Some Symmetric Identities for Degenerate Carlitz-type (p, q)-Euler Numbers and Polynomials
Abstract
:1. Introduction
2. Degenerate Carlitz-Type -Euler Polynomials
3. Symmetric Properties about Degenerate Carlitz-Type -Euler Numbers and Polynomials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carlitz, L. Degenerate Stiling, Bernoulli and Eulerian numbers. Utilitas Math. 1979, 15, 51–88. [Google Scholar]
- Cenkci, M.; Howard, F.T. Notes on degenerate numbers. Discrete Math. 2007, 307, 2359–2375. [Google Scholar] [CrossRef]
- Howard, F.T. Degenerate weighted Stirling numbers. Discrete Math. 1985, 57, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Howard, F.T. Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 1996, 162, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Dolgy, D.V.; Kim, T.; Ryoo, C.S. On the partially degenerate Bernoulli polynomials of the first kind. Glob. J. Pure Appl. Math. 2015, 11, 2407–2412. [Google Scholar]
- Ryoo, C.S. On degenerate Carlitz-type (h,q)-tangent numbers and polynomials. J. Algebra Appl. Math. 2018, 16, 119–130. [Google Scholar]
- Ryoo, C.S. On the second kind twisted q-Euler numbers and polynomials of higher order. J. Comput. Anal. Appl. 2020, 28, 679–684. [Google Scholar]
- Young, P.T. Degenerate Bernoulli polynomials, generalized factorial sums, and their applications. J. Number Theory 2008, 128, 738–758. [Google Scholar] [CrossRef] [Green Version]
- Ryoo, C.S. (p,q)-analogue of Euler zeta function. J. Appl. Math. Inf. 2017, 35, 113–120. [Google Scholar] [CrossRef]
- Ryoo, C.S. Some symmetric identities for (p,q)-Euler zeta function. J. Comput. Anal. Appl. 2019, 27, 361–366. [Google Scholar]
- Ryoo, C.S. Some properties of the (h,p,q)-Euler numbers and polynomials and computation of their zeros. J. Appl. Pure Math. 2019, 1, 1–10. [Google Scholar]
- Ryoo, C.S. Symmetric identities for the second kind q-Bernoulli polynomials. J. Comput. Anal. Appl. 2020, 28, 654–659. [Google Scholar]
- Ryoo, C.S. Symmetric identities for Dirichlet-type multiple twisted (h,q)-l-function and higher-order generalized twisted (h,q)-Euler polynomials. J. Comput. Anal. Appl. 2020, 28, 537–542. [Google Scholar]
- Riordan, J. An Introduction to Combinational Analysis; Wiley: New York, NY, USA, 1958. [Google Scholar]
- Carlitz, L. A Note on the Multiplication Formulas for the Bernoulli and Euler Polynomials. Proc. Am. Math. Soc. 1953, 4, 184–188. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, K.-W.; Ryoo, C.S. Some Symmetric Identities for Degenerate Carlitz-type (p, q)-Euler Numbers and Polynomials. Symmetry 2019, 11, 830. https://doi.org/10.3390/sym11060830
Hwang K-W, Ryoo CS. Some Symmetric Identities for Degenerate Carlitz-type (p, q)-Euler Numbers and Polynomials. Symmetry. 2019; 11(6):830. https://doi.org/10.3390/sym11060830
Chicago/Turabian StyleHwang, Kyung-Won, and Cheon Seoung Ryoo. 2019. "Some Symmetric Identities for Degenerate Carlitz-type (p, q)-Euler Numbers and Polynomials" Symmetry 11, no. 6: 830. https://doi.org/10.3390/sym11060830
APA StyleHwang, K. -W., & Ryoo, C. S. (2019). Some Symmetric Identities for Degenerate Carlitz-type (p, q)-Euler Numbers and Polynomials. Symmetry, 11(6), 830. https://doi.org/10.3390/sym11060830