX + η(X)ϕY, Z)

= −g(X, ϕY)η(Z)− g(Y, ϕZ)η(X)− g(Z, ϕX)η(Y).

(6) is easily obtained by (5).

From Equations (7) and (9), we have:

Proposition 5. Let (M3, ϕ, ξ, η, g) be a three-dimensional Sasakian Lorentzian manifold. Then, we have

∇Z(X ∧L Y) = (∇ZX) ∧L Y + X ∧L (∇ZY), (14)

for all X, Y, Z ∈ TM.
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Proof. From Equation (13), we get

∇Z(X ∧L Y) = ∇Z(−g(X, ϕY)ξ + η(Y)ϕX− η(X)ϕY)

= g(∇ZX, ϕY)ξ + g(X, (∇Z ϕ)Y)ξ + g(X, ϕ∇ZY)ξ + g(X, ϕY)∇Zξ

−η(∇ZY)ϕX + g(Y,∇Zξ)ϕX + η(Y)(∇Z ϕ)X + η(Y)ϕ∇ZX

+η(∇ZX)ϕY− g(X,∇Zξ)ϕY− η(X)(∇Z ϕ)Y− η(X)ϕ∇ZY

= (∇ZX) ∧L Y + X ∧L (∇ZY) + P(X, Y, Z),

where

P(X, Y, Z) = g(X, (∇Z ϕ)Y)ξ + g(X, ϕY)∇Zξ + g(Y,∇Zξ)ϕX− η(Y)(∇Z ϕ)X

−g(X,∇Zξ)ϕY + η(X)(∇Z ϕ)Y.

Since M is a three-dimensional Sasakian Lorentzian manifold, it satisfies Equations (7) and (9).
Hence, we have

P(X, Y, Z) = g(X, ϕY)ϕZ + g(Y, ϕZ)ϕX + g(Z, ϕX)ϕY.

Using Equation (6) of Proposition 4, we obtain P(X, Y, Z) = 0 and Equation (14).

3.2. Frenet Slant Curves

In this subsection, we study a Frenet slant curve in contact Lorentzian three-manifolds.
A curve in a contact Lorentzian three-manifold is said to be slant if its tangent vector field has constant

angle with the Reeb vector field (i.e., η(γ′) = −g(γ′, ξ) is a constant).
Since the Reeb vector field ξ is denoted by

ξ =
3

∑
i=1

εig(ξ, Ei)Ei = −
3

∑
i=1

εiη(Ei)Ei,

using Equation (4) of Proposition 4 and Proposition 3, we have:

Proposition 6. Let (M3, ϕ, ξ, η, g) be a three-dimensional almost contact Lorentzian manifold. Then, for a Frenet
curve γ in M3, we have

ϕE1 = ε2ε3(η(E2)E3 − η(E3)E2),

ϕE2 = ε3ε1(η(E3)E1 − η(E1)E3),

ϕE3 = ε1ε2(η(E1)E2 − η(E2)E1).

By using Proposition 6, we find that differentiating η(Ei) (for i = 1, 2, 3) along a Frenet curve γ

η(E1)
′ = ε2κη(E2) + g(E1, ϕhE1),

η(E2)
′ = −ε1κη(E1)− ε3(τ − 1)η(E3) + g(E2, ϕhE1),

η(E3)
′ = ε2(τ − 1)η(E2) + g(E3, ϕhE1).
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Now, we assume that M3 is a Sasakian Lorentzian manifold; then,

η(E1)
′ = ε2κη(E2), (15)

η(E2)
′ = −ε1κη(E1)− ε3(τ − 1)η(E3), (16)

η(E3)
′ = ε2(τ − 1)η(E2). (17)

From Equation (15), if γ is a geodesic curve, that is κ = 0, in a Sasakian Lorentzian three-manifold
M3, then γ is naturally a slant curve. Now, let us consider a non-geodesic curve γ; then, we have:

Proposition 7. A non-geodesic Frenet curve γ in a Sasakian Lorentzian three-manifold M3 is slant curve if and
only if η(E2) = 0.

From Equations (15) and (17) and Proposition 7, we get that η(E1) and η(E3) are constants. Hence,
using Equation (16), we obtain:

Theorem 1. The ratio of κ and τ− 1 is a constant along a non-geodesic Frenet slant curve in a Sasakian Lorentzian
three-manifold M3.

Next, let us consider a Legendre curve γ as a spacelike curve with spacelike normal vector.
For a Legendre curve γ, η(γ′) = η(E1) = 0, η(E2) = 0 and η(E3) is a constant. Hence, using Equation (16),
we have:

Corollary 1. Let M be a three-dimensional Sasakian Lorentzian manifold (M3, η, ξ, ϕ, g). Then, the torsion of
a Legendre curve is 1.

From this, we see that the ratio of κ and τ − 1 is a constant along non-geodesic Frenet slant curve
containing Legendre curve.

3.3. Null Slant Curves

In this section, let us consider a null curve γ that has a null tangent vector field g(γ′, γ′) = 0 and γ is
not a geodesic (i.e., g(∇γ′γ

′,∇γ′γ
′) 6= 0). We take a parameterization of γ such that g(∇γ′γ

′,∇γ′γ
′) = 1.

Then, Duggal, K.L. and Jin, D.H ([12]) proved that there exists only one Cartan frame {T, N, W} and the
function τ along γ whose Cartan equations are

∇TT = N, ∇TW = τN, ∇T N = −τT −W,

where
T = γ′, N = ∇TT, τ =

1
2

g(∇T N,∇T N), W = −∇T N − τT. (18)

Hence,

g(T, W) = g(N, N) = 1, g(T, T) = g(T, N) = g(W, W) = g(W, N) = 0.

For a null Legendre curve γ, we easily prove that γ is geodesic. Hence, we suppose that γ is
non-geodesic; then, we have:
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Theorem 2. Let γ be a non-geodesic null slant curve in a Sasakian Lorentzian three-manifold. We assume that
κ = 1, then we have

N = ±1
a

ϕγ′, τ =
1

2a2 ∓ 1, W =
1

2a2 γ′ − 1
a

ξ, (19)

where a = η(γ′) is non-zero constant.

Proof. Let ϕT = lT + mN + nW for some l, m, n. We find l = g(ϕT, T) = 0, then ϕT = mN + nW. From
this, we get

g(ϕT, ϕT) = m2 = a2 and 0 = g(ϕT, ξ) = n(aτ + m).

Hence, m = ±a and n = 0 or m = −aτ.
If n = 0, then N = 1

m ϕT = ± 1
a ϕT. Using the Cartan equation, we find that τ = 1

2a2 ∓ 1 and
W = 1

2a2 γ′ − 1
a ξ.

Next, if n 6= 0 and m = −aτ then since γ is a slant curve, differentiating g(ϕT, N) = m = ±a, we
have n = g(ϕT, W) = 0, which gives a contradiction.

From the second equation of Equation (19), we have:

Remark 1. Let γ be a non-geodesic null slant curve in a Sasakian Lorentzian three-manifold. We assume that κ = 1
then τ is constant such that τ = 1

2a2 ∓ 1.

4. Contact Magnetic Curves

In a three-dimensional Sasakian Lorentzian manifold M3, the Reeb vector field ξ is Killing.
By Equation (6), the 2-form Φ is dη, that is dη(X, Y) = g(X, ϕY), for all X, Y ∈ Γ(TM).

Let γ : I → M be a smooth curve on a contact Lorentzian manifold (M, ϕ, ξ, η, g). Then, we define a
magnetic field on M by

Fξ,q(X, Y) = −qdη(X, Y),

where X, Y ∈ X(M) and q is a non-zero constant. We call Fξ,q the contact magnetic field with strength q.
Using Equations (1), (4) and (6) we get Φ(X) = qϕX. Hence, from Equation (2) the Lorentz equation

is
∇γ′γ

′ = qϕγ′. (20)

This is the generalized equation of geodesics under arc length parameterization, that is ∇γ′γ
′ = 0.

For q = 0, we find that the contact magnetic field vanishes identically and the magnetic curves are
geodesics of M. The solutions of Equation (20) are called contact magnetic curve or trajectories of Fξ,q.

By using Equations (8) and (20), differentiating g(ξ, γ′) along a contact magnetic curve γ in contact
Lorentzian three-manifold

d
dt

g(ξ, γ′) = g(∇γ′ξ, γ′) + g(ξ,∇γ′γ
′)

= g(ϕγ′ − ϕhγ′, γ′) + g(ξ, qϕγ′)

= −g(ϕhγ′, γ′).

Hence, we have:

Theorem 3. Let γ be a contact magnetic curve in a contact Lorentzian three-manifold M. γ is a slant curve if and
only if M is Sasakian.
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Next, we find the curvature κ and torsion τ along non-geodesic Frenet contact magnetic curves γ.
We suppose that η(E1) = a, for a constant a. Then, using Equations (4), (10) and (20), we get

ε2κ2 = q2g(ϕγ′, ϕγ′) = q2(ε1 + a2).

Hence, we find that γ has a constant curvature

κ =| q |
√

ε2(ε1 + a2), (21)

and, from Equations (10), (20) and (21), the binormal vector field

E2 =
q

ε2κ
ϕγ′ =

δε2√
ε2(ε1 + a2)

ϕγ′, (22)

where δ = q/ | q |.
Using Proposition 3 and Equation (22), the binormal E3 is computed as

ε3E3 = E1 ∧L E2

= γ′ ∧L (
δε2√

ε2(ε1 + a2)
ϕγ′)

= − δε2√
ε2(ε1 + a2)

(ε1ξ + aγ′).

Differentiating binormal vector field E3, we have

∇γ′E3 = − δε2ε3√
ε2(ε1 + a2)

∇γ′(ε1ξ + aγ′)

= − δε2ε3√
ε2(ε1 + a2)

(ε1 + qa)ϕγ′. (23)

On the other hand, by Equation (10), we have

∇γ′E3 = ε2τE2 = τ
δϕγ′√

ε2(ε1 + a2)
. (24)

From Equations (23) and (24), since ε1ε2ε3 = −1, we obtain

τ = 1 + ε1qa. (25)

Moreover, if γ is a non-geodesic curve, then

τ − 1
κ

=
δε1a√

ε2(ε1 + a2)
.

Therefore, we obtain:

Theorem 4. Let γ be a non-geodesic Frenet curve in a Sasakian Lorentzian three-manifold M. If γ is a contact
magnetic curve, then it is slant pseudo-helix with curvature κ =| q |

√
ε2(ε1 + a2) and torsion τ = 1 + ε1qa.

Moreover, the ratio of κ and τ − 1 is a constant.
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Since a Legendre curve is a spacelike curve with spacelike normal vector field and η(γ′) = a = 0, we
assume that γ is a Legendre curve and we have:

Corollary 2. Let γ be a non-geodesic Legendre curve in a Sasakian Lorentzian three-manifold M. If γ is a contact
magnetic curve, then it is Legendre pseudo-helix with curvature κ = |q| and torsion τ = 1.

Now, from the geodesic curvature in Equation (21), if ε1 = 1, then η(γ′) = a and 1 ≤ 1 + a2, and we
have ε2 = 1. Moreover, using ε3 = −ε1 · ε2, we obtain ε3 = −1. Next, if ε1 = −1, then η(γ′) = a = cosh α0.
Since γ is a geodesic for a = cosh α0 = 1, we assume that γ is non-geodesic, and we get a2 > 1. Hence,
−1 + a2 > 0 and we get ε2 = ε3 = 1. Therefore, we obtain:

Theorem 5. Let γ be a non-geodesic Frenet curve in a Sasakian Lorentzian three-manifold M. If γ is a contact
magnetic curve. then γ is one of the following:

(i) a spacelike curve with spacelike normal vector field; or
(ii) a timelike curve.

Moreover, we have:

Corollary 3. Let γ be a non-geodesic Frenet curve in a Sasakian Lorentzian three-manifold M. If γ is a contact
magnetic curve, then there does not exist a spacelike curve with timelike normal vector field.

In a similar with a Frenet curve, we study null contact magnetic curves in a Sasakian Lorentzian
three-manifold M. Hence, we find that there exist a null contact magnetic curve with q = ±a and same the
result with Theorem 2.

Example

The Heisenberg group H3 is a Lie group which is diffeomorphic to R3 and the group operation is
defined by

(x, y, z) ∗ (x, y, z) = (x + x, y + y, z + z +
xy
2
− xy

2
).

The mapping

H3 →


 1 a b

0 1 c
0 0 1

 ∣∣∣∣ a, b, c ∈ R

 : (x, y, z) 7→

 1 x z + xy
2

0 1 y
0 0 1


is an isomorphism between H3 and a subgroup of GL(3,R).

Now, we take the contact form
η = dz + (ydx− xdy).

Then, the characteristic vector field of η is ξ = ∂
∂z .

Now, we equip the Lorentzian metric as following:

g = dx2 + dy2 − (dz + (ydx− xdy))2 .
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We take a left-invariant Lorentzian orthonormal frame field (e1, e2, e3) on (H3, g):

e1 =
∂

∂x
− y

∂

∂z
, e2 =

∂

∂y
+ x

∂

∂z
, e3 =

∂

∂z
,

and the commutative relations are derived as follows:

[e1, e2] = 2e3, [e2, e3] = [e3, e1] = 0.

Then, the endomorphism field ϕ is defined by

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0.

The Levi–Civita connection ∇ of (H3, g) is described as

∇e1 e1 = ∇e2 e2 = ∇e3 e3 = 0, ∇e1 e2 = e3 = −∇e2 e1, (26)

∇e2 e3 = −e1 = ∇e3 e2, ∇e3 e1 = e2 = ∇e1 e3.

The contact form η satisfies dη(X, Y) = g(X, ϕY). Moreover, the structure (η, ξ, ϕ, g) is Sasakian.
The Riemannian curvature tensor R of (H3, g) is given by

R(e1, e2)e1 = 3e2, R(e1, e2)e2 = −3e1,

R(e2, e3)e2 = −e3, R(e2, e3)e3 = −e2,

R(e3, e1)e3 = e1, R(e3, e1)e1 = e3,

and the other components are zero.
The sectional curvature is given by [6]

K(ξ, ei) = −R(ξ, ei, ξ, ei) = −1, f or i = 1, 2,

and
K(e1, e2) = R(e1, e2, e1, e2) = 3.

Thus, we see that the Lorentzian Heisenberg space (H3, g) is the Lorentzian Sasakian space forms
with constant holomorphic sectional curvature µ = 3.

Let γ be a Frenet slant curve in Lorentzian Heisenberg space (H3, g) parameterized by arc-length.
Then, the tangent vector field has the form

T = γ′ =
√

ε1 + a2 cos βe1 +
√

ε1 + a2 sin βe2 + ae3, (27)

where a = constant, β = β(s). Using Equation (26), we get

∇γ′γ
′ =

√
ε1 + a2(β′ + 2a)(− sin βe1 + cos βe2). (28)

Since γ is a non-geodesic, we may assume that κ =
√

ε1 + a2(β′ + 2a) > 0 without loss of generality.
Then, the normal vector field

N = − sin βe1 + cos βe2.
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The binormal vector field ε3B = T ∧L N = −a cos βe1 − a sin βe2 −
√

ε1 + a2e3. From Theorem 5, we
see that ε2 = 1, thus we have ε3 = −ε1. Hence,

B = ε1(a cos βe1 + a sin βe2 +
√

ε1 + a2e3).

Using the Frenet–Serret Equation (10), we have

Lemma 1. Let γ be a Frenet slant curve in Lorentzian Heisenberg space (H3, g) parameterized by arc-length. Then,
γ admits an orthonormal frame field {T, N, B} along γ and

κ =
√

ε1 + a2(β′ + 2a), (29)

τ = 1 + ε1a(β′ + 2a).

Next, if γ is a null slant curve in the Lorentzian Heisenberg space (H3, g), then the tangent vector
field has the form

T = γ′ = a cos βe1 + a sin βe2 + ae3, (30)

where a = constant, β = β(s). Using Equation (26), we get

∇γ′γ
′ = a(β′ + 2a)(− sin βe1 + cos βe2). (31)

Since γ is non-geodesic, using Equation (18) we have | a(β′ + 2a) |= 1 and

N = − sin βe1 + cos βe2.

Differentiating N, we get

∇γ′N = −(β′ + a) cos βe1 − (β′ + a) sin βe2 + ae3.

From Equation (18), τ = 1
2 g(∇γ′N,∇γ′N) = 1

2 (β′)2 + aβ′. Since W = −∇γ′N − τT, we have

W = {−1
2
(β′)2 + (

1
a
− a)β′ + 1}T − (β′ + 2a)ξ =

1
2a

(cos βe1 + sin βe2 − e3).

Therefore, we have

Lemma 2. Let γ be a non-geodesic null slant curve in the Lorentzian Heisenberg space (H3, g). We assume that
κ =| a(β′ + 2a) |= 1. Then, its torsion is constant such that τ = 1

2a2 ∓ 1.

Let γ(s) = (x(s), y(s), z(s)) be a curve in Lorentzian Heisenberg space (H3, g). Then, the tangent
vector field γ′ of γ is

γ′ =

(
dx
ds

,
dy
ds

,
dz
ds

)
=

dx
ds

∂

∂x
+

dy
ds

∂

∂y
+

dz
ds

∂

∂z
.

Using the relations:
∂

∂x
= e1 + ye3,

∂

∂y
= e2 − xe3,

∂

∂z
= e3,
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if γ is a slant curve in (H3, g), then from Equation (27) the system of differential equations for γ is given by

dx
ds

(s) =
√

ε1 + a2 cos β(s), (32)

dy
ds

(s) =
√

ε1 + a2 sin β(s), (33)

dz
ds

(s) = a +
√

ε1 + a2(x(s) sin β(s)− y(s) cos β(s)).

Now, we construct a magnetic curve γ (containing Frenet and null curve) in the Lorentzian Heisenberg
space (H3, g). From Equations (20) and (28), we have:

Proposition 8. Let γ : I → (H3, g) be a magnetic curve parameterized by arc-length in the Lorentzian Heisenberg
space (H3, g). Then,

β′ = q− 2a, f or a = η(γ′).

Namely, β′ is a constant, e.g., A, hence β(s) = As + b, b ∈ R. If γ is a null curve, then q = ± 1
a . Finally,

from Equations (32) and (33), we have the following result:

Theorem 6. Let γ : I → (H3, g) be a non-geodesic curve parameterized by arc-length s in the Lorentzian
Heisenberg group (H3, g). If γ is a contact magnetic curve, then the parametric equations of γ are given by

x(s) = 1
A

√
ε1 + a2 sin(As + b) + x0,

y(s) = − 1
A

√
ε1 + a2 cos(As + b) + y0,

z(s) = {a + ε1+a2

A }s−
√

ε1+a2

A {x0 cos(As + b) + y0 sin(As + b)}+ z0,

where b, x0, y0, z0 are constants. If ε1 = 0 then γ is a null curve.

In particular, for a Frenet Legendre curve γ, we get β′ = q = A.
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