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Abstract: Deterministic nano-fractal structures have recently emerged, displaying huge potential
for the fabrication of complex materials with predefined physical properties and functionalities.
Exploiting the structural properties of fractals, such as symmetry and self-similarity, could greatly
extend the applicability of such materials. Analyses of small-angle scattering (SAS) curves from
deterministic fractal models with a single scaling factor have allowed the obtaining of valuable
fractal properties but they are insufficient to describe non-uniform structures with rich scaling
properties such as fractals with multiple scaling factors. To extract additional information about
this class of fractal structures we performed an analysis of multifractal spectra and SAS intensity of
a representative fractal model with two scaling factors—termed Vicsek-like fractal. We observed that
the box-counting fractal dimension in multifractal spectra coincide with the scattering exponent of
SAS curves in mass-fractal regions. Our analyses further revealed transitions from heterogeneous
to homogeneous structures accompanied by changes from short to long-range mass-fractal regions.
These transitions are explained in terms of the relative values of the scaling factors.

Keywords: fractals; small-angle scattering; form factor; structural properties; dimension spectra;
pair distance distribution function

1. Introduction

Recent progress in materials science and nanotechnology has opened new possibilities in the
production of new types of nano- and micro-structured materials with improved functions and
properties [1–7], thus providing links to both deterministic classical mechanics and chaotic quantum
mechanics [8,9]. Since the physical characteristics greatly depend on their structure, one of the
main challenges in the field of materials science is to understand the correlation between them on
a broad spectrum of length scales, starting from atomic level. In particular, for many nanoscale
structures, quantum-like properties are frequently observable, thus displaying many interesting
nano-effects [10–12]. However, for some materials, such as electrospun nanofibers, it has been shown
that these effects depend strongly upon their fractal structure [9].

Therefore, ongoing research is carried out to obtain structures with exact self-similar (ESS)
properties [13–19], where an intrinsic pattern repeats itself exactly under scaling. This procedure
usually leads to highly symmetric fractal structures, such as Cantor dust, Sierpinski carpet or Menger

Symmetry 2019, 11, 806; doi:10.3390/sym11060806 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-2693-1383
https://orcid.org/0000-0002-8980-7809
https://orcid.org/0000-0003-3555-8445
http://www.mdpi.com/2073-8994/11/6/806?type=check_update&version=1
http://dx.doi.org/10.3390/sym11060806
http://www.mdpi.com/journal/symmetry


Symmetry 2019, 11, 806 2 of 13

sponge [20]. In the field of chaotic deterministic systems they are known as strange attractors, since they
may represent a set of infinite unconnected points (Cantor dust), a pathological curve (Weierstrass
function) which is continuous everywhere but differentiable nowhere, or generally any geometric
shape that cannot be easily described with a simple set operations of basic geometric objects.

ESS nano- and micro-materials attract a lot of attention due to their improved physical
characteristics as compared with classical ones, and which arise mainly due to their symmetry and
self-similar properties [21]. For example, the mechanical performance of 3D printed biomimetic Koch
fractals interlocking can be effectively increased via fractal design [22], while the radiative heat flux can
be kept at a short range (as compared to non-fractal structures) in ESS-based materials [23]. However,
one of the main challenges in building such fractal materials is finding the suitable mixing composition
between the embedding matrix and the fractal’s material. To date, only a few materials have been
successfully used to create such ESS structures, including dicarbonitrile [24] and bys-terpyridine
molecules [13], single/poly crystalline silicone [14,15] or alkyletene dimers [25].

The structural properties of this new generation of nano- and micro-scale materials can
effectively be determined using the small-angle scattering (SAS) of X-rays (SAXS) or neutrons
(SANS) [26,27]. This widely used material-morphology investigation method has the advantage
of sampling a statistically significant macroscopic volume. For ESS structures, the main advantage
of SAS relies on its ability to distinguish between mass and surface fractals through the value of the
scattering exponent τ in the fractal region [28–31]. More recently, it has been shown that SAS can also
differentiate between ESS and statistically self-similar (SSS) structures [32] as well as between regular
and fat fractals, that is, those with positive Lebesgue measure [33].

However, the behavior of the SAS intensity curves obtained from multifractals, that is, structures
obtained by intermixing fractals with several scaling factors, are not yet completely understood. This is
mainly due to the fact that the vast majority of physical materials are heterogeneous at nano- and
micro-scales, thus requiring models with at least two scaling factors. Although a first step in this direction
was done by obtaining the SAS spectrum from a multifractal structure generated using the chaos game
algorithm [34], an expression for the scattering intensity was derived only recently [32]. Moreover,
in Reference [34] it has been shown that, for the investigated structure, the oscillations in the fractal region
are not very pronounced leading to difficulties in recovering the scaling factors from experimental data.
This is an intrinsic consequence of the model’s construction procedure, which involves a random variable
in generating the positions of the fractal scattering units, as well as the presence of multiple scaling factors.

The purpose of this work is to provide a description of how to extract the scaling factor(s) from
SAS data and how to relate them to the degree of fractal’s heterogeneity. To this aim, in Section 2.1 we
briefly describe the multifractals together with the moment method used to calculate the dimension
spectra. Section 2.2 presents the main concepts of SAS with a focus on the form factor, pair distance
distribution function (pddf) and their properties. In Section 3.1 we describe the construction process
of the Vicsek-like multifractal model with two variable scaling factors [35,36] and show how one can
obtain analytically the box-counting fractal dimension. In Section 3.2 we calculate numerically the
corresponding dimension spectra and compare them with the theoretical results. In Section 3.3 we
obtain the coefficients of the pddf. Finally, Section 3.4 presents an analytical expression of the form
factor together with the influence of the polydispersity. Here, we also relate the behavior of the form
factor with information from dimension spectra from Section 3.2.

2. Theoretical Background

2.1. Multifractals

Multifractals are non-uniform structures with rich scaling and self-similar properties that
can change at every point [37,38]. A common procedure used to investigate their properties is
to calculate their dimension spectrum. For this purpose several methods can be used, such as
moment method [39], multifractal detrended fluctuation analysis [40] or wavelet transform modulus
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maxima [41]. Here, we make use of the moment method due to its simplicity of implementation in
a computer code as well as for its general applicability. An advantage of this method is that it is
particularly well suited for analysis of images acquired by various methods including atomic force
microscopy, scanning electron microscopy, computed tomography etc.

For this purpose, let us consider first an object S covered by a grid of boxes Bi(l) of size l and
a measure µ(B) determined by the probability of hitting the object in the box Bi. The corresponding
partition function Zs is defined by [41]:

Zs(l) =
N

∑
i=1

ps
i (l), (1)

where N ∝ 1/l2 is the number of boxes, i indexes each individual box, and pi = µ(B) represent
probabilities with ri fragmentation ratios, such that ∑N

i=1 pi = 1.
In terms of the partition function, the generalized dimension spectrum Ds can be written as [41]:

Ds ≡
1

1− s
lim
l→0

ln Zs(l)
− ln l

, (2)

where we take into account that Zs has a power-law behavior in the limit l → 0 and N → ∞, so that
Zs ∝ lDs(s−1). Therefore:

Ds = lim
l→0

1
1− s

ln ∑N
i=1 ps

i (l)
− ln l

, (3)

with pi ≡ Ni(l)/N being the relative weight of the i-th box. In practice, dimension spectra can
be obtained from images acquired using various techniques, such as atomic force microscopy,
scanning electron microscopy, computed tomography and so on. Thus the quantity Ni in defining the
probabilities pi, is given by the number of non-white pixels in the i-th box, while N is the total number
of pixels in the image.

The function Ds is a monotonically decreasing one, with the horizontal asymptotes αmax =

lims→−∞ Ds and αmin = lims→∞ Ds. The quantities αmax and αmin describe the scaling properties of the
most rarefied, and respectively of the most dense regions in the fractal. Thus, the object is homogeneous
if αmax = αmin, so that it becomes a single scale fractal, and the corresponding Ds spectrum is a line.
In particular, at s = 0 one recover the well-known box-counting dimension, since it gives:

D0 = lim
l→0

log N(l)
− log l

, (4)

with s ≡ D0 and l = δ. Here, N(l) is the number of boxes in the minimal cover. At s = 1, D1 gives
a description of how the morphology increases as l → 0, and thus is called the information dimension.
After applying L’Hopital’s rule, D1 can be written as:

D1 = lim
l→0

∑N
i=1 pi log pi

− log l
, (5)

which is related to Shannon’s entropy and measures how the information scales with 1/l. The higher the
values of fractal dimension D1, the more uniform the density. At s = 2, Equation (3) gives D2, which is
called the two-point correlation dimension and is a measure of the correlation between pairs of points in each
box. It describes how the data are scattered, with higher values of D2 corresponding to higher compactness.

2.2. Small-Angle Scattering

SAS technique is based on the interaction of an incident beam with the electrons in the
sample (for SAXS), respectively with the atomic nuclei (for SANS). Since neutrons interact with
the magnetic moments, they also provide important information about the sample material’s magnetic
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properties. Therefore, SAS describes spatial density-density correlations in materials through a Fourier
transform, leading to the determination of the differential elastic cross section dσ/dΩ. When this
quantity is normalized with regard to the irradiated volume V

′
, it gives the scattering intensity [26]

I(q) = (1/V
′
)dσ/dΩ as a function of the momentum transfer q = 4πλ−1 sin θ, where λ is the incident

beam’s wavelength and 2θ the scattering angle. Although in this low-resolution technique the phase
information is lost, a more detailed structural description can be obtained when it is complemented
by data obtained from other methods, such as protein crystallography [42], nuclear magnetic
resonance [43], or when numerical procedures are used to recover the phase, as in coherent SAXS [44].
Let us consider a volume V

′
irradiated by a beam of light, X-ray, or neutrons, which contains the

matrix, with a scattering length density (SLD) ρp, together with a large number of randomly oriented,
non-interacting multifractals, with uncorrelated positions. Denoting by ρm the SLD of the fractals,
after subtracting the matrix density, we can consider a system of scattering units “frozen” in vacuum.
It has a scattering density of ∆ρ = ρm − ρp, called the scattering contrast. Thus, denoting by n the
concentration of the fractals, the scattering intensity is given by [26]:

I(q) = n|∆ρ|2V2
〈
|F(q)|2

〉
, (6)

where V is each fractal’s volume, F(q) is the form factor:

F(q) ≡ 1
V

∫
V

e−iq·rdr, (7)

obeying the boundary condition F(0) = 1. The symbol 〈· · · 〉 stands for ensemble averaging over all
orientations of the fractal, which, for an arbitrary two-dimensional function f , is defined as:

〈
f (qx, qy)

〉
=

1
2π

∫ 2π

0
f (q, φ)dφ. (8)

For a mass fractal with fractal dimension Dm, total length L, composed of p basic units, each of
size l, separated by the distance d, so that l . d . L, the normalized form factor in Equation (7) can be
written as:

〈
|F(m)(q)|2

〉
'



1, q . 2π/L,

(qL/2π)−Dm , 2π/L . q . 2π/h,

1/p, 2π/h . q . 2π/l,

(1/p) (qL/2π)−4 , 2π/l . q,

(9)

where p is of the order of (L/h)Dm . The four intervals in the definition of this piecewise function
delimit the main structural regions on a double logarithmic scale: the plateau at low q is the Guinier
region, the simple power-law decay is the fractal region, a second plateau, and finally the Porod region
represented by a power-law decay with scattering exponent -4, or respectively -3 for 2D structures.
Because we are dealing with a model for which the distances between the objects is of the same order
of magnitude as their size, so that d/l ' 1, the second plateau from Equation (9) will not be observed.
This shall be of no concern to us, since we are extracting structural information from the fractal region.

In calculating the SAS curves one makes use of the following properties of the form factor defined
in Equation (7):

• F(q)→ F(βq) if the particle’s length is scaled as L→ βL,
• F(q)→ F(q)e−iq·a if the particle is translated by the vector r → r + a,
• F(q) = [VI FI(q) + VI I FI I(q)] / (VI + VI I), if the particle can be decomposed as a union of two

non-overlapping subsets I and I I.
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It is known that for a single-scale mass fractal consisting of k units (here disks will be used) at the
m-th iteration, each with a form factor F0, the scattering intensity can be written as [30]:

I(q) = I(0)S(q)
〈
|F0(q)|2

〉
/km, (10)

where S(q) is the structure factor, defined by:

S(q) ≡
〈
ρqρ−q

〉
/km, (11)

and is related to the pddf p(r) through:

S(q) = 1 + (km − 1)
∫ +∞

0
drp(r)

sin qr
qr

. (12)

For single scale mass-fractals, the function p(r) appearing in Equation (12) is the probability
density of finding the distance r between the centers of two arbitrarily taken disks inside the fractal,
and is defined by the following expression [30]:

p(r) =
2

km (km − 1) ∑
rp

Cpδ(r− rp), (13)

where the symbol δ is the Dirac’s delta function, rjk ≡ |rj − rk| is the relative distance between the
centers of disk j and k, and Cp are the number of distances separated by rp.

In a physical system, the scatterers have almost always a certain degree of polydispersity.
Thus, in order to take into account this effect we consider that their size obey a distribution function
DN(l), defined in such a way that DN(l)dl gives the probability of the size of the fractal to be found in
the interval (l, l + dl). In particular, we consider a log-normal distribution of the type:

DN(l) =
1

σl(2π)1/2 e−
(log(l/µ)+σ2/2)

2

2σ2 , (14)

with relative variance σr = (〈l2〉D− µ2)1/2/µ, mean value µ = 〈l〉D, and variance σ =
(
log(1 + σ2

r )
)1/2.

Therefore, by using Equations (6) and (14) one obtains the polydisperse form factor averaged over the
distribution function [26]:

I(q)/I(0) =
∫ ∞

0
〈|F(q)|2〉A2

m(l)DN(l)dl, (15)

where Am is the corresponding area at mth iteration.
Thus, the scattering intensity given by Equation (15) leads to a simple power-law decay I(q) ∝ q−τ,

where τ = Dm for mass fractals, and τ = 2d− Ds for surface fractals. Recall that for mass fractals
embedded in a d-dimensional Euclidean space we have Ds = Dm < d and Dp = d, while for surface
fractals Dm = Dp = d and d− 1 < Ds < d. Here, Ds is the fractal dimension of the set’s boundary, Dm

is the set’s “mass” fractal dimension, and Dp is the “pore” dimension of the surrounding matrix phase.
Therefore, an object is classified as a mass fractal with Dm = τ when the experimentally determined value
of τ is smaller than d, while for d− 1 < τ < d, it is a surface fractal with dimension Ds = 2d− τ [45,46].

3. Results and Discussions

3.1. Construction of the Multifractal Model

In constructing the Vicsek-like [35] multifractal model one starts with a square of edge size l0 in
which we inscribe a disk of radius r0, with 0 < r0 < l0/2 such as that their centers coincide (Figure 1).
This is called the zero-order iteration (i.e., m = 0), or the initiator. We choose a Cartesian system of
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coordinates with the origin coinciding with the center of the square and disk, and axes parallel with the
edges of the square. By replacing the initial disk with k1 = 4 smaller disks of radii r1 = βs1r0 situated
in the corners of the square, and with k2 = 1 disk of radius r2 = βs2r0 situated in the center, we obtain
the first iteration or generator (m = 1). Here, βs1 and βs2 are the scaling factors. The positions of the
four corner disks are chosen in such a way that their centers are given by:

aj =
1− βs1

2
{±l0,±l0}, (16)

with all combinations of the signs and with j = 1, · · · , 4. The second fractal iteration (m = 2) is
obtained by performing a similar operation on each of the k1 + k2 disks. For arbitrarily iterations m,
the total number of disks is:

Nm = (k1 + k2)
m , (17)

In the high m iteration number limit one obtains the multifractal, whose fractal dimension is
given by [35]:

2

∑
i=1

kiβ
D
si = 1. (18)

Note that the fractal dimension for the well-known Vicsek fractal is recovered for βs1 = βs2 = 1/3.
Figure 1 shows the first three iterations of the multifractal at various values of the scaling factors

βs1 and βs2. The different colors in Figure 1 represent the disks which arise at a given iteration number
m. Black color denotes the disks arising at m = 1, orange those at m = 2, while green is used for the
third iteration. The upper row from Figure 1 shows that for βs1 = 0.1 and βs2 = 0.8, denoted here
model M1, a more heterogeneous structure is obtained when compared with the model M2 from the
middle-row (i.e., for βs1 = 0.2 and βs2 = 0.6) or with the model M3 in the lower-raw, constructed
using βs1 = 0.3 and βs2 = 0.4. It can also be noted that for model M3 the structure consists of very
closely sized disks, and it resembles the single scale Vicsek fractal, as pointed out before.

m = 1 m = 2 m = 3

m = 1 m = 2 m = 3

Figure 1. Cont.
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m = 1 m = 2 m = 3

Figure 1. (Color online) First three iterations of the two-scale multifractal models. Upper row: βs1 = 0.1
and βs2 = 0.8 (Model M1). Note that for m = 3 the disks of radii l0β3

s1
/2 = 0.0005l0 are too small to be

seen in the figure (at the given size). Middle row: βs1 = 0.2 and βs2 = 0.6 (Model M2). Lower row:
βs1 = 0.3 and βs2 = 0.4 (Model M3). Black, orange and green colors denote the disks generated at
iterations m = 1, m = 2, and respectively at m = 3.

3.2. Dimension Spectra

The corresponding dimension spectra Ds for the three models M1, M2 and M3 are plotted using
Equation (2) and can be seen in Figure 2 for −10 < s < 10. The spectrum for model M1 (black curve)
clearly shows that Ds covers a broad range of values, with 0.15 . Ds . 1.85. This can be explained
by a high degree of heterogeneity, with the densest regions having the fractal dimension ' 1.85,
while the most rarefied ones have dimension ' 0.2. The spectrum for model M2 (red curve) covers
the much tighter range between 0.81 . Ds . 1.55. But still, pronounced differences between regions
with high and low densities are easily observed. The spectrum of model M3 (green curve) is almost
a horizontal line, as expected, since the two scaling factors have close values, thus leading to an almost
homogeneous fractal structure, with a fractal dimension of Ds ' 1.42. The vertical blue dotted line
indicates the s = 0 axis. The box-counting dimensions of the three models can be determined using
the intersection of the fractal dimension spectrum with this axis, so that: D0 ' 1.22 (for model M1),
D0 ' 1.31 (for model M2) and D0 ' 1.42 (for model M3).

 

s

2

2

2

Figure 2. (Color online) Dimension spectra Ds for the three multifractal models: M1 (black),
M2 (red), M3 (green). The intersection of the vertical line with each horizontal (dashed) line gives the
box-counting dimension D0.
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3.3. Pair Distance Distribution Function

Figure 3 shows the real space characteristics for the same models M1, M2 and M3, at fractal
iteration number m = 4 using the pddf function defined in Equation (13). The coefficients Cp are
calculated numerically using simple combinatorial analysis. The general feature is the presence of
distance-groups on a double logarithmic scale.

For βs1 = 0.1 and βs2 = 0.8 the periodicity is clearly visible (Figure 3a), the main groups being
separated by gaps at r/l0 ' 4.5× 10−3, 4.5× 10−2 and respectively at 4.5× 10−1, indicating the absence
of the corresponding distances inside the fractal. The position of these groups is well described as
having the periodicity log10 (1/βs1), and thus, they are related to the scaling factor βs1. Inside each
main group, other less pronounced smaller gaps can be noticed, which can be described as having
a periodicity related to βs1.

For models M2 and M3, when the scaling factors are relatively closer to each other, the gaps
between main groups are less pronounced but still some periodicity can be seen (Figure 3b,c). However,
the gaps within a single group are significantly smeared out (especially for model M3) and thus
determining the scaling factor βs2 in these cases cannot be done with sufficient accuracy. This can
be explained by the fact that when the scaling factors have close values, the position of the gaps
corresponding to a scaling factor start to “interfere” with the positions of those corresponding to the
other one. This leads to a more homogeneous structure, also reflected by the almost constant line in
the dimension spectra of model M3 (the green curve from Figure 2).

3.4. Small-Angle Scattering Form Factor

In the proposed model, the positions of the four disks with scaling factor βs1 can be described by:
G1(q) = cos (qxl0 (1− βs1/2)) cos

(
qyl0 (1− βs1/2)

)
while the position of the disk with scaling factor

βs2 is given by G2(q) = 1. The total number of particles at m-th iteration is given by Equation (17),
with k1 = 4 and k2 = 1, while the total surface area is

(
k1β2

s1 + k2βs2
)m. Thus, at m = 1, the fractal

consists of k1 disks of radius r1 = βs1r0 and one disk of radius r2 = βs2r0, with r0 = l0/2. Therefore,
the form factor is given by:

F1(q) =
k1β2

s1G1(q)F0(βs1q) + k2βs2G2(q)F0(β2
s2q)

k1β2
s1 + k2β2

s2
, (19)

where F0(q) = 2J1(q)/q is the form factor of the disk, and J1(q) is the Bessel function of the first kind.
At m = 2, while repeating the same procedure for each disk, one obtains k2 disks of radius β2

s2r0,
k1 disks of radii βs1βs2r0, k2

1 disks of radii β1
s2r0, k1 and so on. Thus, at an arbitrarily iteration m, we can

write the corresponding form factor in terms of a recurrence relation of the form [32]:

Fm(q) =
k1β2

s1G1(q)Fm−1(βs1q) + k2βs2G2(q)Fm−1(β2
s2q)

k1β2
s1 + k2β2

s2
. (20)

Thus, at arbitrary m, the scattering intensity (Equation (10)) can be written as:

Im(q)/Im(0) =
〈
|Fm(q)|2

〉
, (21)

Figure 4 shows the corresponding monodisperse (black curves) and polydisperse (red curves)
scattering intensity for the multifractal models M1, M2 and M3. For calculating the polydispersity we
used the log-normal distribution function given by Equation (14) with the relative variance σr = 0.2.
One observes the presence of three main regions in each case. At ql0 ' π we have a Guinier region
with I(q) ∝ q0. At π . ql0 . 2π/βm

s2 we have a mass fractal region with I(q) ∝ q−D0 , where D0

is the box counting dimension of the multifractal, whose value coincides with that obtained from
the dimension spectra (see Figure 2) and from Equation (18). At 2π/βm

s2 & ql0 we are beyond the
mass-fractal region, reaching the Porod regime with I(q) ∝ q−3. Here, the main region of interest is the
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mass fractal one, since the exponent of the scattering intensity can be related to the multifractal spectra
given in Figure 2.

Figure 3. (Color online) The coefficients Cp (orange dots) in Equation (13) for the pair distribution
function of the considered multifractal models at m = 4. (a) Model M1; (b) Model M2; (c) Model M3.
For a better visualization of pddf grouping the vertical line (blue) for each distance is shown.
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Figure 4. (Color online) Scattering form factor (Equation (21)) for monodisperse (black) and polydisperse
(red) multifractal models at m = 4. (a) Model M1; (b) Model M2; (c) Model M3. Vertical lines indicate
the lower and upper edges of mass fractal region.
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These results show that, for the suggested model, the length of mass-fractal regions depends on
the scaling factor βs2, since βs2 > βs1. The scattering from the three models M1, M2 and M3 illustrate
three important cases. First, for the case of model M1, since βs2 = 0.8 is much larger than βs1 = 0.1,
and they are related through βs1 ≡ (1− βs2) /2, the upper edge of the mass fractal region is very
close to its lower edge, so that no oscillations can be observed in this region (Figure 4a). However,
when βs2 is of comparable size with βs1, the length of the mass fractal region is enough large, so that
a log-periodicity with the period log (1/βs1) can be observed (Figure 4a,b). In order to provide a better
view of the log-periodicity, we show in Figure 5 the quantity I(q)qD0 vs. q. This also clearly shows
the increasing complexity of the scattering curves in the fractal region, which arise due to mixing of
structures of various sizes, corresponding to repeated subdivisions of the fractal with scaling factors
βs1 and βs2. In addition, for models M1 and M2 one can see that the number of most pronounced
minima in the fractal region coincide with the fractal iteration number.

Note that in all cases, the corresponding polydisperse form factor smears the monodisperse
curve. The degree to which the polydisperse curve is smeared-out depends on the value of the relative
variance σr in the size distribution (Equation (14)): the higher the value of σr the more smooth the
scattering curve. Therefore, as Figures 4 and 5 show, the periodicity and the number of fractal iteration
can be recovered when the values of the relative variance are not very high.

For models M2 and M3, the relationships between the log-periodicity and the scaling factors are
not so obvious as for model M1, due to superposition of maxima and minima arising from the ’mixing’
of various structures of comparable sizes and of distances between them. This behavior is similar to
the one observed in pddf, where separation of distance-groups is clearly visible only for model M1.
Note that for 3D structures, the number of distances of a given value, is much higher than for the 2D
model developed here, and thus, more pronounced minima and maxima shall be observed the SAS
intensity for both the M2 and M3 models, along with more pronounced gaps in pddf.
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Figure 5. (Color online) The quantity I(q)qD0 , where D0 is the box-counting fractal dimension for
monodisperse (black) and polydisperse (red) multifractal models at m = 4. (a) Model M1; (b) Model
M2; (c) Model M3. Vertical lines indicate the lower and upper edges of the mass fractal region.
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Therefore, a combined structural investigation involving SAXS/SANS experimental data, as well
as an image analysis of multifractals, can be used to exploit the advantages provided by both reciprocal
and real space. While for real space analysis the phase is not lost and thus the structure can be directly
obtained, in the case of a reciprocal space analysis, the information is obtained from a macroscopic,
statistically significant volume.

4. Conclusions

We developed a multifractal model that generalizes the well-known two-dimensional Vicsek
fractal, with disks as basic units. The model is characterized by the presence of two-scaling factors βs1

and βs2 controlling the multifractal spectra and implicitly the box counting dimension D0, in the range
from 0 to 2.

Changes in the fractal heterogeneity are assessed using pddf and SAS intensity for several
representative values of the scaling factors. The relative degree of heterogeneity is confirmed using the
dimension spectra. However, depending on the relative values of the scaling factors, the changes can be
more clearly visible in a particular space, that is, reciprocal or real. Thus, in order to extract additional
structural information we identify three major situations, each one with its particular approach:

• If βs1 << βs2, the system is highly heterogeneous and structural parameters are more clearly
visible in pddf (see Figure 3a), since the mass fractal region of the scattering intensity is very short
Figure 4a). The scaling factor βs1 is extracted from the periodicity of large groups of distances,
while βs2 can be extracted in a relatively good approximation, from the periodicity of smaller
groups found inside larger ones. The number of fractal iterations coincide with the number of
large distinct groups in pddf.

• If βs1 . βs2, separation of pddf in distinct groups of distance is not very clear since the
values of distances arising from each of the scaling factors begin to mix with each other
(see Figure 3b,c), and thus extracting exact values of the scaling factors can become a very difficult
task. However, in the reciprocal space, the corresponding mass fractal region of scattering intensity
is characterized by a succession of maxima and minima on a power-law decay (generalized
power-law decay) and the value of the largest scaling factor can be clearly estimated from the
periodicity of minima. In addition, the fractal dimension can be obtained from the scattering
exponent of this power-law decay while the fractal iteration number can be obtained from the
number of the minima.

• If βs1 = βs2, the system reduces to a single scale fractal. Structural properties of such systems
have been studied elsewhere (see Reference [30]).

Since multifractal spectra can be obtained by analyzing the images captured using various
techniques, such as atomic force microscopy, scanning/transmission electron microscopy, computed
tomography etc., a combined analysis of multifractal spectra together with SAS data can provide
a route towards a more detailed structural analysis of multifractal structures at nano/micro-scales by
exploiting the advantages provided by both real and reciprocal space analysis.
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Sierpiński-triangle fractal crystals with the C3v point group. Chin. Chem. Lett. 2015, 26, 1198–1202. [CrossRef]
[CrossRef]

18. Zhang, X.; Li, R.; Li, N.; Gu, G.; Zhang, Y.; Hou, S.; Wang, Y. Sierpiński triangles formed by molecules with
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