

  symmetry-11-00791




symmetry-11-00791







Symmetry 2019, 11(6), 791; doi:10.3390/sym11060791




Article



Integral Transform Method to Solve the Problem of Porous Slider without Velocity Slip



Naeem Faraz 1,2,*, Yasir Khan 3, Dian Chen Lu 2[image: Orcid] and Marjan Goodarzi 4





1



International Cultural Exchange School of Donghua University, Shanghai 200051, China






2



Faculty of Science, Jiangsu University, Zhenjiang 212013, Jiangsu, China






3



Department of Mathematics, University of Hafr Al-Batin, Hafr Al-Batin 1803, Saudi Arabia






4



Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam









*



Correspondence: nfaraz_math@yahoo.com







Received: 5 May 2019 / Accepted: 12 June 2019 / Published: 13 June 2019



Abstract

:

This study is about the lubrication of a long porous slider in which the fluid is injected into the porous bottom. The similarity transformation reduces the Navier-Stokes equations to couple nonlinear, ordinary differential equations, which are solved by a new algorithm. The proposed technique is based on integral transformation. Apparently, there is great symmetry between proposed method and variation iteration method, Adomian decomposition method but in integral transform method all the boundary conditions are applied, then a recursive scheme is used for the analytical solutions, which is unlike the Variational Iteration Method, Adomian Decomposition Method, and other existing analytical methods. Solutions are obtained for much larger Reynolds numbers, and they are compared with analytical and numerical methods. Effects of Reynolds number on velocity components are presented.






Keywords:


integral transform method; variation iteration method; adomian decomposition method; reynolds number; long porous slider












1. Introduction


The flow between two plates is an important subject in mathematical physics [1]. Among the various problems, the porous slider is of great importance [2]. A large amount of literature is available related to long porous sliders (LPS). Naeem studied the effects of Reynolds number on a circular porous slider [3]. Rao investigated the effect of permeability and different slip velocities at the porous interface using couple-stress fluids on the slider bearing load carrying mechanism [4]. Kumar analyzed a porous elliptical slider with a semi-analytical technique [5]. Zhu studied multi-scale soft porous lubrication [6]. Lang investigated theoretical and experimental study of transient squeezing flow in a highly porous film [7]. The fluid dynamics in a slider bearing were discussed in a previous study [8]. A porous slider was numerically studied by Wang for large Reynolds numbers [9]. There are many numerical techniques to deal with the highly nonlinear problems related to porous sliders [10]. Numerical techniques are time consuming and need powerful computers, and it is not easy to deal with the stability criteria [11].



To overcome this difficulty, many authors have solved problem of LPS by using different analytical techniques. Khan et. al. used Homotopy Perturbation Method (HPM) to solve the problem [2]. Vishwanath et. al. applied the Homotopy Analysis Method (HAM) [12]. Khan et. al. tackled the same problem using Adomian Decomposition Method (ADM) and presented improved results [13]. These are similar analytical techniques with slight differences. According to some authors Homotopy perturbation is a sub-case of the homotopy analysis method [14]. Comparison between ADM and Variation Iteration Method (VIM) was done in a previous study [15]. VIM is better than ADM according to some authors, and the opposite is true according to others. Researchers are divided between Variational Iteration-I and Variational Iteration-II [16].



Although these methods have their own merits, in cases of highly nonlinear boundary value problems, they require immense calculations to obtain good approximate solutions. Solving two-point BVPs of the form (6) to (9) using ADM, VIM, HAM, or HPM requires a transcendental equation with unknown coefficients, or a sequence of highly nonlinear algebraic equations. Moreover, the unknown coefficients may not be uniquely determined for some cases. This paper proposes an integral transform method that comprises both variational iteration algorithm-II and Adomian decomposition to reduce the computational work. Apparently, the final formulation of the proposed method have great symmetry with the existing methods such as VIM and ADM but this method does not need to calculate the Lagrange multiplier separately and gives direct formulation of VIM-II, which avoids the unnecessary calculations. The ultimate goal of our study is to introduce a new method based on integral transformation to cover the shortcomings of the VIM-I, VIM-II, and ADM for solving nonlinear boundary value problems (6), (7), and (8). The LPS solved by Khan [2] and Khan [13] in 2011 involves unnecessary and repeated calculations.



In this article, a brief history about the solutions given by different authors in different geometries is given. The second section is problem formulation. Formulation and implementation of the integral transform method is presented in Section 3. Results and discussion are given in Section 4. Finally, we conclude our work in Section 5.




2. Problem Formulation


Consider a two dimensional LPS of dimensions L1 and L2 (Figure 1). The fluid is injected through the porous bottom to create a width φ with velocity b and slider velocities −U (lateral) and −V (longitudinal). The Navier-Stokes equations are:


∇·V=0,



(1)






ρ(V·∇)V=−∇p+divV



(2)




where ρ denotes the density of the fluid and p is the unknown part of the pressure, V=(u,v,w), in which u,v and w are the velocity components of the fluid along x,y and z directions, respectively, and the del operator is defined as ∇=(∂∂x,∂∂y,∂∂z).



The boundary conditions are:


u=U,v=V,w=0  at  η=0



(3)






w=−b,u=v=0    at   η=φ.



(4)







We introduce the similarity transforms:


u=Uf(η)+bh/(η),v=Vg(η),w=−bh(η).



(5)







Assuming that L2≥L1≥φ, the end effects can be neglected. After substituting (5) in (4), (3), and (2), we obtain


hiv=R(h/h//−hh///)



(6)






f//=R(fh/−hf/)



(7)






g//=−R(hg/)



(8)







R=bξ/φ is the Reynolds number (R); η=ξ/φ is for transformation of the above equations into ordinary differential equations with the following boundary conditions:


h(0)=h/(0)=0,g(0)=f(0)=1,h(1)=1,h/(1)=g(1)=f(1)=0



(9)








3. Integral Transform Method


To describe the formulation of Integral Transform Method (ITM), we consider the general nonlinear second order differential equation:


ψ//(η)=f(η,ψ(η),ψ/(η))



(10)







Along with the following boundary conditions:


η=α0:  ψ(α0)=αη=β0  :  ψ(β0)=β



(11)







Integrating Equation (10) with respect to η from α0 to η twice yields


ψ(η)=ψ(α0)+(η−α0)ψ/(α0)+∫α0η(η−ζ)f(t,ψ(ζ),ψ/(η))dζ



(12)






ψ(η)=α+(η−α0)ψ/(α0)+∫α0η(η−ζ)f(ζ,ψ(ζ),ψ/(ζ))dζ



(13)







By using second boundary condition we can evaluate ψ/(α0), which is


ψ(β0)=β=α+(β0−α0)ψ/(α0)+∫α0β0(β0−ζ)f(ζ,ψ(ζ),ψ/(ζ))dζ



(14)






(β−α)(β0−α0)−1(β0−α0)∫α0β0(β0−ζ)f(ζ,ψ(ζ),ψ/(ζ))dζ=ψ/(α0)



(15)







Substituting Equation (15) into (14) results in


ψ(η)=α+(η−α0)[(β−α)(β0−α0)−1(β0−α0)∫α0β0(β0−ζ)f(t,ψ(ζ))dt]+∫α0η(η−ζ)f(ζ,ψ(ζ),ψ/(ζ))dζ



(16)






ψ(η)=ψ0(η)−∫α0β0K(η,ζ)f(ζ,ψ(ζ),ψ/(ζ))dζψ0(η)=α+(η−α0)(β−α)(β0−α0)K(η,ζ)=(η−ζ)(β0−α0)−(η−α0)(β0−ζ)(β0−α0), α0<ζ<η=(η−α0)(β0−ζ)(β0−α0),η<ζ<β0  



(17)







Equation (17) is the standard form of variational iteration method-II. After applying this method, Equations (6) to (9) are expressed as follows


h(η)=3η2−2η3+∫01K(η,ζ)[R(h/h//−hh///)]dζK(η,ζ)=η22[(1−ζ)3−(1−ζ)2]−η32[(1−ζ)2−23(1−ζ)3]−(η−ζ)33!,0<ζ<η=η22[(1−ζ)3−(1−ζ)2]+η32[(1−ζ)2−23(1−ζ)3],η<ζ<1  



(18)






f(η)=1−η+∫01K(η,ζ)R[fh/−hf/]dζK(η,ζ)=ζ(η−1),      0<ζ<η=η(1−ζ)  ,    η<ζ<1  



(19)






g(η)=1−η−∫01K(η,ζ)R[hg/]dζK(η,ζ)=ζ(η−1),      0<ζ<η=η(1−ζ)  ,    η<ζ<1  



(20)







Furthermore, we can write Equations (18) to (20) in an iteration form as follows


hn+1=h0+∫01K(η,ζ)[R(hn/hn//−hnhn///)]dζwhere h0=3η2−2η3K(η,ζ)=η22[(1−ζ)3−(1−ζ)2]−η32[(1−ζ)2−23(1−ζ)3]−(η−ζ)33!,      0<ζ<η                =η22[(1−ζ)3−(1−ζ)2]+η32[(1−ζ)2−23(1−ζ)3]                        ,    η<ζ<1  



(21)






fn+1=f0+∫01K(η,ζ)[fnhn/−hnfn/]dζwheref0=1−ηK(η,ζ)=ζ(η−1),  0<ζ<η=η(1−ζ), η<ζ<1



(22)






gn+1=g0−∫01K(η,ζ)[hngn/]dζwhereg0=1−ηK(η,ζ)=ζ(η−1),   0<ζ<η=η(1−ζ),  η<ζ<1



(23)







By using the software MATHEMATICA, we calculated the series solution of the above mentioned problem. For reference, first few iterations of the problem are given in Appendix A.




4. Graphs and Discussion


The graphical and numerical trend of h,f, and g are portrayed for 10th order approximation, which are calculated with Mathematica. Table 1, Table 2 and Table 3 present the direct comparison of the suggested method with existing methods. Through error analysis, we can see that ITM is showing close agreement with HAM (see Table 1, Table 2 and Table 3). Figure 2, Figure 3 and Figure 4 are plotted for different values of Reynolds Number, ranging from 1 to 4. Increasing Reynolds numbers result in increasing h and decreasing f (Figure 2 and Figure 3). According to Figure 3, g first increases and then decreases for increasing values of Reynolds numbers. Table 4 is consistent with the results obtained in the graphical description.




5. Conclusions


This paper presented a method for solving two-point nonlinear BVPs utilizing a recursive algorithm. This algorithm has the advantage of fewer calculations for obtaining the model parameters compared with VIM, HPM, ADM, and HAM. With this algorithm, a direct recursion scheme is obtained to solve the problem. This method is simple and does not have the difficulties that occur in numerical techniques, including perturbation, linearization, and discretizing the differential equations. The superiority of the presented method is demonstrated via comparison of error estimates with existing methods.
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Appendix A


By using software MATHEMATICS, we calculated first two terms for readers’ reference, which are as follows


h1=3η2−2η3−93η510−33η65+144Rη55+372η735+2169Rη770−17η85+39Rη85−16η97+48Rη97+8η107−24Rη107−170η2(η−1)4[13+3R(η−1)(−1−2η+80η3)+2η(17+η(29−40(−1+η)η)]



(A1)






h2=3η2−2η3+18408400[η5(372372(1+R)(−197+3R)−24024(−9456+R(−9004+375R))η+5148(−46357+R(−43226+2739R))η2+3003(18248+R(−293795+246396R))η3−1430(739995+R(−3770264+2375319R))η4+429(6302956+R(−14667601+9657264R))η5+546(4376797+R(−31879751+9588621R))η6−728(20369787+R(−78989328+27702745R))η7+336(55114090+3R(−62573417+21934629R))η8−2880(2665268+R(−8412461+2975604R))η9−147840(13933+R(−50813+16759R))η10+211200(−1+3R)(−12479+4923R)η11−5491200(−1+3R)(−109+45R)η12))]+18408400[((−1+η)4η2(−2R2(−1+η)(132531+η(986440+η(1453830+η(3407635+4η(1059779+6η(−6432489+40η(217072+11η(36583+270η(−287+130η))))))))))+R(−119889+η(213850+η(1574734+η(27839560+η(−22480115+2η(131075+8η(24782716+3η(−29019737+20η(−1178305+22η(330131+240η(−1362+403η)))))))))))−6(188797+η(405167+η(487886+η(−3668210+η(5523385+η(1475047+4η(359737+20η(−1001121+4η(23838+11η(89371+10η(−9645+2834η)))))))))))))]



(A2)






f1(η)=1−η−2Rη3+17Rη44−61Rη520+4Rη65+120(−1+η)2η(3+6η+9η2−8η3+6R(−1+η)2(1+4η))



(A3)






f2(η)=1−η−407η3105+Rη335+1241η4168−19Rη4140−6129η51400+153Rη5700+607η6700−389Rη6350+69η735+206Rη735−229η870−12137Rη8560−2419η9420+17995Rη9336+8293η10420−166063Rη102100−1132η1155+127044Rη111925+740η1277−2220Rη1277−12η137+36Rη137+192400((−1+η)2η(64511(1+2η)−3η2(70789+η(−23608+5η(775+η(930+η(−11851+4η(−1373+16η(672+5η(−122+33η))))))))+2R(−2238+η(−4476+η(−1599+η(5128+η(12845+η(−109326+η(230503+2η(−336389+144η(4042+25η(−122+33η))))))))))))



(A4)






g1(η)=1−η−1(−3Rη20+7Rη44−12Rη55+4Rη65)



(A5)






g2(η)=1−η−(−4769Rη277200−1207R2η46200−13Rη4210−23R2η4140+31Rη5280+129R2η5560−9Rη6175−3R2η6175+111R2η720+13Rη810−643R2η835−1983Rη9560+13901R2η9560+1163Rη10315−1807R2η10105−61Rη1135+1083R2η11175+24Rη1277−72R2η1277−1140R(−1+η)(−14(26+69R)η4+125(3+5R)η5+666Rη7−74(−91+953R)η8+49(−673+3615R)η9+(196−3612R5)η10+48011(−1+3R)η11)



(A6)
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Figure 1. Schematic diagram of moving long porous slider. 






Figure 1. Schematic diagram of moving long porous slider.
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Figure 2. Effect of Reynolds number on velocity component h. 
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Figure 3. Effect of Reynolds number on velocity component f. 
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Figure 4. Effect of Reynolds number on velocity component g. 
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Table 1. Comparison with homotopy Padé approximation method [12] for larger Reynolds numbers.






Table 1. Comparison with homotopy Padé approximation method [12] for larger Reynolds numbers.





	

	
HAM [12]

	
Present

	
Error






	
R

	
−h///(0)

	




	
0.2

	
12.4653341665

	
12.465334166

	
−5E-10




	
1

	
14.365346654

	
14.365346654

	
−0E+0




	
2

	
16.8235673555

	
16.8235673555

	
−0E+0




	
3

	
19.3565458558

	
19.3565458558

	
−0E+0




	
4

	
21.9473510772

	
21.9473510772

	
−0E+0




	
5

	
24.5830707891

	
24.55234070789

	
−5E-10




	
6

	
27.2533109825

	
27.2533109818

	
−7E-10




	
7

	
29.9476951163

	
29.9476951136

	
−2.7E-9




	
8

	
32.6611632416

	
32.6611632329

	
−8.7E-9




	
9

	
35.3924710097

	
35.3924709848

	
−2.49E-8




	
10

	
38.1449125507

	
38.1449125256

	
−2.51E-8




	
51.6

	
149.6714726105

	
149.6714725836

	
−2.69E-8




	
70

	
197.9636925814

	
197.9636925523

	
−2.91E-8




	
100

	
275.9321654987

	
275.9321651777

	
−3.21E-7




	
300

	
788.4398765432

	
788.4398762142

	
−3.29E-7




	
500

	
1291.1159263487

	
1289.1236547891

	
−1.99




	
1000

	
2526.4

	
2398.1243

	
−128.27
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Table 2. Comparison with homotopy Padé approximation method [12] for larger Reynolds numbers.






Table 2. Comparison with homotopy Padé approximation method [12] for larger Reynolds numbers.





	

	
HAM [12]

	
Present

	
Error






	
R

	
−f/(0)

	




	
0.2

	
1.0880258369

	
1.0880258369

	
-0E-0




	
1

	
1.4053692581

	
1.4053692581

	
-0E+0




	
2

	
1.7445321654

	
1.7445321654

	
-0E+0




	
3

	
2.0361159263

	
2.0361159263

	
-0E+0




	
4

	
2.2866753421

	
2.2866753421

	
-0E+0




	
5

	
2.5287418529

	
2.5287418529

	
-0E-0




	
6

	
2.9136985214

	
2.9136985214

	
-0E-0




	
7

	
3.172839654

	
3.172839654

	
-0E-0




	
8

	
3.6543219871

	
3.6543219866

	
-5E-10




	
9

	
3.8293711234

	
3.8293711226

	
-8E-10




	
10

	
4.1125836917

	
4.1125836759

	
-1.58E-8




	
51.6

	
7.5531472583

	
7.5531472314

	
-2.69E-8




	
70

	
8.7573572419

	
8.7573572108

	
-3.11E-8




	
100

	
10.40147311

	
10.401472583

	
-5.27E-7




	
300

	
17.81537007

	
17.815369258

	
-8.12E-7




	
500

	
22.670

	
22.661

	
-0.009




	
1000

	
30.432

	
30.429

	
-3.00
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Table 3. Comparison with homotopy Padé approximation method [12] for larger Reynolds numbers.






Table 3. Comparison with homotopy Padé approximation method [12] for larger Reynolds numbers.





	

	
HAM [12]

	
Present

	
Error






	
R

	
−g/(0)

	




	
0.2

	
1.0301258369

	
1.0301258369

	
-0E-0




	
1

	
1.1531951623

	
1.1531951623

	
-0E+0




	
2

	
1.3096314785

	
1.3096314785

	
-0E+0




	
3

	
1.4658951623

	
1.4658951623

	
-0E+0




	
4

	
1.6187258369

	
1.6187258369

	
-0E+0




	
5

	
1.766159741

	
1.766159741

	
-0E-0




	
6

	
1.9086456321

	
1.9086456321

	
-0E-0




	
7

	
2.0464158231

	
2.0464158231

	
-0E-0




	
8

	
2.1850474125

	
2.1850474125

	
-0E-0




	
9

	
2.3368115987

	
2.3368115987

	
-0E-0




	
10

	
2.5264314755

	
2.5264314755

	
-0E-0




	
51.6

	
5.3011463295

	
5.30114632825

	
-1.25E-9




	
70

	
6.1449236681

	
6.14492366789

	
2.1E-8




	
100

	
7.2881583541

	
7.2881580341

	
-3.27E-7




	
300

	
12.5161258

	
12.5160446

	
-8.12E-5




	
500

	
15.368124

	
15.258154

	
-010997




	
1000

	
20.062

	
19.1583

	
-0.9037
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Table 4. Comparison between HPM, Numerical (Num.), and the presented technique for different Reynolds numbers.






Table 4. Comparison between HPM, Numerical (Num.), and the presented technique for different Reynolds numbers.





	

	
HAM [12]

	
Num. [9]

	
Present

	
HPM [12]

	
Num. [9]

	
Present

	
HPM [12]

	
Num. [9]

	
Present






	
R

	
−h///(0)

	
−f/(0)

	
−g/(0)




	
0.2

	
12.465

	
12.465

	
12.465

	
1.0880

	
1.088

	
1.088

	
1.0301

	
1.0301

	
1.030




	
1

	
14.365

	
14.365

	
14.365

	
1.405

	
1.405

	
1.405

	
1.1531

	
1.153

	
1.153




	
2

	
-

	
-

	
16.8235

	
-

	
-

	
1.7445

	
-

	
-

	
1.30963




	
3

	
-

	
-

	
19.356

	
-

	
-

	
2.0361

	
-

	
-

	
1.4658




	
4

	
-

	
-

	
21.9473

	
-

	
-

	
2.2866

	
-

	
-

	
1.6187




	
5

	
24.586

	
24.584

	
24.584

	
2.4417

	
2.528

	
2.528

	
-

	
-

	
1.766




	
6

	
-

	
-

	
27.253

	
-

	
-

	
-

	
-

	
-

	
1.9086




	
7

	
-

	
-

	
29.9476

	
-

	
-

	
-

	
-

	
-

	
2.04641




	
8

	
-

	
-

	
32.6611

	
-

	
-

	
-

	
-

	
-

	
2.18504




	
9

	
-

	
-

	
35.3924

	
-

	
-

	
-

	
-

	
-

	
2.33681




	
10

	
-

	
-

	
38.1449

	
-

	
-

	
-

	
-

	
-

	
2.52643




	
11

	
-

	
-

	
40.9267

	
-

	
-

	
-

	
-

	
-

	
2.79796




	
12

	
-

	
-

	
43.7471

	
-

	
-

	
-

	
-

	
-
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