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Abstract: The impact of shallow tunnel construction on the surrounding environment is often
considered as a symmetric half-plane problem with circular holes. In this research, the analytical
solutions of the ground stresses and displacements of a shallow circular tunnel in an elastic half-plane
under arbitrary distributed loads on ground surface were derived, based on the complex variable
method. Then, an application was implemented to analyze the potential plastic zone induced by
shallow tunneling adjacent to the ground surface structures. The verification of the results obtained
from the proposed analytical prediction model was carried out using the numerical simulations.
Additionally, the influences of different boundary condition (different magnitudes and ranges of
arbitrary distributed loads and different symmetric boundary conditions of the tunnel perimeter) on
the distribution characteristics of the potential plastic zones were analyzed. In general, the results
showed that the larger the pile loads and the closer the relative position between the tunnel and
distributed loads, the more distinct the coalesced trends of the potential plastic zones around the
tunnel and the potential plastic zones around the distributed loads.
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1. Introduction

As people pay increasingly more attention to environmental protection and ground transportation
becomes busier, the underground excavation method is replacing the cut and cover method to become
the most popular construction method [1]. The tunnel construction method in urban areas is divided
into two types, namely, the closed face tunneling method (shield method) and the open type face
tunneling methods (shallow tunneling method and analysis of controlled deformation of in rocks
and soils (ADECO-RS) approach). Many empirical and analytical formulas have been developed to
calculate the ground displacements and stresses induced by shallow tunneling for the green-field case,
which includes Peck’s empirical formula [2,3], the virtual image technique [4–6], the complex variable
method [7,8], the general series form stress function in polar coordinates [9–12], and the stochastic
medium theory [13]. Recently, the superposition methods were adopted to calculate the ground
displacements and stresses induced by the combination of shallow tunneling and pile foundation
loads [14,15].

In this research, the solutions of the ground stresses and displacements of a shallow circular tunnel
considering the influence of arbitrary distributed loads on ground surface were derived using the
complex variable method. Then, an application was implemented to analyze the potential plastic zone
induced by shallow tunneling and loads of the ground surface structures. The results obtained from
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the proposed analytical prediction model were compared with the results obtained from the numerical
simulations to verify the correctness of the theoretical formula. The influences of different boundary
condition (different magnitudes and ranges of the arbitrary distributed loads; different symmetric
boundary conditions of the tunnel perimeter) on the distribution characteristics of the potential plastic
zones were also analyzed.

2. Problem Description

In this study, a symmetric elastic half-plane (y < 0) involving a circular tunnel of radius r at a
depth h below the ground surface was considered. Tunneling will produce ground loss, which will
cause a change of the deformation and stress of the surrounding strata. The boundary of a shallow
circular tunnel undergoes a given distribution of displacements, i.e., uniform radial displacement and
ovalization. Moreover, the arbitrary distributed loads are also considered to apply to ground surface
to represent the effect of adjacent ground surface structures. The shear modulus and the Poisson’s
ratio of the ground are denoted by µ and ν. The geometry of the problem is shown in Figure 1.
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Figure 1. Shallow tunnel under arbitrary distributed loads on ground surface.

The proposed problem was solved in the two following sections: (i) the first partial solution
comprises the general formulas of the exact analytical solutions of the ground stresses and the
displacements in a symmetric elastic half-plane based on the complex variable method. The solution
given in this paper is a generalization of Verruijt’s solution [7,8], which not only considers the ground
loss but also includes the effect of arbitrary distributed loads on ground surface (see Section 3).
(ii) The second partial solution comprises the derivation and the summary of the recursive relations
of the Laurent series coefficients used in the complex variable method obtained from the symmetric
boundary conditions of a tunnel and the arbitrary distributed loads on ground surface (see Section 4).

3. General Formulas of the Exact Analytical Solutions of Ground Displacements and Stresses

Figure 2 shows a circular tunnel located in the lower part of a symmetric elastic plane. It was
assumed that the outer boundary of the ground surface suffered arbitrary distributed loads and the inner
boundary of the tunnel profile underwent a specific symmetric distribution of convergence deformation.
According to the complex variable method, the original domain in the z-plane (physical plane) was
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mapped conformally onto an annular region on the ζ-plane (mapped plane) with the following
conformal transformation:

z = ω(ζ) = −ih
1− α2

1 + α2
1 + ζ
1− ζ

= −ia
1 + ζ
1− ζ

, (1)

where α was obtained by

α =
h
r
−

√(
h
r

)2

− 1. (2)
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Figure 2. Conformal transformation for a single tunnel.

In the z-plane, the solutions of the ground stresses and displacements due to the tunnel construction
were donated by two analytic functions, ϕ1 (z) and ψ1 (z), and they were obtained as follows:

σxx + σyy = 2
[
ϕ′1(z) + ϕ′1(z)

]
= 4Re

[
ϕ′1(z)

]
, (3a)

σyy − σxx + 2iσxy = 2
[
zϕ′′1 (z) +ψ′1(z)

]
, (3b)

2µ
(
ux + iuy

)
= κϕ1(z) − zϕ′1(z) −ψ1(z), (3c)

where µ, κ, and i are the shear modulus of the ground material, a related parameter for Poisson’s ratio
ν, and the imaginary constant, respectively.

By virtue of the conformal transformation function, the two analytic functions, ϕ1(z) and ψ1(z),
could be transformed to the functions in terms of ζ as follows:

ϕ1(z) = ϕ1(ω(ζ)) = ϕ(ζ), (4a)

ψ1(z) = ψ1(ω(ζ)) = ψ(ζ). (4b)

Moreover, ϕ(ζ) and ψ(ζ) would be expanded in a Laurent series in the ζ-space in the following
equations due to the characteristics of the analytical function.

ϕ(ζ) = a0 +
∞∑

k=1

akζ
k +

∞∑
k=1

bkζ
−k, (5a)

ψ(ζ) = c0 +
∞∑

k=1

ckζ
k +

∞∑
k=1

dkζ
−k, (5b)

where the Laurent series coefficients a0, ak, bk, c0, ck, and dk could be calculated by the recursive relations
obtained from the boundary conditions.
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4. Recursive Relations and Laurent Series Coefficients for the Proposed Model

The solution of displacements and stresses obtained above is a generalization of Verruijt’s solution,
which not only considers the ground loss but also includes the effect of arbitrary distributed loads
on the ground surface. In this section, the recursive relations from specific boundary conditions are
derived, and the Laurent series coefficients are summarized for the boundary deformations of a tunnel
and the arbitrary distributed loads on ground surface.

4.1. The Outer Boundary of the Ground Surface

The outer boundary of the ground surface y = 0 underwent arbitrary distributed loads. This gave
the following equation:

y = 0 : ϕ1(z) + zϕ′1(z) +ψ1(z) = i
∫ z

l0

(
qx + iqy

)
dz = Q1(z) + C. (6)

This equation can be transformed to the ζ-plane and expressed as the form

|ζ0| = 1 : ϕ(ζ0) +
ω(ζ0)

ω′(ζ0)
ϕ′(ζ0) +ψ(ζ0) = Q(ζ0) + C =

+∞∑
K=−∞

ekσ
k + C. (7)

Then the boundary Condition (7) can be elaborated in terms of Laurent series coefficients as
follows:

∞∑
k=1

akσ
k +

∞∑
k=1

bkσ
−k + 1

2

∞∑
k=1

(k + 1)ak+1σ
−k
−

1
2

∞∑
k=2

(k− 1)bk−1σ
k
−

1
2

∞∑
k=2

(k− 1)ak−1σ
−k

+ 1
2

∞∑
k=1

(k + 1)bk+1σ
k + a0 +

1
2 a1 +

1
2 b1 + c0 +

∞∑
k=1

ckσ
−k +

∞∑
k=1

dkσ
k =

+∞∑
K=−∞

ekσ
k + C

(8)

Therefore, the coefficients c0, ck, and dk satisfy the following recursive relations:
c0 = e0 − a0 −

1
2 a1 −

1
2 b1 + C

ck = ek − bk +
1
2 (k− 1)ak−1 −

1
2 (k + 1)ak+1

dk = ek − ak +
1
2 (k− 1)bk−1 −

1
2 (k + 1)bk+1

, (9)

where the related coefficients ek are in Fourier series terms in Equation (9), as seen in Appendix A.

4.2. The Inner Boundary of the Tunnel Profile

In general, the inner boundary of a tunnel profile will undergo convergence deformation.
Researchers have proposed a variety of the specific symmetric distributions of the convergence
deformation for different soil types or engineering conditions. Verruijt and Booker [5] stated that a
shallow tunnel profile undergoes a combination deformation of uniform convergence and ovalization.
In this research, considering the buoyancy effect, the vertical translation was incorporated into the
convergence deformation of a shallow tunnel [11]. Figure 3 shows the four possible forms of boundary
conditions (B.C. 1, B.C.2, B.C.3, and B.C.4) that are more in accord with engineering practice.



Symmetry 2019, 11, 823 5 of 12

Symmetry 2019, 11, x FOR PEER REVIEW 5 of 12 

 

  
(a) B.C.1  (b) B.C.2 (c) B.C.3 (d) B.C.4 

Figure 3. Summarized boundary conditions of shallow tunnels [11]. 

The boundary condition for a shallow tunnel profile in the ζ-plane is 

( ) ( ) ( )
( )

( ) ( ) ( )0
0 0 0 0

0

: 2 x yu iu G
ω ζ

ζ α μ κϕ ζ ϕ ζ ψ ζ ζ
ω ζ

′= + = − − =
′

, 
(10) 

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )0
0 0 0 0 0

0

1 1 k
k

k
G G G A

ω ζ
ασ κϕ ζ ϕ ζ ψ ζ ασ ζ ζ ασ σ

ω ζ

∞

=−∞

 
′ ′ ′−  − −  = − = = =

′  


. 
(11) 

After some elaborations, the symmetric boundary Condition (10) now gives 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

2 2 2
0 1 1 0 1

2 2 2 2 2 1
0 1 1 0 1

2 2 2 2 2 2
1 1 1

1

2 2 2 2 2
1 1

1 1

1 1 1

1 1 1 1

1 1 1 1

k
k

k

k k k k
k k k k k k

k

k k
k k k k

G A

a a b e e C

a a b e e C

k a b ka b e e

a kb a k b

ασ σ

κ α κ α α

κ α κα α α α α σ

α κα α α κα α α σ

κα α κα α α

∞

=−∞

−

∞
− − −

+ + +
=

− −

′ = =

+ + − − + + − + −

 + − + + + + − − − + − 

 + − + − + − − + + − − 

+ + + − − + − − − −





( )2
1

2

k k
k k

k
e eα α σ

∞
−

−
=

 − 
. 

(12) 

Therefore, the coefficients a0, ak, and bk are calculated using the following equations integrating 
the related coefficients Ak in Laurent series terms 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )

2 2 2
1 1 0 0 0 1

2 2 2 2 2
1 1 1 0 0 1

2 2 2 2 2 2
1 1 1

2 2 2 2 2 2 2 1
1 1 1 1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

k k k
k k k k k k k

k k k
k k k k k k k

a b A a e e C

a b A a e e C

k a b ka b e e A

a k b a kb e e A

α κ α κ α

κα α α κ α α α

α κα α α κα α α

κα α α κα α α α

− − −
+ + + −

+ +
+ + + +

 − − + = − + + − +

 + + − = + + + − + −


− + − + = − − + + − +


+ + − + = + + − + − + . 

(13) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2
1 1 0 0 0 1

2 2 2 2 2
1 1 1 0 0 1

1 1

1 1 1

a b A a e e C

a b A a e e C

α κ α κ α

κα α α κ α α α

 − − + = − + + − +


+ + − = + + + − + − , 

(14) 

where the Ak variables are in Laurent series terms in Equations (13) and (14), seen in Appendix B. 

5. An Application of the Derived Exact Analytic Solutions 

5.1. Prediction of the Distribution Characteristics of the Potential Plastic Zone 

It is often unavoidable that urban subway tunnels are constructed adjacent to ground surface 
structures, e.g., existing buildings. It is important to predict the degree of interactions between the 
tunnel construction and the ground surface structures. Generally, the degree of the interactions will 
be evaluated with a prediction of the distribution characteristics of the potential plastic zone. In this 
paper, the practical problem of the construction of shallow subway tunnels adjacent to surface 
building is simplified to the mechanics model, as shown in Figure 4. 

Figure 3. Summarized boundary conditions of shallow tunnels [11].

The boundary condition for a shallow tunnel profile in the ζ-plane is

|ζ| = α : 2µ
(
ux + iuy

)
= κϕ(ζ0) −

ω(ζ0)

ω′(ζ0)
ϕ′(ζ0) −ψ(ζ0) = G(ζ0), (10)

(1− ασ)

κϕ(ζ0) −
ω(ζ0)

ω′(ζ0)
ϕ′(ζ0) −ψ(ζ0)

 = (1− ασ)G(ζ0) = G′(ζ0) = G′(ασ) =
∞∑

k=−∞

Akσ
k. (11)
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G′(ασ) =
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Akσ

k =
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(
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)
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(
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)
b1 +

(
−e0 + α2e1 −C

)
+

[
−(κ+ 1)α2a0 +

(
κα2 + 1

)
a1 +

(
1− α2

)
b1 −

(
−α2e0 + e1 − α2C

)]
α−1σ

+
∞∑

k=1
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1− α2

)
(k + 1)ak+1 −

(
κα−2k + α2

)
bk+1 −

(
1− α2

)
kak +

(
κα−2k + 1

)
bk −

(
ek − α

2ek+1

)]
αkσ−k
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[(
κα2k + 1

)
ak +

(
1− α2

)
kbk −

(
κα2k + α2

)
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(
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)
(k− 1)bk−1 −

(
ek − α

2ek−1
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α−kσk
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Therefore, the coefficients a0, ak, and bk are calculated using the following equations integrating
the related coefficients Ak in Laurent series terms



(
1− α2

)
a1 −

(
κ+ α2

)
b1 = A0 − (κ+ 1)a0 +

(
e0 − α2e1 + C

)(
κα2 + 1

)
a1 +

(
1− α2

)
b1 = A1α+ (κ+ 1)α2a0 +

(
−α2e0 + e1 − α

2C
)(

1− α2
)
(k + 1)ak+1 −

(
κα−2k + α2

)
bk+1 =

(
1− α2

)
kak −

(
κα−2k + 1

)
bk +

(
ek − α

2ek+1

)
+ A−kα

−k(
κα2k+2 + 1

)
ak+1 +

(
1− α2

)
(k + 1)bk+1 = α2

(
κα2k + 1

)
ak +

(
1− α2

)
kbk +

(
ek+1 − α

2ek
)
+ Ak+1α

k+1

. (13)


(
1− α2

)
a1 −

(
κ+ α2

)
b1 = A0 − (κ+ 1)a0 +

(
e0 − α2e1 + C

)(
κα2 + 1

)
a1 +

(
1− α2

)
b1 = A1α+ (κ+ 1)α2a0 +

(
−α2e0 + e1 − α2C

) , (14)

where the Ak variables are in Laurent series terms in Equations (13) and (14), seen in Appendix B.

5. An Application of the Derived Exact Analytic Solutions

5.1. Prediction of the Distribution Characteristics of the Potential Plastic Zone

It is often unavoidable that urban subway tunnels are constructed adjacent to ground surface
structures, e.g., existing buildings. It is important to predict the degree of interactions between the
tunnel construction and the ground surface structures. Generally, the degree of the interactions will
be evaluated with a prediction of the distribution characteristics of the potential plastic zone. In this
paper, the practical problem of the construction of shallow subway tunnels adjacent to surface building
is simplified to the mechanics model, as shown in Figure 4.
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By combining the exact analytical solutions of the ground stresses obtained from this research and
the Mohr–Coulomb yield criterion, an equation for the boundary of the potential plastic zone due to
shallow tunneling adjacent to the surface building was obtained. Based on the approach presented
above, the boundaries of the potential plastic zones induced by tunneling adjacent to the surface
building were drawn using MATLAB software. The assumed parameters in the presented calculations
were silt clayey soil with a cohesion c = 30 kPa and an angle of internal friction ϕ = 30◦. The radius of
the circular tunnel was 3 m, and the center depth h was 10 m. The uniform convergence u0 was 30
mm. The magnitudes of the distributed loads q were 100, 200, and 300 kN/m, and the ranges of the
distributed loads (a0, b0) were (0 m, 7 m), (2 m, 9 m), and (4 m, 11 m).

5.2. Influences of Different Magnitudes and Ranges of Arbitrary Distributed Loads on the Potential Plastic
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The influences of three different magnitudes of the distributed loads q = 100, 200, and 300 kN/m
on the distribution characteristics of the potential plastic zones are plotted in Figure 5. The results show
that the potential plastic zones around the tunnel and around the ground surface structure coalesced
when the magnitude of distributed load q was big enough, while if the magnitude of the distributed
load q was relatively small, the potential plastic zones separated into two parts. Moreover, the plastic
zone without distributed load obtained from the solution of Verruijt [7,8] is also added in Figure 5 to
allow for interpretation of the superiority of the analytical solution proposed in this paper.

Figure 6 presents the influences of three different ranges of distributed loads (a0, b0) = (0 m, 7
m), (2 m, 9 m), (4 m, 11 m) on the distribution characteristics of the potential plastic zone induced by
tunneling. It can be observed that when the range of distributed loads (a0, b0) was close enough to the
tunnel, the tunneling-induced potential plastic zones around the tunnel and the potential plastic zones
around the distributed loads coalesced.

In general, the results show that the larger the pile loads and the closer the relative position
between the tunnel and the distributed loads, the more distinct the coalesced trends of the potential
plastic zones around the tunnel and the potential plastic zones around the distributed loads.

5.3. Influences of Different Tunnel Boundary Conditions on the Potential Plastic Zones

The influences of different tunnel boundary conditions (B.C.1, B.C.2, B.C.3, and B.C.4) on the
distribution characteristics of the potential plastic zones are shown in Figure 7. The results indicated
that different tunnel boundary conditions greatly affected the distribution characteristics of the potential
plastic zones. More attention should be paid to selecting tunnel boundary conditions because the
ovalization and the vertical translation significantly affect the shape of the potential plastic zones.
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5.4. Verification of the Potential Plastic Zone Obtained from the Derived Analytical Solutions with the
Numerical Simulations

Numerical simulations were performed by using the professional software OptumG2 [16] based
on identical parameters. Figure 8a,b indicate the potential plastic zone for the green-field and for the
condition with arbitrary distributed loads on ground surface obtained from the numerical simulations.
Figure 8c presents the comparison of the potential plastic zone obtained from numerical simulations
and analytical solution, which shows that the range of potential plastic zone are similar to each other.
It is worth pointing out that there was still a difference between the potential plastic zones obtained
from the derived analytical solutions with the numerical simulations. The boundary contour of the
potential plastic zone obtained from the derived analytical solutions was obtained by combining the
yield criterion with the analytical solution of the elastic hypothesis, while the numerical simulation
could directly calculate the stress in the elastic and plastic zones and obtain the potential plastic zone.
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6. Conclusions

In this research, the solutions of the ground stresses and displacements of a shallow circular tunnel
in a symmetric elastic half-plane under arbitrary distributed loads on ground surface were derived
using the complex variable method. Then, an application was implemented to analyze the potential
plastic zone caused by shallow tunneling adjacent to the ground surface structures. The influences
of different boundary condition (different magnitudes and ranges of the arbitrary distributed loads,
different symmetric boundary conditions of the tunnel perimeter) on the distribution characteristics of
the potential plastic zones were analyzed. The main conclusions were as follows.

(1) The potential plastic zones around the tunnel and around the ground surface structure coalesced
when the magnitude of the distributed load q was big enough, while if the magnitude of the
distributed load q was relatively small, the potential plastic zones separated into two parts.

(2) If the range of the distributed loads (a0, b0) was close enough to the tunnel, the tunneling-induced
potential plastic zones around the tunnel and the potential plastic zones around the distributed
loads coalesced.

(3) The results indicated that different symmetric tunnel boundary conditions greatly affected the
distribution characteristics of the potential plastic zone.

Author Contributions: J.W. and K.H. conceived of the idea of using complex variable method to solve the the
analytical solutions of the ground stresses and displacements of a shallow circular tunnel in an elastic half-plane
under arbitrary distributed loads on ground surface and linked solutions to applications. Z.L. completed most of
the details of the calculations.

Funding: The authors acknowledge the financial support provided by the Fundamental Research Funds for the
Central Universities of China (Grant no. 2015YJS128).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

r radius of a circular tunnel
h burial depth of the tunnel below the ground surface
µ shear modulus
ν Poisson’s ratio
z physical plane
x, y coordinate axis in physical plane
ζ mapped plane
ξ, η coordinate axis in mapped plane
l1, l2, d1, d2 range of arbitrary distributed loads on ground surface
qx, qy magnitude of arbitrary distributed loads on ground surface
σxx, σyy, σxy components of stress in physical plane
ux, uy components of displacement in physical plane
ω(ζ) conformal transformation
α a parameter defines the conformal transformation
ϕ1 (z), ψ1 (z) analytic functions in physical plane
ϕ(ζ), ψ(ζ) analytic functions in mapped plane
i imaginary constant
a0, ak, bk, c0, ck, dk Laurent series coefficients related to boundary conditions
κ related parameter to Poisson’s ratio ν

Appendix A. Fourier Coefficients for Arbitrary Distributed Loads

Fourier coefficients for arbitrary distributed loads on ground surface are as follows:

e0 =
−qy + iqx

2π

[
σ1

(
1−

1
2
σ1

)
− σ2

(
1−

1
2
σ2

)]
(A1)
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ek =
−qy+iqx

2kπ

[
(σ1 − σ2) sin k + cos(kσ1)−cos(kσ2)

k

]
+i

[
(σ1 − σ2) cos k + sin(kσ1)−sin(kσ2)

k

] (A2)

e−k = ek (A3)

Appendix B. Fourier Coefficients for the Four Different Symmetric Boundary Conditions

Fourier coefficients for the four different symmetric boundary conditions proposed by Park (2004) [11] had
been derived by Wang and Li (2009) [17] as follows:

Ak = 0 ∀k < 0
A0 = −2iµu0α
A1 = 2iµu0
Ak = 0 ∀k > 1

(B.C.1) (A4)


Ak = 0 ∀k < 0
A0 = −(1 + α)2iµu0

A1 = −
(
2 + 3α− α3

)
iµu0

Ak = −
(
1− α2

)2
αk−2iµu0 ∀k > 1

(B.C.2) (A5)


Ak =

(α2
−1)

2

4 αk−1iµu0 ∀k < 0
A0 = −(1 + α)2iµu0

A1 =
(

3
2 + 3α+ α2

− α3
−

1
2α

4
)
iµu0

Ak = −
(α2
−1)

2
(4α+3)+(α2

−1)
3
(k+1)

4 αk−3iµu0 ∀k > 1

(B.C.3) (A6)


Ak =

3(α2
−1)

2

8 αk−1iµu0 ∀k < 0
A0 = −

(
3
4 + 5

2α+
3
4α

2
)
iµu0

A1 =
(

7
4 + 9

4α+
3
2α

2
−

3
4α

3
−

3
4α

4
)
iµu0

Ak = −
3(α2

−1)
2
(kα2+α2+2α+2−k)

8 αk−3iµu0 ∀k > 1

(B.C.4) (A7)
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