
symmetryS S

Article

Neighbor Discovery Optimization for Big Data
Analysis in Low-Power, Low-Cost
Communication Networks

Sangil Choi 1 and Gangman Yi 2,*
1 Department of Computer Science & Engineering, Gangneung-Wonju National University,

Wonju 26403, Korea
2 Department of Multimedia Engineering, Dongguk University, Seoul 04620, Korea
* Correspondence: gangman@dongguk.edu

Received: 28 April 2019; Accepted: 24 June 2019; Published: 26 June 2019
����������
�������

Abstract: Big data analysis generally consists of the gathering and processing of raw data and
producing meaningful information from this data. These days, large collections of sensors, smart
phones, and electronic devices are all connected in the network. One of the primary features of these
devices is low-power consumption and low cost. Power consumption is one of the important research
concerns in low-power, low-cost communication networks such as sensor networks. A primary
feature of sensor networks is a distributed and autonomous system. Therefore, all network devices
in this type of network maintain the network connectivity by themselves using limited energy
resources. When they are deployed in the area of interest, the first step for neighbor discovery
involves the identification of neighboring nodes for connection and communication. Most wireless
sensors utilize a power-saving mechanism by powering on the system if it is off, and vice versa.
The neighbor discovery process becomes a power-consuming task if two neighboring nodes do not
know when their partner wakes up and sleeps. In this paper, we consider the optimization of the
neighbor discovery to reduce the power consumption in wireless sensor networks and propose an
energy-efficient neighbor discovery scheme by adapting symmetric block designs, combining block
designs, and utilizing the concept of activating nodes based on the multiples of a specific number. The
performance evaluation demonstrates that the proposed neighbor discovery algorithm outperforms
other competitive approaches by analyzing the wasted awakening slots numerically.

Keywords: neighbor discovery; optimization of neighbor discovery; wireless sensor network;
asymmetric duty cycle; low-power; low-cost communication network

1. Introduction

Connectivity is expected to be one of the most important factors to be considered in the near
future. Many electronic devices, such as computers, smart phones, and tablet PCs are connected to
each other through the internet nowadays. Even different types of home appliances are connected
through internet services. Consequently, significant amounts of information are exchanged every day
in the world. Gartner, Inc. estimated that the number of connected devices would reach 20.4 billion
by 2020 in a report. It is not easy to imagine the amount of information that would be produced,
processed, and exchanged among these devices.

Big data analysis usually requires significant computing and electric power owing to the large
amounts of data that have to be processed. Especially, energy consumption is one of the most critical
issues for the purpose of information gathering for big data analysis among resource constrained
devices, such as wireless or mobile sensors. These machines are both the primary components of

Symmetry 2019, 11, 836; doi:10.3390/sym11070836 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym11070836
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/7/836?type=check_update&version=2

Symmetry 2019, 11, 836 2 of 15

low-power and low-cost communication networks and a raw data source used for big data analysis.
Hence, it is possible to maintain network connectivity by saving the energy utilized by machines. It is
known that communication cost is significantly more expensive than other costs, such as those for
collecting or processing information.

As the internet of things (IoT) technology has emerged and has been extensively applied to a
variety of areas, several mobile network studies are focusing on low-power, low-cost communication
networks [1–4]. A typical network of low-power communication is a wireless sensor network (WSN).
There is no permanent power source in this type of network. Therefore, energy-efficient communication
is much more important than other research subjects. Furthermore, the movement of networked
devices may frequently occur in mobile networks. Finally, the nodes in these network environments
have certain constraints of computing resources and depend on limited electrical power.

It is widely known that IoT communication networks are in general composed of heterogeneous
physical devices. Power consumption might not be a significant concern in certain IoT networks;
however, low-power consumption and the utilization of wireless devices are considered as an
energy-efficient solution. Several IoT communications are based on machine-to-machine (M2M)
communication, which is similar to the basic communication method of a wireless sensor network. It is
assumed that most sensors do not change their location after they are deployed in the area of interest.
However, this assumption might not be applicable to low-power IoT communication networks. For
example, sensors that are used in autonomous or unmanned vehicles constantly move during their
lifetime. These devices might join and leave the network at any time. Therefore, continuous neighbor
discovery should be performed for maintaining network connectivity.

The neighbor discovery process is required to sustain the network connectivity in low-power,
low-cost communication networks [5–8]. Furthermore, this process consumes the battery power
of wireless devices. A neighbor discovery optimization problem considers and focuses on how to
minimize power consumption as much as possible. In this paper, we propose an energy-efficient
neighbor discovery algorithm for symmetric and asymmetric operations. We formulated the neighbor
discovery optimization problem with a mathematical term, borrowed the concept of block design in
combinatorics for effective neighbor discovery, and analyzed the performance of certain representative
neighbor discovery mechanisms numerically.

This paper is configured as follows: Section 2 provides literature reviews of asynchronous
neighbor discovery. Section 3 specifies a neighbor discovery optimization process. Section 4 introduces
a neighbor discovery problem (NDP), few neighbor discovery schedules, the main features of block
designs, and a practical challenge of existing block designs. Section 5 elaborates the primary idea
of merging two block designs and focuses on our key contributions. In Section 6, we consider an
asymmetric NDP. Section 7 evaluates and measures the performance of the proposed algorithm and
compares the proposed scheme with that of other representative neighbor discovery protocols. Finally,
we conclude the paper in Section 8.

2. Related Work

Several researchers have conducted studies pertaining to the NDP since this problem was
first introduced. Consequently, there are a number of representative outcomes of NDP, referred
to as neighbor discovery protocol, in the sensor network research fields. In IoT communication
networks, a network topology is constantly updated owing to nodes joining and leaving the network
frequently. Consequently, the neighbor discovery process should happen continually to ensure network
connectivity. In this section, we present several related works of major neighbor discovery protocols.

The primary idea behind the Birthday protocol [9] follows the birthday paradox in which the
birthday of two individuals out of a set of n randomly selected people is the same. This paradox is
applied to develop a neighbor discovery protocol in ad hoc networks. Nodes can wake up and sleep
with their own probabilities in the network. They merely pursue their probabilities and meet each
other at a certain time owing to the paradox. This mechanism is likely to sound advantageous for

Symmetry 2019, 11, 836 3 of 15

neighbor discovery. However, it is known that a randomness approach, such as the Birthday protocol,
performs well in average cases, but it cannot guarantee neighbor discovery at a worst case. Neighbor
discovery should be assured in both average and worst cases with minimum energy consumption.

Each wireless node can randomly choose one row and one column of a two-dimensional array n ×
n in a Quorum-based neighbor discovery protocol [10,11] for ad hoc networks. Every node activates all
the slots from the selected rows and columns and the remaining slots are inactive for neighbor discovery.
Consequently, 2n−1

n2 slots remain awake and attempt to locate their neighbors at the awakening time.
The Quorum-based neighbor discovery protocol can guarantee that two neighbor nodes can identify
each other quickly if the two nodes choose the same row or column. Even if this aspect demonstrates
the advantage of the Quorum-based protocol, the performance of the protocol depends on which row
and column are chosen. Furthermore, we cannot ensure that two different nodes will always select the
same row or column.

There are two similar approaches to neighbor discovery that adopts prime numbers: Disco [12]
and U-Connect [13]. In Disco, every node chooses two different prime numbers and activates the nodes
that are multiples of these numbers to identify if there are neighboring nodes in the communication
boundary. The main concept of Disco ensures that there is at least one common time slot between two
neighboring nodes at the time of the multiplication of the chosen prime numbers. When compared to
previous protocols for neighbor discovery, Disco has its own distinct feature where two nodes are able to
locate each other at different duty cycles. The study emphasizes that Disco can support an asymmetric
duty cycle. The performance of Disco depends on choosing balanced primes (the difference between
two prime numbers of each node is minimal) at a given duty cycle. Choosing two well-balanced prime
numbers may not be easy because there is no proper algorithm or formula for identifying balanced
prime numbers.

The other neighbor discovery protocol using a prime number is U-Connect [13]. Only one prime
number is used in U-Connect instead of using two prime numbers. Unfortunately, there may be no
overlap between two neighboring nodes with one prime number. U-Connect activates certain number
of slots to overcome the problem of non-rendezvous slots. For instance, p+1

2 consecutive slots wake up
in the beginning of the time slots per p2 slots when a prime number p is selected for neighbor discovery.
One of valuable contributions of U-Connect is the performance metric of neighbor discovery protocols
called the power-latency (PL) product. U-Connect offers an alternative approach to Disco by using one
prime number; however, it still demonstrates a weakness where two nodes are not likely to meet each
other quickly in case of a mismatch during the early time slots of a neighbor discovery schedule. This
shortcoming may result in a significant increase in the worst-case discovery latency.

The concept of a block design in combinatorial mathematics was used for inventing a neighbor
discovery protocol by Zheng et al. [14]. The neighbor discovery schedule can be easily generated
using a certain duty cycle from an existing and well-known block design. The combinatorial approach
demonstrates the fastest discovery latency and lowest energy consumption when compared to other
existing neighbor discovery protocols based on the PL product. It is to be noted that the combinatorial
scheme performs well in a situation where all nodes follow the same duty cycle (a symmetric case).
However, it may be impossible to apply this approach to an asymmetric case of neighbor discovery.
In addition, it is impossible to create a discovery schedule using the concept of the block design if there
is no proper set of block designs at a given duty cycle.

The simplest solution of neighbor discovery is to maintain all slots as active until two
neighboring nodes identify each other. However, this approach is not applicable to low-power
and resource-constrained network environments. Activating half of the total slots in each duty cycle
could be a better solution than the previously mentioned extreme one. However, this solution is also
not sufficiently good for developing an energy-efficient neighbor discovery protocol. Searchlight [15]
offers a clue for energy-efficient neighbor discovery by probing half of the total time slots to determine
at least one common active slot. There are two active slots within t contiguous slots: an anchor slot
and a probe slot. The anchor slot is the first slot in the discovery period and the probe slot changes its

Symmetry 2019, 11, 836 4 of 15

location to search for the anchor slot of the other node. Intuitively, the probing method can reduce the
number of active slots marginally; however, the discovery latency takes longer as the total slots in the
neighbor discovery period is increased.

Two different types of slots, called static and dynamic slots, are used in BlindDate [16]. The
static slot is approximately the same as the anchor slot in Searchlight. The concept of dynamic slot
is similar to that of the probe slot of Searchlight; however, the moving directions constantly change
from left to right or right to left to locate neighboring nodes quickly. This mechanism can decrease the
worst-case discovery latency when compared to Searchlight. However, the performance of BlindDate is
only marginally different from that of Searchlight.

3. Problem Statement

There are generally two power-operating modes called sleeping and awakening modes in most
energy-saving mechanisms in wireless networks [17–21]. In the sleeping mode, a wireless node turns
off its radio interface and expends only a small amount of power, thereby saving energy when it turns
on its radio for communication in the awakening mode.

One of the simplest ways to reduce the power consumption of wireless nodes in the network
minimizes the number of awakening modes. If the nodes sleep for most of their network lifetime, then
we could achieve the optimization of power consumption in wireless sensor networks effectively.
Unfortunately, this power management mechanism is ineffective because the entire network remains
disconnected. Hence, we are required to accomplish both network connectivity and power management.

As we mentioned before, the power-saving policy consists of the sleeping and awakening modes.
Each node might follow its own power management schedule based on its own policy. We can
formulate the power management schedule to represent two power-saving modes using a binary
number. A binary number “zero” can be used to represent the sleeping mode and the number “one”
can express the awakening mode. All the sensor devices that follow this power-saving policy alternate
between the sleeping and awakening modes continuously. Therefore, the power management schedule,
S, can be illustrated as zero and one. Furthermore, each wireless node has its own duty cycle of a
certain length of schedule, L. The power management schedule of node u, Su, can be represented by a
polynomial of order L as

Su(x) =
∑

L−1
i=0 aixi, (1)

where L is the length of the schedule, ai = 0 or 1 (0 ≤ i ≤ L− 1), and x is a place holder.
By definition, two nodes, u and v, wake up in slot i if ai = 1. In this situation, they can communicate

with each other if they are within the same communication range; thus, it can be noted that nodes u and
v identify their neighbors. Conversely, it may be difficult for them to talk to each other when u is awake
and v sleeps at slot i, or vice versa. In the latter scenario, an awakening node cannot avoid wasting its
energy and the neighboring nodes u and v are unable to identify each other. For neighbor discovery
optimization to achieve low-power, lost-cost communication networks, an ultimate goal is to minimize
the number of wasted awakening slots as much as possible during the neighbor discovery process.

By the above definition of S, Su(1) is the total number of slots where node u should be awake
for neighbor discovery in every L slot when ai = 1. If we apply a bitwise XOR operation (ˆ) to Su(x)
and Sv(x), then it would be possible to determine the number of wasted awakening slots that exist
between Su(x) and Sv(x). In addition, we can calculate the number of overlapping awakening slots
that occur between Su(x) and Sv(x) if we assign a bitwise AND operation (&) to Su(x) and Sv(x). Let
Sûv(1) be the total number of wasted awakening slots and Su&v(1) be the total number of overlapping
awakening slots between Su(x) and Sv(x). Therefore, we define a neighbor discovery optimization
problem as follows:

Minimize : Sûv(1)
Subjectto : Su&v(1) ≥ 1

(2)

Symmetry 2019, 11, 836 5 of 15

4. Block Design for Neighbor Discovery

It is crucial to minimize the total number of wasted awakening slots in the neighbor discovery
optimization problem. However, fundamentally, two nodes, u and v should locate each other within L
slots. Hence, in this section, we introduce a block design for neighbor discovery. The NDP can be
applied to the block design in combinatorics theory. Initially, we define certain important terminologies
in neighbor discovery.

Definition 1. A discovery schedule (DS) is a repetition of zeroes or ones that represents the sleeping and
awakening modes, respectively. When a wireless node is in the awakening mode, it should be scheduled to turn
its radio on for communication and prepare to transmit or receive packets. If the node stays in the sleeping mode,
then it should turn its radio off and obtain certain environmental information. In a DS, the binary number zero
represents the sleeping mode and one denotes the awakening mode.

Definition 2. A DS consists of a certain number of place holders containing the binary numbers, zero or one.
We call this place holder a “slot”. Therefore, each DS has its own number of slots representing sleeping or
awakening modes.

Definition 3. A duty cycle (D) is the ratio of the number of active slots over the total number of slots for a given
DS. Therefore, D can be expressed as:

D =
A
T
× 100%,

where A is the number of awakening slots and T is the total number of slots in a DS. Hence, D illustrates the
number of slots that should be awake in a DS.

It is possible to express DS graphically as illustrated in Figure 1. Based on Definition 1, there
are only two modes in the DS. Therefore, it can be said that the DS is a sequence of zeroes and ones
representing awakening or sleeping slots. Figure 1 shows a typical example of a DS. In this example,
the DS consists of 10 slots and the duty cycle of the DS is 5

10 × 100% = 50%.

Symmetry 2019, 11, x FOR PEER REVIEW 5 of 15

4. Block Design for Neighbor Discovery

It is crucial to minimize the total number of wasted awakening slots in the neighbor discovery
optimization problem. However, fundamentally, two nodes, u and v should locate each other within ℒ slots. Hence, in this section, we introduce a block design for neighbor discovery. The NDP can be
applied to the block design in combinatorics theory. Initially, we define certain important
terminologies in neighbor discovery.

Definition 1: A discovery schedule (DS) is a repetition of zeroes or ones that represents the sleeping and
awakening modes, respectively. When a wireless node is in the awakening mode, it should be scheduled to turn
its radio on for communication and prepare to transmit or receive packets. If the node stays in the sleeping
mode, then it should turn its radio off and obtain certain environmental information. In a DS, the binary
number zero represents the sleeping mode and one denotes the awakening mode.

Definition 2: A DS consists of a certain number of place holders containing the binary numbers, zero or one.
We call this place holder a “slot”. Therefore, each DS has its own number of slots representing sleeping or
awakening modes.

Definition 3: A duty cycle (D) is the ratio of the number of active slots over the total number of slots for a
given DS. Therefore, D can be expressed as:

D = ் × 100 %,
where A is the number of awakening slots and T is the total number of slots in a DS. Hence, D illustrates the
number of slots that should be awake in a DS.

It is possible to express DS graphically as illustrated in Figure 1. Based on Definition 1, there are
only two modes in the DS. Therefore, it can be said that the DS is a sequence of zeroes and ones
representing awakening or sleeping slots. Figure 1 shows a typical example of a DS. In this example,
the DS consists of 10 slots and the duty cycle of the DS is ହଵ × 100 % = 50 %.

Slot 1 2 3 4 5 6 7 8 9 10
Mode 1 1 0 1 0 0 0 1 0 1

Figure 1. Illustration of a Discovery schedule (DS).

We adapted the basic idea of the block design to address the NDP. The block design is defined
as follows [22–24]:

Definition 4: A design is a pair (X, A) such that the following criteria are satisfied:
1) X is a set of elements (points), and
2) A is a collection of non-empty subsets of X (blocks).

Definition 5: Let v, k, and λ be positive integers such that v > k ≥ 2. A (v, k, λ)-balanced incomplete block
design ((v, k, λ)-BIBD) satisfies the following properties:
1) |X| = v,
2) Each block has exactly k points, and
3) Every pair of distinct points is included in exactly λ blocks.

Thus, (7, 3, 1)-BIBD is one of the representative BIBDs when λ = 1. In the (7, 3, 1)-BIBD,

X = {1, 2, 3, 4, 5, 6, 7}, and
A = {{1,2,4}, {2,3,5}, {3,4,6},

{4,5,7}, {5,6,1}, {6,7,2}, {7,1,3}}.

Figure 1. Illustration of a Discovery schedule (DS).

We adapted the basic idea of the block design to address the NDP. The block design is defined as
follows [22–24]:

Definition 4. A design is a pair (X, A) such that the following criteria are satisfied:

(1) X is a set of elements (points), and
(2) A is a collection of non-empty subsets of X (blocks).

Definition 5. Let v, k, and λ be positive integers such that v > k ≥ 2. A (v, k, λ)-balanced incomplete block
design ((v, k, λ)-BIBD) satisfies the following properties:

(1) |X| = v,
(2) Each block has exactly k points, and
(3) Every pair of distinct points is included in exactly λ blocks.

Symmetry 2019, 11, 836 6 of 15

Thus, (7, 3, 1)-BIBD is one of the representative BIBDs when λ = 1. In the (7, 3, 1)-BIBD,

X = {1, 2, 3, 4, 5, 6, 7}, and
A = {{1,2,4}, {2,3,5}, {3,4,6},

{4,5,7}, {5,6,1}, {6,7,2}, {7,1,3}}.

In (7,3,1)-BIBD, each block is composed of three points and each pair of distinct points is exactly
related to one block. For example, a block {1,2,4} contains elements 1, 2, and 4 and a pair (2,3) or (3,5)
only appears in a block {2,3,5}.

In the theory of block design, if the number of blocks is the same as the number of points, i.e.,
|X| = |A|, then they call this design a symmetric-BIBD. In Reference [25], based on Theorem 1.2.1,
it was discussed that if a block design is a symmetric-BIBD, then the arbitrarily chosen two blocks
have λ common points. This theorem involves a basic property where two random DSs might have
overlapping awakening slots when applying the symmetric-BIBD to the NDP. Therefore, we introduce
this theorem here.

Theorem 1. (Theorem 1.2.1 in [25]): If (X, A) is a symmetric-BIBD with parameters (v, k, λ), any two different
blocks have exactly λ common points.

It is possible to rewrite all the blocks in (7,3,1)-BIBD. For instance, a block {1,2,4} can be replaced
by (1101000) with binary numbers, zero and one. The (7, 3, 1)-BIBD can be demonstrated explicitly as
shown in Figure 2 using the notation of a matrix. This binary matrix of blocks completely corresponds
with the design of DS. Hence, we can allocate one of the blocks to each wireless node at random as its
own DS.

Symmetry 2019, 11, x FOR PEER REVIEW 6 of 15

In (7, 3, 1)-BIBD, each block is composed of three points and each pair of distinct points is exactly
related to one block. For example, a block {1,2,4} contains elements 1, 2, and 4 and a pair (2,3) or (3,5)
only appears in a block {2,3,5}.

In the theory of block design, if the number of blocks is the same as the number of points, i.e.,
|X| = |A|, then they call this design a symmetric-BIBD. In Reference [25], based on Theorem 1.2.1, it
was discussed that if a block design is a symmetric-BIBD, then the arbitrarily chosen two blocks have
λ common points. This theorem involves a basic property where two random DSs might have
overlapping awakening slots when applying the symmetric-BIBD to the NDP. Therefore, we
introduce this theorem here.

Theorem 1 (Theorem 1.2.1 in [25]): If (X, A) is a symmetric-BIBD with parameters (v, k, λ), any two
different blocks have exactly λ common points.

It is possible to rewrite all the blocks in (7,3,1)-BIBD. For instance, a block {1,2,4} can be replaced
by (1101000) with binary numbers, zero and one. The (7, 3, 1)-BIBD can be demonstrated explicitly as
shown in Figure 2 using the notation of a matrix. This binary matrix of blocks completely corresponds
with the design of DS. Hence, we can allocate one of the blocks to each wireless node at random as
its own DS.

⎣⎢⎢
⎢⎢⎢
⎡

1000101

1100010

0110001

1011000

0101100

0010110

0001011

⎦⎥⎥
⎥⎥⎥
⎤

Figure 2. Binary matrix expression of (7, 3, 1)-BIBD.

This ensures that the symmetric-BIBD guarantees at least one overlapping awakening slot

between two DSs for neighbor discovery. Theorem 2 demonstrates that any arbitrary two DSs have
λ overlapping awakening slots when we employ symmetric-BIBD to the design of DSs.

Theorem 2: If two distinct DSs, Si and Sj, are applied to the (X, A) symmetric-BIBD with parameters (v, k,
λ), then the two DSs, Si and Sj, have λ overlapping awakening slots.

Proof: As (X, A) is a symmetric-BIBD with parameters (v, k, λ), X and A can be represented as follows:

 X = {p1, p2, …, pv}, and
 A = {Bi | Bi ⊂ X, |Bi| = k}.

Two schedules, Si and Sj, can be connected to two distinct blocks in A, respectively. Let two blocks in A be
Bi and Bj. According to Theorem 1, there exists λ points in Bi and Bj. Consequently, it is possible to mention
that | Bi ∩ Bj | = λ. It shows that Si and Sj, which are applied to Bi and Bj, respectively, have λ overlapped
active slots. □

It is already known that if k is a power of a prime, there exists a block design (k2 + k + 1, k+1, 1)-

BIBD for λ = 1; further, this kind of BIBD is a symmetric-BIBD [22]. (7, 3, 1)-BIBD is a case where k = 2.
By choosing an appropriate power of the prime k, we would be able to create several DSs with
different duty cycles. Although this idea seems as a possible method for designing DSs, there is a
practical challenge in adopting a (v, k, 1)-BIBD directly.

The practical challenge of a block design is that there is no algorithmic and well-known block
construction method. In a general WSN application, it is required to make a set of DSs with a low

Figure 2. Binary matrix expression of (7, 3, 1)-BIBD.

This ensures that the symmetric-BIBD guarantees at least one overlapping awakening slot between
two DSs for neighbor discovery. Theorem 2 demonstrates that any arbitrary two DSs haveλ overlapping
awakening slots when we employ symmetric-BIBD to the design of DSs.

Theorem 2. If two distinct DSs, Si and Sj, are applied to the (X, A) symmetric-BIBD with parameters (v, k, λ),
then the two DSs, Si and Sj, have λ overlapping awakening slots.

Proof: As (X, A) is a symmetric-BIBD with parameters (v, k, λ), X and A can be represented as follows:

X = {p1, p2, . . . , pv}, and

A = {Bi|Bi ⊂ X, |Bi|= k}

Two schedules, Si and Sj, can be connected to two distinct blocks in A, respectively. Let two
blocks in A be Bi and Bj. According to Theorem 1, there exists λ points in Bi and Bj. Consequently,
it is possible to mention that | Bi ∩ Bj | = λ. It shows that Si and Sj, which are applied to Bi and Bj,
respectively, have λ overlapped active slots. �

Symmetry 2019, 11, 836 7 of 15

It is already known that if k is a power of a prime, there exists a block design (k2 + k + 1, k + 1,
1)-BIBD for λ = 1; further, this kind of BIBD is a symmetric-BIBD [22]. (7, 3, 1)-BIBD is a case where
k = 2. By choosing an appropriate power of the prime k, we would be able to create several DSs with
different duty cycles. Although this idea seems as a possible method for designing DSs, there is a
practical challenge in adopting a (v, k, 1)-BIBD directly.

The practical challenge of a block design is that there is no algorithmic and well-known block
construction method. In a general WSN application, it is required to make a set of DSs with a low duty
cycle to save considerable energy of wireless sensors. For maintaining a low duty cycle continuously,
a relatively big prime number should be selected to generate a set of blocks. However, a big prime
number results in a large number of blocks. Hence, big prime numbers may considerably influence
the computational time for generating blocks. It might not be possible to search for a proper BIBD
within a constant time when very low duty cycles are required. If we cannot select a suitable block

construction technique for a target low duty cycle, we must consider
(

k2 + k + 1
k + 1

)
×

(
k2 + k + 1

2

)
number of trials as the worst-case scenario to search all the blocks of a (k2 + k + 1, k + 1, 1)-BIBD.

5. Block Construction Mechanism

As we stated in the previous section, a practical challenge results in a difficulty in creating a DS by
adopting a symmetric-BIBD directly. A new approach is required for producing neighbor discovery
schedules within a small amount of computational time. We have introduced our proposed DS
construction mechanism and its specific features in this section.

A fundamental idea of the proposed scheme is mixing two existing block designs and creating
a discovery schedule. The symmetric-BIBD is only used to illustrate and explain how our technique
is operated.

Definition 6. Let v, k, and λ be positive integers such that v > k ≥ 2. A (v, k, λ)-neighbor discovery design ((v,
k, λ)-NDD) is a design (X, A) such that the following characteristics are valid:

(1) |X| = v,
(2) Each block has exactly k awakening slots, and
(3) Every pair of different blocks includes at least λ common awakening slots.

Definition 7. A sleep schedule is a n × n matrix with a value of all zeroes.

We only created (4,3,2)- and (3,2,1)-designs for the purpose of explaining how to combine two
block designs. It is to be noted that these two block designs were constructed only for demonstrating
the process of making neighbor discovery schedules.

Step 1: Preparing two block designs.

First, we prepared two well-known block designs. We assumed that there are two block designs:
A = (va, ka, λa)-BIBD and B = (vb, kb, λb)-BIBD. (4,3,2)- and (3,2,1)-designs were created to demonstrate
the operation of the proposed combining process. The (4,3,2)- and (3,2,1)-designs are shown in Figure 3.
We defined the (4, 3, 2)-design as base and the (3,2,1)-design as replacement.

Symmetry 2019, 11, x FOR PEER REVIEW 8 of 15

As you have seen, it is relatively simple to create a new block design for neighbor discovery.
Additionally, our technique is reasonable with respect to the computational time.

It is required to prove that the newly created block design has the same features as specified in
Definition 5. The process for proving this is really important and critical. If the new block design does
not have the same properties of the original block design, then the new one is inoperable and it cannot
be applied to the NDP. The proposed scheme can guarantee that the new DS has the same properties
as the original block designs.

൦ 0𝟏𝟏𝟏 𝟏0𝟏𝟏 𝟏𝟏0𝟏 𝟏𝟏𝟏0 ൪ 101 110 011 ൩

Figure 3. (4, 3, 2)- and (3, 2, 1)-designs

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡

 000 000 000 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩

 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 000 000 000 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩

 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 000 000 000 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩

 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 000 000 000 ൩

⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤

Figure 4. Matrix expression of (12,6,2)-neighbor discovery design

Definition 8: We assumed that Ϝ is defined as a (v1, k1, 1)-BIBD and ℛ is declared as a (v2, k2, 1)-BIBD. Ϝ ⊗ ℛ represents that all the awakening slots in Ϝ are transformed to ℛ and all the sleeping slots are changed
into a v2 × v2 size matrix of the sleep schedule.

Theorem 3: We assume that Ϝ is a (v1, k1, 1)-BIBD and ℛ is a (v2, k2, 1)-BIBD. Ϝ ⊗ ℛ results in a (v1 ×

v2, k1× k2, 1)-NDD.

Proof: Both Ϝ and ℛ are BIBDs. Hence, it is possible to say that Ϝ = { Ϝ | Ϝ is a schedule} and ℛ = { Ti
| Ti is a schedule}. We assumed that 𝛹 = Ϝ ⊗ ℛ. We know that 𝛹 = { 𝛹 | 1 ≤ |𝛹 |≤ v1v2} is a (v3, k3,
1)-NDD, where v3 = v1v2 and k3 = k1k2. Thus, 𝛹 ∈ 𝛹, where i ≠ j, ∃ 1 ≤ h ≤ v1v2 such that 𝜔ih = 𝜔jh =
1 for any pair of schedules 𝛹. Every awakening slot in Ϝ is transformed to ℛ by Ϝ ⊗ ℛ. In addition, every
sleeping slot in Ϝ is changed into a v2 × v2 sized matrix of all zeros. Hence, it is possible to express that the
total number of points in 𝛹 is v1× v2 and each block in 𝛹 has exactly k1 × k2 awakening slots. These two
chrematistics perfectly correspond to the first and second properties in Definition 10. Consequently, we
concluded that every pair of differing two blocks has at least λ common awakening slots. 𝛹 can be illustrated
with the notation of the matrix as follows:

𝛹 = ⎣⎢⎢
⎡ 𝜓(ଵ,ଵ)𝜓(ଶ,ଵ)⋮𝜓(௩భ௩మ ,ଵ)

 𝜓(ଵ,ଶ) 𝜓(ଶ,ଶ) ⋮𝜓 (௩భ௩మ ,ଶ)
⋯⋯⋱⋯

 𝜓(ଵ, ௩భ௩మ) 𝜓(ଶ, ௩భ௩మ) ⋮𝜓(௩భ௩మ, ௩భ௩మ) ⎦⎥⎥
⎤

𝛹 is a v1v2 × v1v2 sized matrix and each component of 𝛹 denotes an awakening or a sleeping slot. Schedules 𝛹 and 𝛹 represent one of the rows in 𝛹. Ϝ is a BIBD. Therefore, Ϝ has a schedule Ϝ. Each Ϝ has at least
one awakening slot, sim, where 1 ≤ m ≤ v1v2. According to Definition 8, sim is changed into ℛ.

Case I: For all indexes i ≠ j in 𝛹,

Figure 3. (4, 3, 2)- and (3, 2, 1)-designs

Step 2: Replacing each awakening slot in the base by the entire slot of the replacement.

Symmetry 2019, 11, 836 8 of 15

Secondly, each awakening slot in the base was replaced by the total slots of the replacement.
In addition, all sleeping slots were changed into a sleep schedule as per Definition 7. Each awakening
slot in the (4,3,2)-design was transformed to entire slots in the (3,2,1)-design.

Step 3: Constructing a new block design.

It is possible to create a (va × vb, ka × kb, λa × λb)-NDD by implementing steps 1 and 2 in the final
step. A new block design, (12,6,2)-NDD, is shown in Figure 4. It is finally produced by combining the
(4,3,2) and (3,2,1)-designs.

Symmetry 2019, 11, x FOR PEER REVIEW 8 of 15

As you have seen, it is relatively simple to create a new block design for neighbor discovery.
Additionally, our technique is reasonable with respect to the computational time.

It is required to prove that the newly created block design has the same features as specified in
Definition 5. The process for proving this is really important and critical. If the new block design does
not have the same properties of the original block design, then the new one is inoperable and it cannot
be applied to the NDP. The proposed scheme can guarantee that the new DS has the same properties
as the original block designs.

൦ 0𝟏𝟏𝟏 𝟏0𝟏𝟏 𝟏𝟏0𝟏 𝟏𝟏𝟏0 ൪ 101 110 011 ൩

Figure 3. (4, 3, 2)- and (3, 2, 1)-designs

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡

 000 000 000 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩

 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 000 000 000 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩

 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 000 000 000 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩

 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 𝟏𝟎𝟏 𝟏𝟏𝟎 𝟎𝟏𝟏 ൩
 000 000 000 ൩

⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤

Figure 4. Matrix expression of (12,6,2)-neighbor discovery design

Definition 8: We assumed that Ϝ is defined as a (v1, k1, 1)-BIBD and ℛ is declared as a (v2, k2, 1)-BIBD. Ϝ ⊗ ℛ represents that all the awakening slots in Ϝ are transformed to ℛ and all the sleeping slots are changed
into a v2 × v2 size matrix of the sleep schedule.

Theorem 3: We assume that Ϝ is a (v1, k1, 1)-BIBD and ℛ is a (v2, k2, 1)-BIBD. Ϝ ⊗ ℛ results in a (v1 ×

v2, k1× k2, 1)-NDD.

Proof: Both Ϝ and ℛ are BIBDs. Hence, it is possible to say that Ϝ = { Ϝ | Ϝ is a schedule} and ℛ = { Ti
| Ti is a schedule}. We assumed that 𝛹 = Ϝ ⊗ ℛ. We know that 𝛹 = { 𝛹 | 1 ≤ |𝛹 |≤ v1v2} is a (v3, k3,
1)-NDD, where v3 = v1v2 and k3 = k1k2. Thus, 𝛹 ∈ 𝛹, where i ≠ j, ∃ 1 ≤ h ≤ v1v2 such that 𝜔ih = 𝜔jh =
1 for any pair of schedules 𝛹. Every awakening slot in Ϝ is transformed to ℛ by Ϝ ⊗ ℛ. In addition, every
sleeping slot in Ϝ is changed into a v2 × v2 sized matrix of all zeros. Hence, it is possible to express that the
total number of points in 𝛹 is v1× v2 and each block in 𝛹 has exactly k1 × k2 awakening slots. These two
chrematistics perfectly correspond to the first and second properties in Definition 10. Consequently, we
concluded that every pair of differing two blocks has at least λ common awakening slots. 𝛹 can be illustrated
with the notation of the matrix as follows:

𝛹 = ⎣⎢⎢
⎡ 𝜓(ଵ,ଵ)𝜓(ଶ,ଵ)⋮𝜓(௩భ௩మ ,ଵ)

 𝜓(ଵ,ଶ) 𝜓(ଶ,ଶ) ⋮𝜓 (௩భ௩మ ,ଶ)
⋯⋯⋱⋯

 𝜓(ଵ, ௩భ௩మ) 𝜓(ଶ, ௩భ௩మ) ⋮𝜓(௩భ௩మ, ௩భ௩మ) ⎦⎥⎥
⎤

𝛹 is a v1v2 × v1v2 sized matrix and each component of 𝛹 denotes an awakening or a sleeping slot. Schedules 𝛹 and 𝛹 represent one of the rows in 𝛹. Ϝ is a BIBD. Therefore, Ϝ has a schedule Ϝ. Each Ϝ has at least
one awakening slot, sim, where 1 ≤ m ≤ v1v2. According to Definition 8, sim is changed into ℛ.

Case I: For all indexes i ≠ j in 𝛹,

Figure 4. Matrix expression of (12,6,2)-neighbor discovery design

It can be guaranteed that we can produce and create a number of diverse DSs with a target duty
cycle by repeating the proposed construction method through steps 1 to 3. If the existing well-known
block designs are able to cover the given duty cycle, it could simply use it to construct a neighbor
discovery schedule. However, it is not always possible to do that because of the lack of a general
algorithm for generating BIBDs. Consequently, the proposed idea can be applied for solving the
NDP. As you have seen, it is relatively simple to create a new block design for neighbor discovery.
Additionally, our technique is reasonable with respect to the computational time.

It is required to prove that the newly created block design has the same features as specified in
Definition 5. The process for proving this is really important and critical. If the new block design does
not have the same properties of the original block design, then the new one is inoperable and it cannot
be applied to the NDP. The proposed scheme can guarantee that the new DS has the same properties
as the original block designs.

Definition 8. We assumed that F is defined as a (v1, k1, 1)-BIBD and R is declared as a (v2, k2, 1)-BIBD. F ⊗R
represents that all the awakening slots in F are transformed to R and all the sleeping slots are changed into a v2
×v2 size matrix of the sleep schedule.

Theorem 3. We assume that F is a (v1, k1, 1)-BIBD and R is a (v2, k2, 1)-BIBD. F ⊗R results in a (v1 × v2, k1
× k2, 1)-NDD.

Proof: Both F and R are BIBDs. Hence, it is possible to say that F = {Fi | Fi is a schedule} and R = {Ti | Ti
is a schedule}. We assumed that Ψ = F ⊗ R. We know that Ψ = {Ψi | 1 ≤ | Ψi | ≤ v1v2} is a (v3, k3, 1)-NDD,
where v3 = v1v2 and k3 = k1k2. Thus, Ψ j ∈ Ψ, where i , j, ∃ 1 ≤ h ≤ v1v2 such that ωih = ωjh = 1 for
any pair of schedules Ψi. Every awakening slot in F is transformed to R by F ⊗ R. In addition, every
sleeping slot in F is changed into a v2 × v2 sized matrix of all zeros. Hence, it is possible to express
that the total number of points in Ψ is v1 × v2 and each block in Ψ has exactly k1 × k2 awakening
slots. These two chrematistics perfectly correspond to the first and second properties in Definition 10.

Symmetry 2019, 11, 836 9 of 15

Consequently, we concluded that every pair of differing two blocks has at least λ common awakening
slots. Ψ can be illustrated with the notation of the matrix as follows:

Ψ =

ψ(1,1) ψ(1,2) · · · ψ(1,v1v2)

ψ(2,1) ψ(2,2) · · · ψ(2,v1v2)
...

...
. . .

...
ψ(v1v2,1) ψ(v1v2,2) · · · ψ(v1v2,v1v2)

Ψ is a v1v2 × v1v2 sized matrix and each component of Ψ denotes an awakening or a sleeping slot.
Schedules Ψi and Ψ j represent one of the rows in Ψ. F is a BIBD. Therefore, F has a schedule Fi. Each
Fi has at least one awakening slot, sim, where 1 ≤ m ≤ v1v2. According to Definition 8, sim is changed
into R.

Case I: For all indexes i , j in Ψ,

i, j ∈ [v2 × (α− 1) + 1 . . . v2 × (α− 1) + v2]

where 1 ≤ α ≤ v1. Ψi and Ψ j contain at least one common awakening slot such that ψih = ψjh = 1 by R.
Case II: For all values of α , β and indexes i , j in Ψ,

i ∈ [v2 × (α− 1) + 1 . . . v2 × (α− 1) + v2]and

j ∈ [v2 × (β− 1) + 1 . . . v2 × (β− 1) + v2]

where 1 ≤ α, β ≤ v1, Ψi and Ψ j include at least one common awakening slot such that ψih = ψjh = 1 by F.
According to Cases I and II, schedules Ψi and Ψ j in Ψ always contain at least λ common awakening
slots. Finally, Ψ is a (v1 × v2, k1 × k2, 1)-NDD. �

6. Asymmetric Neighbor Discovery Algorithm

We assumed that the DS of each node operated at the same duty cycle. Unfortunately, this
hypothesis may not be considered in real network environments because it is not a general situation.
This is because participant nodes could follow different duty cycles in a distributed manner (asymmetric
duty cycle). However, both the concept of original block design and the proposed block construction
mechanism are intrinsically unable to support asymmetric duty cycles because the basic concept of
these two ideas is centered on symmetric-BIBD.

An asymmetric neighbor discovery algorithm should focus on constructing proper neighbor
discovery schedules by supporting both symmetric and asymmetric cases. The traditional theory of
block design works well in a given symmetric duty cycle. However, it cannot be applied to nodes
working with asymmetric duty cycles. Furthermore, if we cannot determine an appropriate block
design, then it might not be possible to consider solving NDPs. One of the main shortcomings of
the original block designs is that it could not assist certain duty cycles. The reason is that there is no
proper block design for certain specific duty cycles. We can easily solve this problem by adopting our
new approach of constructing neighbor DSs with a given target duty cycle. However, both techniques
cannot be applied to solve the asymmetric NDP. That is why we have primarily discussed the algorithm
dealing with the asymmetric NDP in this section.

The fundamental idea of solving the asymmetric NDP is to incorporate the original block designs
with multiples of k. The asymmetric NDP can be resolved by integrating the concept of multiples of k
with the original block designs. The primary concept of the multiples of k is that if a slot number is
the same as a multiple of k then the proposed algorithm activates that slot. Thus, the multiples try to
cordinate the wake-up time of two nodes operating at different duty cycles and provide the two nodes
a chance to locate each other at the same time.

Symmetry 2019, 11, 836 10 of 15

There are two different neighbor discovery schedules: one is a (7,3,1)-design and the other is
obtained from a (21,5,1)-design. The duty cycle of these two block designs is not symmetric (asymmetric
duty cycle). Hence, two nodes cannot communicate with each other because the two block designs do
not have at least one overlapping awakening slot. As seen from Figure 5, there is no common awakening
slot between nodes x and y. In Figure 5, node x follows the (7, 3, 1)-design and y utilizes the (21, 5,
1)-design. Therefore, it was possible to apply our proposed asymmetric neighbor discovery algorithm
to this problem. Initially, node x may think that there is no neighbor within its communication range in
the first round of the duty cycle. There are two options in this situation: First, there is no neighbor in
practice. Second, there are neighbors around node x; however, x and its neighbors cannot meet each
other because of different duty cycles. We have an opportunity to enable them to talk to each other
with the proposed algorithm. From the second cycle, the proposed mechanism can begin to work.
In Figure 5, for the first time, x has three awakening slots: 1, 2, and 4. Our asymmetric algorithm
starts waking up slot numbers 3 and 6 because these number are multiples of three. From this second
cycle, the proposed mechanism turns on its process. Even if node x wasted six awakening slots in
the first and second duty cycles, nodes x and y still cannot talk to each other. However, the node
following a (21,5,1)-design also thinks that there is no neighbor for communication. Node y proceeds
with the proposed mechanism. Figure 6 illustrates that node y wakes up slot numbers 5, 10, 15, 20,
which implies that y adopts multiples of five. The yellow color in Figures 5 and 6 represents additional
awakening slots that occur using the proposed mechanism. Both x and y finally talk to each other twice
in the fourth cycle of x and the second cycle of y, respectively, in Figure 6. The proposed asymmetric
neighbor discovery algorithm is shown in Figure 7.

Symmetry 2019, 11, x FOR PEER REVIEW 10 of 15

wakes up slot numbers 5, 10, 15, 20, which implies that y adopts multiples of five. The yellow color in
Figures 5 and 6 represents additional awakening slots that occur using the proposed mechanism.
Both x and y finally talk to each other twice in the fourth cycle of x and the second cycle of y,
respectively, in Figure 6. The proposed asymmetric neighbor discovery algorithm is shown in Figure
7.

 1st cycle of x

 1 2 3 4 5 6 7

Node x 1 1 0 1 0 0 0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

Node y 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

 1st cycle of x
 2nd cycle of x

 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Node x 1 1 0 1 0 0 0 1 1 1 1 0 1 0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

Node y 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

 1st cycle of x
 2nd cycle of x

 3rd cycle of x

 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Node x 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

Node y 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

Figure 5. Asymmetric neighbor discovery with multiples of k

1st cycle of x

2nd cycle of x

3rd cycle of x

4th cycle of x

 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Node
x

1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0

Node

y
0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1st cycle of y

2nd cycle of y

Figure 6. Rendezvous of two asymmetric discovery schedules.

Algorithm: Asymmetric Neighbor Discovery Algorithm

1: procedure NEIGHBOR DISCOVERY WITH ASYMMETRIC DUTY CYCLES
2: 𝛷 ⟵ (𝑣ଵ, 𝑘ଵ, 𝜆ଵ) − 𝑑𝑒𝑠𝑖𝑔𝑛
3: 𝛹 ⟵ (𝑣ଶ, 𝑘ଶ, 𝜆ଶ) − 𝑑𝑒𝑠𝑖𝑔𝑛
4: 𝑀భ ⟵ 𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 𝑘ଵ
5: 𝑀మ ⟵ 𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 𝑘ଶ
6: for all 𝜑 ∈ 𝛷 and 𝜓 ∈ 𝛹 𝐝𝐨
7: if 𝜑 ∩ 𝜓 = ∅ then
8: 𝜑ො ← 𝜑 ∪ 𝑀భ
9: 𝜓 ← 𝜓 ∪ 𝑀మ
10: end
11: if 𝜑ො ∩ 𝜓 ≠ ∅ then
12: break
13: end
14: end

Figure 7. Asymmetric neighbor discovery algorithm

Figure 5. Asymmetric neighbor discovery with multiples of k.

Symmetry 2019, 11, x FOR PEER REVIEW 10 of 15

wakes up slot numbers 5, 10, 15, 20, which implies that y adopts multiples of five. The yellow color in
Figures 5 and 6 represents additional awakening slots that occur using the proposed mechanism.
Both x and y finally talk to each other twice in the fourth cycle of x and the second cycle of y,
respectively, in Figure 6. The proposed asymmetric neighbor discovery algorithm is shown in Figure
7.

 1st cycle of x

 1 2 3 4 5 6 7

Node x 1 1 0 1 0 0 0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

Node y 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

 1st cycle of x
 2nd cycle of x

 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Node x 1 1 0 1 0 0 0 1 1 1 1 0 1 0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

Node y 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

 1st cycle of x
 2nd cycle of x

 3rd cycle of x

 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Node x 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

Node y 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

Figure 5. Asymmetric neighbor discovery with multiples of k

1st cycle of x

2nd cycle of x

3rd cycle of x

4th cycle of x

 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Node
x

1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0

Node

y
0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1st cycle of y

2nd cycle of y

Figure 6. Rendezvous of two asymmetric discovery schedules.

Algorithm: Asymmetric Neighbor Discovery Algorithm

1: procedure NEIGHBOR DISCOVERY WITH ASYMMETRIC DUTY CYCLES
2: 𝛷 ⟵ (𝑣ଵ, 𝑘ଵ, 𝜆ଵ) − 𝑑𝑒𝑠𝑖𝑔𝑛
3: 𝛹 ⟵ (𝑣ଶ, 𝑘ଶ, 𝜆ଶ) − 𝑑𝑒𝑠𝑖𝑔𝑛
4: 𝑀భ ⟵ 𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 𝑘ଵ
5: 𝑀మ ⟵ 𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 𝑘ଶ
6: for all 𝜑 ∈ 𝛷 and 𝜓 ∈ 𝛹 𝐝𝐨
7: if 𝜑 ∩ 𝜓 = ∅ then
8: 𝜑ො ← 𝜑 ∪ 𝑀భ
9: 𝜓 ← 𝜓 ∪ 𝑀మ
10: end
11: if 𝜑ො ∩ 𝜓 ≠ ∅ then
12: break
13: end
14: end

Figure 7. Asymmetric neighbor discovery algorithm

Figure 6. Rendezvous of two asymmetric discovery schedules.

Symmetry 2019, 11, 836 11 of 15

Symmetry 2019, 11, x FOR PEER REVIEW 10 of 15

wakes up slot numbers 5, 10, 15, 20, which implies that y adopts multiples of five. The yellow color in
Figures 5 and 6 represents additional awakening slots that occur using the proposed mechanism.
Both x and y finally talk to each other twice in the fourth cycle of x and the second cycle of y,
respectively, in Figure 6. The proposed asymmetric neighbor discovery algorithm is shown in Figure
7.

 1st cycle of x

 1 2 3 4 5 6 7

Node x 1 1 0 1 0 0 0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

Node y 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

 1st cycle of x
 2nd cycle of x

 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Node x 1 1 0 1 0 0 0 1 1 1 1 0 1 0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

Node y 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

 1st cycle of x
 2nd cycle of x

 3rd cycle of x

 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Node x 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

Node y 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

Figure 5. Asymmetric neighbor discovery with multiples of k

1st cycle of x

2nd cycle of x

3rd cycle of x

4th cycle of x

 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Node
x

1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0

Node

y
0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1st cycle of y

2nd cycle of y

Figure 6. Rendezvous of two asymmetric discovery schedules.

Algorithm: Asymmetric Neighbor Discovery Algorithm

1: procedure NEIGHBOR DISCOVERY WITH ASYMMETRIC DUTY CYCLES
2: 𝛷 ⟵ (𝑣ଵ, 𝑘ଵ, 𝜆ଵ) − 𝑑𝑒𝑠𝑖𝑔𝑛
3: 𝛹 ⟵ (𝑣ଶ, 𝑘ଶ, 𝜆ଶ) − 𝑑𝑒𝑠𝑖𝑔𝑛
4: 𝑀భ ⟵ 𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 𝑘ଵ
5: 𝑀మ ⟵ 𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 𝑘ଶ
6: for all 𝜑 ∈ 𝛷 and 𝜓 ∈ 𝛹 𝐝𝐨
7: if 𝜑 ∩ 𝜓 = ∅ then
8: 𝜑ො ← 𝜑 ∪ 𝑀భ
9: 𝜓 ← 𝜓 ∪ 𝑀మ
10: end
11: if 𝜑ො ∩ 𝜓 ≠ ∅ then
12: break
13: end
14: end

Figure 7. Asymmetric neighbor discovery algorithm
 Figure 7. Asymmetric neighbor discovery algorithm.

7. Numerical Analysis

The study of sensor network protocols [26] shows that the most energy consumption in wireless
networked devices occurs during radio communication and idle listening. Idle listening activates
a radio interface and waits for the signal from neighboring nodes to maintain network connectivity.
If a node wakes up and remains idle, then it wastes energy without any activity. Therefore, the
main goal of neighbor discovery optimization is to minimize idle listening time while maintaining
network connectivity. Both minimum discovery latency time and a small amount of energy are critical
requirements to achieve the primary goal. In Section 7, we present the numerical analysis conducted by
comparing and analyzing the performance of certain representative neighbor discovery protocols and
ours. There are two performance metrics we considered in numerical analysis: discovery latency time
and energy consumption. The first metric is significant because it represents the worst-case neighbor
discovery latency. The second one is also crucial because it involves the energy usage of each node.

It is easy to calculate the worst-case discovery latency time once a target duty cycle is provided.
There are different duty cycles in an asymmetric case: one is lower than the other. We only considered
a lower duty cycle that primarily influences the performance of neighbor discovery in an asymmetric
scenario. Unfortunately, the node with the lower cycle cannot discover its neighbors until the total
number of slots are utilized in a worst-case scenario. For the numerical study, we first defined the main
parameters such as duty cycle, discovery latency time, and the number of active slots for the analysis
of discovery latency. Table 1 lists three main parameters considered among the representative neighbor
discovery protocols and our protocol. The next step was to determine an appropriate parameter for
each protocol to apply these parameters to compute the worst-case discovery latency time. Table 2 lists
the parameter settings for calculating the discovery latency of each protocol based on 10%, 5%, 2%, and
1% of the duty cycles. Table 3 depicts the worst-case discovery latency with respect to the total number
of slots. As we can realize from Table 3, the proposed approach has the smallest number of slots when
compared to the three neighbor discovery protocols (Disco, U-Connect, Searchlight). It proves that the
two nodes adopting the proposed protocol might have a chance to discover their neighbors faster than
when utilizing other protocols in an asymmetric situation. Figure 8 shows that the total number of
slots is different in several asymmetric scenarios.

Symmetry 2019, 11, 836 12 of 15

Table 1. Comparison of different discovery protocols.

Protocol DC L Active slots

Disco [12] p1+p2
p1·p2

p1·p2 p1 + p2

U-Connect [13] p+1
p2 p2 3p−1

2

Searchlight [15] 2
t

t2

2 t

Combinatorial + Multiples of k (k+1)+α
k2+k+1

k2 + k + 1 (k + 1) + α

Table 2. Parameter settings for numerical analysis.

Protocol
DC

10% 5% 2% 1%

Disco p1 = 13,
p2 = 31

p1 = 29,
p2 = 61

p1 = 97,
p2 = 101

p1 = 191,
p2 = 211

U-Connect p = 11 p = 23 p = 53 p = 101

Searchlight t = 20 t = 40 t = 100 t = 200

Combinatorial + Multiples of k k = 9 k = 19 k = 49 k = 97

Table 3. Total number of slots of different discovery protocols.

Protocol
DC

10% 5% 2% 1%

Disco 403 1769 9797 40,301

U-Connect 121 529 2809 10,201

Searchlight 200 800 5000 20,000

Combinatorial + Multiples of k 91 381 2451 9507Symmetry 2019, 11, x FOR PEER REVIEW 13 of 15

Figure 8. Analysis of the worst-case discovery latency.

Figure 9. Analysis of the number of awakening slots.

8. Conclusion

We analyzed neighbor discovery optimization for low-power, low-cost communication
networks in this paper. As we stated in the introduction section, these networks consist of various
heterogeneous communication devices. Every time the network participants are required to
communicate with their neighbors, they should first comprehend that there are existing neighbor
nodes in their communication range. After locating their neighbors, they try to connect with them
and finally establish a network connection. The communication mechanism we considered in this
paper focused on M2M communication in a distributed manner. This communication is mostly
similar to the communication method of WSNs.

In this paper, we developed an asynchronous and asymmetric neighbor discovery protocol by
combining the traditional block designs and the multiples of k. The shortcoming of the block design
is that it might be possible to use it only for certain duty cycles. We recommended a block
construction scheme by combining two block designs to support any desired duty cycle.
Furthermore, the traditional block design can assist only symmetric duty cycles and not asymmetric

0

10,000

20,000

30,000

40,000

(10%, 5%) (10%, 2%) (10%, 1%) (5%, 2%) (5%, 1%) (2%, 1%)

D
isc

ov
er

y
La

te
nc

y
(s

lo
ts)

Asymmetric discovery cases

Disco

U-Connect

Searchlight

Proposed

0

100

200

300

400

500

600

(10%, 5%) (10%, 2%) (10%, 1%) (5%, 2%) (5%, 1%) (2%, 1%)

N
um

be
r o

f w
ak

e-
up

 sl
ot

s (
slo

ts)

Asymmetric discovery cases

Disco

U-Connect

Searchlight

Proposed

Figure 8. Analysis of the worst-case discovery latency.

It is guaranteed that the number of active slots is closely related to energy consumption of the
wireless sensors. When the node is in the active state, it turns its radio on and is ready to transmit and
receive packets. Transmitting and receiving packets are some of the most expensive activities. That
is why active slots represent energy consumption. From this perspective, the numerical analysis of

Symmetry 2019, 11, 836 13 of 15

energy consumption usually computes the number of active slots. Table 1 lists the number of active
slots for each neighbor discovery protocol. In the proposed mechanism, the number of awakening
slots might be different at given duty cycles; therefore, a variable α is borrowed in Table 1. The variable
α can be decided based on the multiples of k. k is not fixed in our proposed algorithm. If k is a small
value, then the number of active slots will be increased. Otherwise, the active slots will be decreased.
For example, if the duty cycle is 10% and k value is 9, the variable α will be approximately 10.

The following scenario was considered for the analysis of energy consumption: one node has
a higher duty cycle than the other. This node cannot discover its neighbor within the first round of
its duty cycle. For instance, node A uses 10% of the duty cycle (higher duty cycle) and the other
node B uses 5% of the duty cycle (lower duty cycle). A cannot talk to B within the first round of its
duty cycle. The next step is to compute the total number of active slots among the four neighbor
discovery protocols. Figure 9 shows the total number of active slots for the four different algorithms.
In general, 1% of the duty cycle requires a bigger number of active slots than others. Disco, U-Connect,
and Searchlight show a similar pattern. For example, the primary concept of Disco and U-Connect use a
prime number to activate the node. They make each slot active according to the multiples of a given
prime number. If the given prime number is getting bigger, similar to 1% of the duty cycle, the offset
between one active slot and the other is also increased. Therefore, the asymmetric case of (10%, 1%)
has a larger value than the cases of (10%, 5%) and (10%, 2%) in Figure 9. However, the proposed
algorithm represents a different shape when compared to other protocols because the waking-up
pattern is asymmetrical. In general, the total number of active slots in the proposed technique is the
lowest when compared to that of other protocols. The discovery latency in Figure 8 and the number
of awakening slots in Figure 9 illustrate a reverse trend from (10%, 1%) to (5%, 2%). This situation
happens because it is based on the selection of variable α. A simulation or real experiment with mobile
sensors will be required to verify that our numerical study is reasonable. Consequently, our method
can discover neighbors much faster than others with minimum energy consumption.

Symmetry 2019, 11, x FOR PEER REVIEW 13 of 15

Figure 8. Analysis of the worst-case discovery latency.

Figure 9. Analysis of the number of awakening slots.

8. Conclusion

We analyzed neighbor discovery optimization for low-power, low-cost communication
networks in this paper. As we stated in the introduction section, these networks consist of various
heterogeneous communication devices. Every time the network participants are required to
communicate with their neighbors, they should first comprehend that there are existing neighbor
nodes in their communication range. After locating their neighbors, they try to connect with them
and finally establish a network connection. The communication mechanism we considered in this
paper focused on M2M communication in a distributed manner. This communication is mostly
similar to the communication method of WSNs.

In this paper, we developed an asynchronous and asymmetric neighbor discovery protocol by
combining the traditional block designs and the multiples of k. The shortcoming of the block design
is that it might be possible to use it only for certain duty cycles. We recommended a block
construction scheme by combining two block designs to support any desired duty cycle.
Furthermore, the traditional block design can assist only symmetric duty cycles and not asymmetric

0

10,000

20,000

30,000

40,000

(10%, 5%) (10%, 2%) (10%, 1%) (5%, 2%) (5%, 1%) (2%, 1%)

D
isc

ov
er

y
La

te
nc

y
(s

lo
ts)

Asymmetric discovery cases

Disco

U-Connect

Searchlight

Proposed

0

100

200

300

400

500

600

(10%, 5%) (10%, 2%) (10%, 1%) (5%, 2%) (5%, 1%) (2%, 1%)

N
um

be
r o

f w
ak

e-
up

 sl
ot

s (
slo

ts)

Asymmetric discovery cases

Disco

U-Connect

Searchlight

Proposed

Figure 9. Analysis of the number of awakening slots.

8. Conclusions

We analyzed neighbor discovery optimization for low-power, low-cost communication networks
in this paper. As we stated in the introduction section, these networks consist of various heterogeneous
communication devices. Every time the network participants are required to communicate with
their neighbors, they should first comprehend that there are existing neighbor nodes in their
communication range. After locating their neighbors, they try to connect with them and finally
establish a network connection. The communication mechanism we considered in this paper focused

Symmetry 2019, 11, 836 14 of 15

on M2M communication in a distributed manner. This communication is mostly similar to the
communication method of WSNs.

In this paper, we developed an asynchronous and asymmetric neighbor discovery protocol
by combining the traditional block designs and the multiples of k. The shortcoming of the block
design is that it might be possible to use it only for certain duty cycles. We recommended a block
construction scheme by combining two block designs to support any desired duty cycle. Furthermore,
the traditional block design can assist only symmetric duty cycles and not asymmetric cases. We
provided an asymmetric neighbor discovery algorithm by introducing the use of the multiples of k to
overcome the weakness of typical block designs.

We performed a numerical study by analyzing the performance of existing representative neighbor
discovery protocols and comparing our proposed algorithm with other protocols. The numerical
analysis revealed that the proposed algorithm utilizes the minimum number of active slots, which
implies that our protocol discovers neighbors faster and wastes less energy than other protocols.

Future research directions should attempt a simulation study or a real experiment on distributed
network environment settings. This study can verify that the total number of slots is related to the
energy consumption and network lifetime of nodes in the network. In addition, selecting the parameter
values using the concept of multiples might affect the performance of the neighbor discovery protocol
that we proposed with a variety of parameter settings.

In addition, one of the significant research directions of neighbor discovery is the IP version 6
(IPv6) NDD [27]. In WSN environments, there is no concept of IP address in each wireless sensor. In
the future, IoT devices could be either IP address or ad hoc based. Therefore, we plan to focus on a
neighbor discovery study in IPv6-based mobile devices.

Author Contributions: All authors contributed equally to this paper.

Acknowledgments: This work was supported by the Dongguk University Research Fund of 2016, BK21 Plus
project of the National Research Foundation of Korea Grant, and National Research Foundation of Korea(NRF)
funded (NRF-2016R1D1A1A09919318, NRF-2019R1F1A1064019).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Aziz, A.A.; Sekercioglu, Y.; Fitzpatrick, P.; Ivanovich, M. A Survey on Distributed Topology Control Technique
for Extending the Lifetime of Battery Powered Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2013,
15, 121–144. [CrossRef]

2. Phivou, P.; Panousopoulou, A.; Tsakalides, P. On Realizing Distributed Topology Control in Low-power IoT
Platforms. In Proceedings of the IEEE World Forum on Internet of Things, Milan, Italy, 14–16 December 2015.

3. Dohler, M.; Anton-Haro, C. Machine-to-Machine (M2M) Communications—Architecture, Performance and
Applications; Woodhead Publishing: Cambridge, UK, 2015.

4. Stojmenovic, I. Machine-to-Machine Communications with In-Network Data Aggregation, Processing, and
Actuation for Large-Scale Cyber-Physical Systems. IEEE Intern. Things J. 2014, 1, 122–128. [CrossRef]

5. Moustafa, K.E.; Hafid, H. Self-Identification of Boundary’s Nodes in Wireless Sensor Networks. J. Inform.
Proc. Syst. 2017, 13, 128–140.

6. Gaur, M.S.; Pant, B. Trusted and secure clustering in mobile pervasive environment. Hum. Centric Comput.
Inform. Sci. 2015, 5, 1–17. [CrossRef]

7. Khan, A.A.; Rehmani, M.H.; Saleem, Y. Neighbor Discovery in Traditional Wireless Networks and Cognitive
Radio Networks: Basics, Taxonomy, Challenges, and Future Research Directions. J. Netw. Comput. Appl.
2015, 52, 173–190. [CrossRef]

8. Abrougui, K.; Boukerche, A.; Ramadan, H. Performance Evaluation of an Efficient Fault Tolerant Service
Discovery Protocol for Vehicular Networks. J. Netw. Comput. Appl. 2012, 35, 1424–1435. [CrossRef]

9. McGlynn, M.J.; Borbash, S.A. Birthday protocols for low energy deployment and flexible neighbor discovery
in Ad Hoc wireless networks. In Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc
Networking & Computing, Long Beach, CA, USA, 4–5 October 2001; pp. 137–145.

http://dx.doi.org/10.1109/SURV.2012.031612.00124
http://dx.doi.org/10.1109/JIOT.2014.2311693
http://dx.doi.org/10.1186/s13673-015-0050-1
http://dx.doi.org/10.1016/j.jnca.2015.03.003
http://dx.doi.org/10.1016/j.jnca.2011.10.007

Symmetry 2019, 11, 836 15 of 15

10. Tseng, Y.-C.; Hsu, C.-S.; Hsieh, T.-Y. Power-saving protocols for IEEE 802.11-based multi-hop ad hoc networks.
In Proceedings of the Twenty-First Annual Joint Conference of the IEEE Computer and Communications
Societies, New York, NY, USA, 23–27 June 2002; pp. 200–209.

11. Jiang, J.; Tseng, Y.; Hsu, C.; Lai, T. Quorum-based asynchronous power-saving protocols for IEEE 802.11
Ad Hoc networks. In Proceedings of the 2003 International Conference on Parallel Processing, Kaohsiung,
Taiwan, 6–9 October 2003; Volume 10, pp. 257–264.

12. Dutta, P.; Culler, D. Practical asynchronous neighbor discovery and rendezvous for mobile sensing
applications. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, Raleigh,
NC, USA, 4–7 November 2008; pp. 71–84.

13. Kandhalu, A.; Lakshmanan, K.; Rajkumar, R. U-connect: A low-latency energy-efficient asynchronous
neighbor discovery protocol. In Proceedings of the 9th ACM/IEEE International Conference on Information
Processing in Sensor Networks, Stockholm, Sweden, 12–15 April 2010; pp. 350–361.

14. Zheng, R.; Hou, J.C.; Sha, L. Asynchronous wakeup for Ad Hoc networks. In Proceedings of the 4th ACM
International Symposium on Mobile Ad Hoc Networking & Computing, Annapolis, MD, USA, 1–3 June
2003; pp. 35–45.

15. Bakht, M.; Trower, M.; Kravets, R. Searchlight: Won’t You Be My Neighbor? In Proceedings of the 18th
Annual International Conference on Mobile Computing and Networking (MobiCom), Istanbul, Turkey,
22–26 August 2012; pp. 185–196.

16. Wang, K.; Mao, X.; Liu, Y. BlindDate: A Neighbor Discovery Protocol. IEEE Trans. Parallel Distrib. Syst. 2015,
26, 949–959. [CrossRef]

17. Chiasserini, C.; Rao, R.R. A distributed power management policy for wireless ad hoc networks. In
Proceedings of the Wireless Communications and Networking Confernce, Chicago, IL, USA, 23–28 September
2000; pp. 1209–1213.

18. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. A survey on sensor networks. IEEE Commun.
Mag. 2002, 40, 102–114. [CrossRef]

19. Huang, P.; Xiao, L.; Soltani, S.; Mutka, M.W.; Xi, N. The evolution of MAC protocols in wireless sensor
networks: A survey. IEEE Commun. Surv. Tutor. 2013, 15, 101–120. [CrossRef]

20. Sun, W.; Yang, Z.; Zhang, X.; Liu, Y. Energy-efficient neighbor discovery in mobile Ad Hoc and wireless
sensor networks: A survey. IEEE Commun. Surv. Tutor. 2014, 16, 1448–1459. [CrossRef]

21. Hill, J.; Szewczyk, R.; Woo, A.; Hollar, S.; Culler, D.; Pister, K. System architecture directions for networked
sensors. In Proceedings of the Ninth International Conference on Architectural Support for Programming
Language and Operating System, Cambridge, MA, USA, 12–15 November 2000; pp. 93–104.

22. Anderson, I. Combinatorial Designs and Tournaments; Oxford University Press: Oxford, UK, 1988; Chapter 2.
23. Colbourn, C.J.; Dinitz, J.H. The CRC Handbook of Combinatorial Designs; CRC Press: Boca Raton, FL, USA, 1996.
24. Stinson, D.R. Combinatorial Designs: Constructions and Analysis; Springer: Berlin/Heidelberg, Germany, 2004.
25. Godsil, C. Combinatorial Design Theory. 2010. Available online: http://www.math.uwaterloo.ca/~{}kpurbhoo/

winter2012-co634/Designs.pdf (accessed on 9 April 2010).
26. Estrin, D. Sensor Network Protocols Tutorial; Mobicom: Ulaanbaatar City, Mongolia, 2002.
27. Grajzer, M.; Glabowski, M. Neighbor Discovery ++: A Scalable and Robust Address Auto-Configuration for

Future Internet of Things Networks. IEEE Access 2019, 7, 61083–61108. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPDS.2014.2316159
http://dx.doi.org/10.1109/MCOM.2002.1024422
http://dx.doi.org/10.1109/SURV.2012.040412.00105
http://dx.doi.org/10.1109/SURV.2013.012414.00164
http://www.math.uwaterloo.ca/~{}kpurbhoo/winter2012-co634/Designs.pdf
http://www.math.uwaterloo.ca/~{}kpurbhoo/winter2012-co634/Designs.pdf
http://dx.doi.org/10.1109/ACCESS.2019.2916175
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Problem Statement
	Block Design for Neighbor Discovery
	Block Construction Mechanism
	Asymmetric Neighbor Discovery Algorithm
	Numerical Analysis
	Conclusions
	References

