The Existence of Two Homogeneous Geodesics in Finsler Geometry
Abstract
:1. Introduction
2. Basic Settings
3. The Main Result
Funding
Conflicts of Interest
References
- Dušek, Z. Homogeneous geodesics and g.o. manifolds. Note Mat. 2018, 38, 1–15. [Google Scholar]
- Kowalski, O.; Szenthe, J. On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 2000, 81, 209–214, Erratum: Geom. Dedicata 2001, 84, 331–332. [Google Scholar] [CrossRef]
- Kowalski, O.; Nikčević, S.; Vlášek, Z. Homogeneous Geodesics in Homogeneous Riemannian Manifolds—Examples; Preprint Reihe Mathematik, TU Berlin, No. 665/2000; TU Berlin: Berlin, Germany, 2000. [Google Scholar]
- Kowalski, O.; Vlášek, Z. Homogeneous Riemannian manifolds with only one homogeneous geodesic. Publ. Math. Debrecen 2003, 62, 437–446. [Google Scholar]
- Dušek, Z. The existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds. J. Geom. Phys. 2010, 60, 687–689. [Google Scholar] [CrossRef]
- Dušek, Z. The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds. Math. Nachr. 2015, 288, 872–876. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Deng, S. Existence of homogeneous geodesics on homogeneous Randers spaces. Houston J. Math. 2018, 44, 481–493. [Google Scholar]
- Dušek, Z. The affine approach to homogeneous geodesics in homogeneous Finsler spaces. Archivum Mathematicum (Brno) 2018, 54, 127–133. [Google Scholar] [CrossRef]
- Dušek, Z. The existence of homogeneous geodesics in special homogeneous Finsler spaces. Matematički Vesnik 2019, 71, 16–22. [Google Scholar]
- Yan, Z.; Huang, L. On the existence of homogeneous geodesic in homogeneous Finsler spaces. J. Geom. Phys. 2018, 124, 264–267. [Google Scholar] [CrossRef]
- Dušek, Z. Homogeneous Randers spaces admitting just two homogeneous geodesics. Archivum Mathematicum (Brno) 2019, in press. [Google Scholar]
- Shen, Z. Lectures on Finsler Geometry; World Scientific: Singapore, 2001. [Google Scholar]
- Bao, D.; Chern, S.-S.; Shen, Z. An Introduction to Riemann-Finsler Geometry; Springer Science+Business Media: New York, NY, USA, 2000. [Google Scholar]
- Deng, S. Homogeneous Finsler Spaces; Springer Science+Business Media: New York, NY, USA, 2012. [Google Scholar]
- Kowalski, O.; Vanhecke, L. Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. 1991, 5, 189–246. [Google Scholar]
- Latifi, D. Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys 2007, 57, 1421–1433. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dušek, Z. The Existence of Two Homogeneous Geodesics in Finsler Geometry. Symmetry 2019, 11, 850. https://doi.org/10.3390/sym11070850
Dušek Z. The Existence of Two Homogeneous Geodesics in Finsler Geometry. Symmetry. 2019; 11(7):850. https://doi.org/10.3390/sym11070850
Chicago/Turabian StyleDušek, Zdeněk. 2019. "The Existence of Two Homogeneous Geodesics in Finsler Geometry" Symmetry 11, no. 7: 850. https://doi.org/10.3390/sym11070850
APA StyleDušek, Z. (2019). The Existence of Two Homogeneous Geodesics in Finsler Geometry. Symmetry, 11(7), 850. https://doi.org/10.3390/sym11070850